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There is growing interest in the application of machine learning techniques in bioinformatics. The supervised
machine learning approach has been widely applied to bