
Diagnosing Breast Cancer Based on Support Vector Machines

H. X. Liu,† R. S. Zhang,*,†,‡ F. Luan,† X. J. Yao,†,§ M. C. Liu,† Z. D. Hu,† and B. T. Fan§

Department of Chemistry, Lanzhou University, Lanzhou 730000, China, Department of Computer Science,
Lanzhou University, Lanzhou 730000, China, and Universite´ Paris 7-Denis Diderot, ITODYS 1,

Rue Guy de la Brosse, 75005 Paris, France

Received November 27, 2002

The Support Vector Machine (SVM) classification algorithm, recently developed from the machine learning
community, was used to diagnose breast cancer. At the same time, the SVM was compared to several
machine learning techniques currently used in this field. The classification task involves predicting the state
of diseases, using data obtained from the UCI machine learning repository. SVM outperformed k-means
cluster and two artificial neural networks on the whole. It can be concluded that nine samples could be
mislabeled from the comparison of several machine learning techniques.

1. INTRODUCTION

In recent years, neural networks have been successfully
applied in function approximation,1,2 pattern association and
pattern recognition,3-5 etc., concerning various fields con-
cluding mathematics, economics, medicine, chemistry, and
many others. Nevertheless, they suffer from many problems
and are not well-controlled learning machines. The support
vector machine is a new algorithm from the machine learning
community. Due to its remarkable generalization perfor-
mance, the SVM has attracted attention and gained extensive
application. For example, for the pattern recognition case,
SVMs have been used for isolated handwritten digit recogni-
tion,6 object recognition,7 face detection in images,8 text
categorization,9 drug design,10 prediction of protein struc-
ture,11 and identifying genes, etc.12

This article applied SVMs to diagnose breast cancer.
Breast cancer, as a kind of cancers, severely threatens
feminine health. According to the states of the breast cancer,
they can be classified into benign breast tumor and malignant
breast tumor (cancer). Aiming at various states of the disease,
there will be various Rx and treating medications. Thus,
diagnosis is very important.

In this article, several other machine learning techniques
were also applied to diagnose this disease in order to identify
the reliability of the support vector machines, using data
obtained from the UCI machine learning repository.13

2. PROBLEM DESCRIPTION

The data used in this experiment were obtained from the
UCI machine learning repository11 and described by Dr.
William H. Wolberg. The breast cancer data have been used
in some research.14 We discussed the effect of nine charac-
teristic parameters on the state of breast cancer and the
influence of the involved parameter on the performance of
the SVM models in this article. At the same time, the
comparison between the performance of SVMs and one of

other techniques was performed using these data. The
problem is to predict the state of breast cancer. In this
database, there are 699 pieces of samples, and every sample
is expressed by nine characteristic parameters. The nine
parameters are as follows: Clump Thickness, Uniformity of
Cell Size, Uniformity of Cell Shape, Marginal Adhesion,
Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin,
Normal Nucleoli, Mitoses. According to the properties of
the nine parameters, the breast cancer was classified into
benign (expressed by “2”) breast tumor and breast cancer
(expressed by “4”). Among the 699 samples, there are 16
samples with incomplete parameters. So, the remained 683
samples were used for machine learning. In this article, the
data set was randomly divided into two subsets: a training
set of 547 samples and a test set of 136 samples.

3. METHODOLOGY

Most of the Classifiers typically learn by empirical risk
minimization (ERM) ,15 that is they search for the hypothesis
with the lowest error on the training set. Unfortunately, this
approach is doomed to failure without some sort of capacity
control.15,17To see this, consider a very expressive hypothesis
space. If the data are noisy, which is true of most real world
applications, then the ERM learner will choose a hypothesis
that accurately models the data and the noise. Such a
hypothesis will perform badly on unseen data. Note that the
SVM is the only algorithm which performs capacity control
simultaneously with risk minimization; this is termed struc-
tural risk minimization (SRM).

As the theories of neural networks and clustering analysis
have been well described in many monographs and articles,
we only give a brief description on the simple theory of the
SVMs.

3.1. SRM.15 Suppose we are given 1 observation. Each
observation consists of a pair: a vectorxi ∈ Rn, i ) 1,...,l
and the associated “truth”yi ∈ {- 1, + 1}. Now suppose
we have a machine whose task is to learn the mappingxi

|f yi. The machine is actually defined by a set of possible
mappingsx |f f(x,R), ∀ x,R. The machine is assumed to
be deterministic: for a given inputx, and choice ofR, it
will always give the same outputf(xi,R). A particular choice
of R generates what we will call a “trained machine”.
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The expectation of the test error for a trained machine is
therefore

Note that, when a densityp(x,y) exists,dP(x,y) may be
written asp(x,y)dxdy. This is a nice way of writing the true
mean error. The quantityR(R) is called the expected risk or
the risk. The “empirical risk”Remp(R) is defined to be just
the measured mean error rate on the training set:

Note that no probability distribution appears here,Remp(R)
is a fixed number for particular choice ofRand for a
particular training set{xi,yi}.

The quantity (1/2)|yi - f(xi,R)| is called the loss. Now
choose someη such that 0e η e 1. Then for losses taking
these values, with probability 1-η, the following bound
holds

whereh is a non-negative integer called the Vapnik Cher-
vonenkis (VC) dimension and is a measure of the notion of
capacity mentioned above. In the following we will call the
right-hand side of the equation the “risk bound”. The second
term on the right-hand side is called the “VC confidence”.

The principle of structural risk minimization of SVMs is
to minimize the “risk bound” of classifier, namely solving
min [Remp(R) + x((h(log(2l/h)+1)-log(η/4))/(l))]. There-
fore, SVMs can perform capacity control simultaneously with
risk minimization. Then SVMs achieve higher generalization
performance than traditional neural networks.

3.2. Support Vector Machines.As a novel type of neural
networks, support vector machine (SVM) has gained increas-
ing attention in areas ranging from its original application
in pattern recognition to the extended application of regres-
sion estimation, due to its remarkable generalization perfor-
mance. SVM was developed by Vapnik and co-workers in
1995. Based on the Structural Risk Minimization principle
which seeks minimize an upper bound of the generalization
error rather than minimize the empirical error commonly
implemented in other neural networks, SVMs achieve higher
generalization performance than traditional neural networks
in solving these machine learning problems. Another key
property is that unlike the training of other networks, which
requires nonlinear optimization with the danger of getting
stuck into local minima, training SVMs is equivalent to
solving a linearly constrained quadratic programming prob-
lem. Consequently, the solution of SVM is always unique
and globally optimal.18

The SVM method is outlined first for the linearly separable
case. Kernel functions are then introduced in order to deal
with nonlinear decision surfaces. Finally, for noisy data,
when complete separation of the two classes may not be
desirable, slack variables are introduced. A complete descrip-
tion to the theory of SVMs for pattern recognition is in
tutorials by Osuna et al.8 and Burges15 on SVMs.

3.2.1. Linear Decision Surfaces.In this case, there exists
an optimal separating hyperplane, whose function is

which implies

By minimizing 1/2|w|2 subject to this constraint, the SVM
approach tries to find a unique separating hyperplane. Here
||w||2 is the Euclidean norm ofwb, which maximizes the
distance between the hyperplane (optimal separating hyper-
plane) and the nearest data points of each class. The classifier
is called the largest margin classifier.

By introducing Lagrange multipliersRi, the SVM training
procedure amounts to solving a convex Quadratic Program-
ming (QP) problem. The solution is a unique globally
optimized result, which can be shown to have the following
expansion:

Only if the correspondingRi > 0, thesexi are called
support vectors.

When an SVM is trained, the decision function can be
written as

The solution obtained is often sparse since only thosexi

with nonzero Lagrange multipliers appear in the solution.
This is important when the data to be classified are very
large, as is often the case in cheminformatics.

3.2.2. Soft Margin Hyperplanes.In the case of noisy data,
forcing zero training error will lead to poor generalization.
To take into account the fact that some data points may be
misclassified, introduce a set of slack variables

The relaxed separation constraint is given as

The optimal separating hyperplane can be found by
minimizing

where C is a regularization parameter used to decide a
tradeoff between the training error and the margin.

3.2.3. Nonlinear Decision Surfaces.A linear classifier
may not be the most suitable hypothesis for the two classes.
The SVM can be used to learn nonlinear decision functions
by first mapping the data to some higher dimensional feature
space and constructing a separating hyperplane in this space,
where the mapping is determined by the kernel function. First
notice that the only way in which the data appears in the
training problem, eq 7, is in the form of dot products,x ‚ xi.

xi ‚ w + b ) 0 (4)

yi(w ‚ xi + b) g 1, i ) 1,...,l (5)

w ) ∑
i)1

l

Riyixi (6)

f(x) ) sign(∑
i)1

l

yiRi(x ‚ xi) + b) (7)

êi > 0, i ) 1,...,l

yi(w ‚ xi + b) g 1 - êi, i ) 1,...,l (8)

1

2
|w|2 + C∑

i ) 1

l

êi (9)

R(R) ) ∫1
2
|y - f(x,R)|dP(x,y) (1)

Remp(R) )
1

2l
∑
i)1

l

|yi - f(xi,R)| (2)

R(R) e Remp(R) + x(h(log (2l/h) + 1) - log (η/4)
l ) (3)
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Now suppose we first mapped the data to some other
(possibly infinite dimensional) Euclidean space H, using a
mapping which we will callΦ:

Then, of course, the training algorithm would only depend
on the data through dot products in H, i.e., on functions of
the formΦ(x) ‚ Φ(xi). Now if there were a “kernel function”
K such thatK (x,xi) ) Φ(x) ‚ Φ(xi), we would only need to
use K in the training algorithm and would never need to
explicitly even know whatΦ is.

Thus, the form of the decision function becomes

For a given data set, only the kernel function and the
regularity parameterC must be selected to specify one SVM.
For the pattern recognition problem, the first kernels
considered are the following:15

3.3. The Training and Prediction of Breast Cancer
Class.Similar with other multivariate statistical models, the
performances of SVM classifiers depend on the combination
of several parameters. They are capacity parameterC, the
kernel type K, and its corresponding parameters.C is a
regularization parameter that controls the tradeoff between
maximizing the margin and minimizing the training error.
If C is too small, then insufficient stress will be placed on
fitting the training data. IfC is too large, then the algorithm
will overfit the training data. But, ref 16 indicated that

prediction error was scarcely influenced byC. To make the
learning process stable, a large value should be set up forC
first (e.g.,C ) 100). The kernel type is another important
one. Because the use of SVM models in chemometrics is
only in the beginning, there are no clear guidelines on
selecting the most effective kernel for a certain classification
problem. But for classification tasks, you will most likely
use C-classification with the RBF kernel, because of its good
general performance and the few number of parameters (only
two: C andγ).17

In this article, the leave-one-out test for the whole training
set of 547 samples was carried out to select parameters. The
leave-one-out procedure consists of removing one example
from the training set, constructing the decision function on
the basis only of the remaining training data, and then testing
on the removed example. In this fashion one tests all
examples of the training data and measures the fraction of
errors over the total number of training examples. For the
SVM, polynomial kernel functions with powers of 2,3 and
radial basis kernel were tested. After building the optimized
SVM, the test set was used to predict their class labels. At
the same time, the results of k-means cluster and several
neural networks were compared with that obtained from
SVM.

All calculation programs implementing SVMs were written
in R-file based on R1.6.1 software. All neural networks
calculations were based on Neural Connection 2.1 package.

4. RESULTS AND DISCUSSION

4.1. Analysis of the Parameters.To identify the impor-
tance of the parameters and eliminate redundancy informa-
tion, the principal components analysis of the original data
was done. From Figures 1 and 2, it can be seen that the
stronger parameters are as follows: parameter 6 (Bare
Nuclei), parameter 2 (Uniformity of Cell Size), parameter 3
(Uniformity of Cell Shape), parameter 8 (Normal Nucleoli),
parameter 4 (Marginal Adhesion), and parameter 1 (Clump
Thickness), while parameter 5 (Single Epithelial Cell Size),
parameter 7 (Bland Chromatin), and parameter 9 (Mitoses)
are weaker. To identify the effect of the posterior three
parameters further, the models based on the SVM were
studied through omitting the three parameters one by one.
But for comparison conveniently among different methods
and previous work, the model based on nine parameters was
built up first.

4.2. The Results from SVMs. 4.2.1. Selection of the
Kernel Function and Parameters of the SVM.Given the
data set, proper kernel function and its parameters must be
chosen to construct the SVM classifier. This selection is
important because the type of kernel function determines the
sample distribution in the mapping space. There are no
successful theoretical methods for determining the optimal
kernel function and its parameters. But it is indicated that

Figure 1. Relative importance of principal components.

Figure 2. The first component in PCA. Note: V2, V3, V4, V5, V7, V9 are corresponding to the parameters 1, 2, 3, 4, 6, 8, 10.

Φ: Rd |f Η (10)

f(x) ) sign(∑
i)1

l

yiRi K(x,xi) + b (11)

K(x,y) ) (x ‚ y + 1)p Polynomial kernel function

K(x,y) ) e- |x - y|/2σ2
Radial basis kernel function

K(x,y) ) tanh (κx ‚ y - δ) Sigmoid kernel function
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the radial basis function and the polynomial function exhibit
better performance. So in this article, the radial basis function
and the polynomial function were used in the present study.
The form of the two kernel functions in R is as follows

Polynomial

Radial basis

whereγ is a constant, the parameter of the two kernels;u
andV are two independent variables; andd is the degree of
a polynomial function. The calculation results are listed in
Table 1.

The statistical results obtained from the SVM experiments
are presented in Table 1 and Figures 1 and 2. The calibration
results reported in Table 1 are as follows:C, capacity
parameter, deciding a tradeoff between the training error and
the margin;γ, a parameter of kernel function;d, degree of
the polynomial kernel function; SV, number of support
vectors; and accuracy, accuracy of leave-one-out (LOO)
cross-validation on the all training samples.

From Table 1 and Figures 1 and 2, it can be found that as
a whole the radial basis kernel function performed better than
the others and is more appropriate in this context. The first
set of models, presented in Table 1 experiments 1-31, was
obtained with the radial basis function kernel, researching
the effects of fargoingγ and C on the accuracy of LOO
cross-validation on the all training samples, which results
were displayed clearly in Figures 1 and 2. The best results
are obtained forγ ) 0.00007,C ) 100 when the accuracy
is up to 97.07495% with 53 support vectors. The second
group of models, presented in table experiments 32-83, was
obtained with polynomial kernel with degree 2 and degree
3. The best choice for classifying breast cancer is a
polynomial of degree 2 andγ ) 0.00007,C ) 100, when
the accuracy is up to 96.70932% with 54 support vectors.
This result is worse than that obtained by radial basis function
kernel. Therefore, the radial basis kernel function was used
to build the followed binary SVMs. After the training, the
decision function of the SVM is as follows:

Table 1. Parameters Selection of the SVM and Corresponding Results

no. kernel function C γ D SV accuracy no. kernel function C γ D SV accuracy

1 100 0.00001 78 96.3437 43 100 0.01 3 49 93.9671
2 radial basis 100 0.00003 62 96.89214 44 100 0.05 3 63 92.68739
3 kernel function 100 0.00005 56 97.07495 45 100 0.1 3 63 92.68739
4 100 0.00007 53 97.07495 46 100 0.5 3 63 92.68739
5 100 0.00009 53 96.89214 47 1 0.0008 3 250 89.76234
6 100 0.0001 53 96.89214 48 10 0.0008 3 110 95.06399
7 100 0.0003 46 96.70932 49 1000 0.0008 3 52 95.97806
8 100 0.0005 46 96.70932 50 2000 0.0008 3 49 95.97806
9 100 0.0007 47 96.5265 51 3000 0.0008 3 53 95.61243
10 100 0.0009 47 96.5265 52 4000 0.0008 3 52 95.2468
11 100 0.001 51 96.5265 53 5000 0.0008 3 53 95.2468
12 100 0.003 57 95.97806 54 6000 0.0008 3 54 95.61243
13 100 0.005 56 95.79525 55 7000 0.0008 3 55 95.61243
14 100 0.007 61 95.06399 56 8000 0.0008 3 55 95.61243
15 100 0.009 59 94.51554 57 9000 0.0008 3 57 95.79525
16 100 0.01 56 94.51554 58 10000 0.0008 3 56 95.61243
17 100 0.05 163 94.88117 59 100 0.0001 2 131 95.42962
18 100 0.1 231 95.2468 60 100 0.0003 2 67 96.70932
19 100 0.5 315 91.5905 61 100 0.0005 2 57 96.89214
20 1 0.00007 229 95.2468 62 100 0.0007 2 54 96.70932
21 10 0.00007 87 96.5265 63 100 0.0009 2 52 96.5265
22 1000 0.00007 48 96.70932 64 100 0.001 2 51 96.3437
23 2000 0.00007 46 96.70932 65 100 0.003 2 48 95.97806
24 3000 0.00007 46 96.70932 66 100 0.005 2 53 94.1499
25 4000 0.00007 46 96.70932 67 100 0.007 2 51 94.1499
26 5000 0.00007 44 96.70932 68 100 0.009 2 51 93.9671
27 6000 0.00007 45 96.70932 69 100 0.01 2 49 93.9671
28 7000 0.00007 46 96.70932 70 100 0.05 2 51 93.05302
29 8000 0.00007 46 96.70932 71 100 0.1 2 48 92.8702
30 9000 0.00007 46 96.70932 72 1 0.0007 2 174 94.51554
31 10000 0.00007 47 96.70932 73 10 0.0007 2 77 96.16088
32 100 0.0001 3 370 75.13711 74 1000 0.0007 2 48 96.16088
33 100 0.0002 3 214 93.05302 75 2000 0.0007 2 48 95.97806
34 100 0.0003 3 141 93.9671 76 3000 0.0007 2 54 95.61243
35 100 0.0004 3 103 95.2468 77 4000 0.0007 2 54 95.06399
36 polynomial 100 0.0005 3 82 95.2468 78 5000 0.0007 2 53 94.51554
37 kernel function 100 0.0006 3 74 95.42962 79 6000 0.0007 2 54 93.9671
38 100 0.0007 3 68 95.97806 80 7000 0.0007 2 52 94.1499
39 100 0.0008 3 66 96.5265 81 8000 0.0007 2 52 94.33272
40 100 0.0009 3 61 96.3437 82 9000 0.0007 2 53 94.1499
41 100 0.001 3 58 96.3437 83 10000 0.0007 2 51 94.1499
42 100 0.005 3 55 94.51554

(γ*u′*V + c0)d

exp(-γ* |u-V|2)

f(x) )

sign(∑
i)1

53

yiRi exp(- 0.00007*|x - xi|2) - 0.4957086)
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Then, the test set data was tested with the built model.
The misclassified samples of the LOO cross-validation on
the training set and the test set were listed in the Table 2.

To identify the reliability of the SVM and avoid the effect
of randomization, the whole data set was divided into another
four groups. Their classified results in optimal condition were
listed in Table 3. The comparison between Table 3 and Table
2 displayed that the results from every group are very similar.
So it can be concluded that the training samples are
representative and there are no effects of randomization.

As can be seen from the experiments 1-19, 32-46, and
59-71 of Table 1 and Figure 3, the performance of the
SVMs is very sensitive toγ for selectedC, that is,γ greatly
affects the learning abilities of machines. For example, to
the polynomial kernel with degree 3, among the experiments
32-33, the accuracy varied from 75.13711% to 93.05302%
and the number of support vectors varied from 370 to 214
when theγ increased 0.00001. Besides, for the polynomial
kernel function, the performance of the SVMs becomes better
whenγ increases in the beginning and worse asγ continued
increasing.

But for the radial basis kernel function, the trend of the
performance of the SVMs withγ is more complex. From
Figure 1, the best choice forγ to the radial basis kernel and
the polynomial kernel function with degree 2,3 is 0.00007,
0.0008, and 0.0007, respectively. For capacity parameterC,

as shown in ref 15, the performance of the SVM becomes
better first and then worse, finally insensitive asC increasing
from Figure 4.

Besides, because the different type of kernel has different
mapping, the kernel type and its corresponding parameters
greatly affect the number of support vector. It can be
expressed clearly by our experiments. At the same time, the
number of support vector has a close relation with the
performance of the SVMs and training time. From Table 1,
the accuracy is lower when the support vectors are overmuch,
which could due to produce overfit. At the same time,

Table 2. Number of Mistaken Samples of the SVM Method

training set 4,13,100,191,217227,245,252,286,307,339,343,
420,474,475,642

test set 2,50,335

Table 3. Results from Other Groups

group set no. of mistaken samples no. of mistaken samples

group 2 training set 17 2,4,13,50,56,100,191,245,252,286,307,335,339343,420,475,642
test set 4 58,217,266,441

group 3 training set 17 2,4,13,50,62,100,217,227,245,252,286,339,343,420,441,475,480
test set 4 191,266,307,335

group 4 training set 12 4,13,100,191,217,227,245,307,339,343,475,480
test set 5 2,50,252,286,420

group 5 training set 14 2,4,13,100,191,217,227,245,307,335,339,343,420,642
test set 4 252,286,475,480

Figure 3. The accuracy of LOO cross-validation of the training
set versus log(gamma).

Figure 4. The accuracy of LOO cross-validation of the training
set versus C.

Figure 5. Dissimilarity from the samples to the center of the class
2 versus one of the class 4.

904 J. Chem. Inf. Comput. Sci., Vol. 43, No. 3, 2003 LIU ET AL.



overmuch support vectors make the training time longer. In
this context, for example, for the experiments 3, 4, we
selectedγ ) 0.00007 as the optimal value due to the smaller
number of the support vectors. For most problems in
cheminformatics, the training time is the same important to
the performance of a learning machine.

4.2.2. Effects of the Three Parameters on the Models
of SVMs. The results from the principal components analysis
indicated that the effects of parameter 5 (Single Epithelial
Cell Size), parameter 7 (Bland Chromatin), and parameter 9
(Mitoses) on the classified results are weaker. To identify
the effect of the three parameters more exactly, the several
models were studied through omitting the three parameters
one by one in optimal condition, which results can be seen
in Table 4.

From the section 4.2.1, the optimal results with nine
parameters are that the LOO cross-validation accuracy of
training set and numbers of mistaken samples of test set are
97.075% and 3. Comparing with the results from the Table
4, the effect of the parameters 5, 7, and 9 on the models is
weak assuredly.

4.3. Comparison to k-Means Cluster.k-Means cluster
algorithm is fit for analysis of macroscale data. In this article,
there are 683 samples with nine variables. Thus, the
algorithm can be used for diagnosing breast cancer. k-Means
cluster analysis uses Euclidian distance. Initial cluster centers
are chosen in a first pass of the data, then each additional
iteration groups observations based on nearest Euclidian
distance to the mean of the cluster. Thus cluster centers
change at each pass. The process continues until cluster
means do not shift more than a given cutoff value or the
iteration limit is reached. Here, the clusters are trained using
the training data to get their means, and then the testing data
are applied. The result is shown in Tables 5 and 6 where
Var1 is Clump Thickness; Var2, Uniformity of Cell Size;
Var3, Uniformity of Cell Shape; Var4, Marginal Adhesion;
Var5, Single Epithelial Cell Size; Var6, Bare Nuclei; Var7,
Bland Chromatin; Var8, Normal Nucleoli; Var9, Mitoses.

From Table 6, it can be calculated that the numbers of
misclassified samples of the training set and test set are
respectively 21 and 5, and the accurate rate is 96.2% and
96.3%. The result indicates that in this study, the performance

of k-means cluster algorithm is worse than that of SVM as
displayed in the Table 2.

4.4. Comparison to Neural Network Method. In this
research, the neural network method was also applied to this
problem. The neural network is a very popular algorithm in
pattern recognition field from 1980s. Particularly, the BP
(Back Propagation), PNN (Probability Neural Network), and
RBF (Radial Basis Function) algorithms were widely applied
in this field. The BP and PNN were used in our present study.
In the BP neural network, there are a large number of
controlling parameters, namely, the number of hidden layers,
the number of hidden nodes, the learning rate, the momentum
term, epochs, transfer functions, and weights initialization
methods. The prediction performance is evaluated using the
mean squared error based on leave-one-out cross-validation
of the training set. The selected parameters are as follows:
the number of hidden layers is 1, the number of hidden nodes
is 8, the learning rate is 0.2, the momentum term is 0.9,
epochs are 209, the hidden nodes use the tanh-sigmoid
transfer function, and the output node uses the linear transfer
function. To PNN, the choice of the parameters is simpler.
Only the spread need be specialized, and here the spread
was chosen as 3.0, according to the accuracy of the leave-
one-out cross-validation on the training set. The mistaken
samples from the two neural networks were displayed in
Table 7. Table 8 gives the comparison between the SVM
and the two neural networks.

From Table 8, it can be seen that the results of the SVM
is better than PNN, worse than BP on the LOO cross-
validation of the training set, but for the testing results of
the test set, the SVM is the best one. It indicates that the
SVM has the better generalization ability. This is because

Table 4. Results from the SVM through Omitting the Three Parameters One by One

omitted parameters

results Para5 Para7 Para9
Para5 and

Para7
Para5 and

Para9
Para7 and

Para9
Para 5, Para7,

and Para9

LOO cross-validation accuracy of training set (%) 96.892 96.344 97.075 96.709 97.075 96.161 96.709
number of mistaken samples of test set 4 3 3 2 3 2 2

Table 5. Initial Centers and Final Centers (Training Set)

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9

initial centers cluster1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cluster2 10.0 10.0 10.0 10.0 10.0 10.0 4.00 10.0 10.0

final centers cluster1 3.06 1.30 1.43 1.35 2.09 1.32 2.09 1.26 1.11
cluster2 7.17 6.80 6.73 5.74 5.48 7.93 6.11 6.04 2.57

Table 6. Number of Mistaken Samples of the k-Means Cluster

training set 4, 13, 16, 49, 56, 58, 64, 100, 102, 191, 217, 245, 252,
266, 286, 307, 339, 343, 420, 441, 475

test set 2, 50, 62, 104, 335

Table 7. Number of Mistaken Samples of Neural Networks

PNN training set 4, 13, 16, 25, 56, 58, 100, 102, 191, 217, 245,
252, 266, 286, 307, 343, 420, 441, 474, 475

test set 2, 50, 62, 104
BP training set 7, 13, 115, 191, 217, 227, 245, 252, 266, 307,

420, 474
test set 2, 50, 62, 335

Table 8. Comparison between the SVM and the Two Neural
Networks

no. of the mistaken samples
of LOO cross-validation

on the training set
no. the of mistaken samples

of the test set

BP 12 4
PNN 20 4
SVM 16 3
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SVMs implement the structural risk minimization principle
which minimizes an upper bound of the generalization error
rather than minimizes the training error. This eventually leads
to better generalization than neural networks which imple-
ment the empirical risk minimization principle. At the same
time, the neural network may not converge to global
solutions. The gradient descent BP algorithm optimizes the
weights in a way that the summed square error is minimized
along the steepest slope of the error surface. Global solution
is not guaranteed because the algorithm can get stuck in a
local minima of the error surface. In the case of SVMs,
training SVMs is equivalent to solving a linearly constrained
quadratic programming, and the solution of SVMs is unique,
optimal, and global. Compared to the BP network, there are
fewer free parameters in the SVM. At the same time, as
illustrated in the experiment, the performance of SVMs is
insensitive to C when a reasonable value is selected forγ.
However, for the BP network, there are a large number of
controlling parameters which include the number of hidden
layers, the number of hidden nodes, the learning rate, the
momentum term, epochs, transfer functions, and weights
initialization methods. All of them are selected empirically.
It is a difficult task to obtain an optimal combination of
parameters which produces the best prediction performance.

4.5. Analysis of the Misclassified Samples.From Tables
2, 6, and 7, it can be found that the samples 13, 191, 217,
245, 252, 307, 420 in the training set and the samples 2, 50
in the test set were misclassified by all the methods. The
codes of these samples in the original database are 1041806,
1213375, 1226012, 1017023, 242970, 721482, 1293439,
1002945, and 1108449, respectively. It can be presumed that
these samples could be mislabeled and need to be determined
further. From the parameters and the label, it seems that the
bigger the values of the parameters are, the label is inclined
to 4 (breast cancer). According to this rule, there exists the
great possibility of mislabeling for these mistaken samples
from the data.

From the high rates of LOO cross-validation test, it can
be supposed that the homogeneous samples should have the
high similarity. To analyze the similarity between the samples
and validate the mislabeled samples further, dissimilarity
analysis was performed. For intuitionistic express of the
results, the figures of dissimilarity from the samples to the
center of the class 2 versus dissimilarity from the samples
to the center of the class 4 were drawn. From the denseness
of the homogeneous samples in Figure 5, it can be concluded
that the homogeneous samples have the high similarity. From
Figure 5, several samples of one class embedded into the
dense region of another, which indicates these samples could
be probably mislabeled ones. These samples are as follows:
2, 4, 191, 217, 245, 252, 420. They appeared also in the
mistaken samples of all the used methods except that the
sample 4 was classified accurately by the BP algorithm. This
made clear that the samples 2, 191, 217, 245, 252, and 420
were mislabeled in all probability.

5. CONCLUSION

The above results indicate SVM is an effective and
accurate method for aiding clinical diagnosis on breast cancer
and can be also used to identify mislabeled data. Compared

with the other prediction algorithms, the SVM exhibits the
better whole performance due to embodying the Structural
Risk Minimization principle. It has some advantages over
the other techniques of converging to the global optimum
and not to a local optimum. Besides, as only support vectors
(only a fraction of all data) are used in the generalization
process, the SVM adapts particularly to the problem with a
great deal of data in cheminformatics. At last, there are fewer
free parameters to be adjusted in the SVM. Then the model
selecting process is easy to be controlled. Therefore, the SVM
is a very promising machine learning technique from any
aspects and will gain more extensive application. Through
the PCA analysis and the discussion of the parameters in
the SVM model, it can be concluded that the parameter 5
(Single Epithelial Cell Size), parameter 7 (Bland Chromatin),
and parameter 9 (Mitoses) can be omitted, which reduced
the workload of determining the index and economized time.
Application of SVM in QSAR is the emphasis of our
following work.
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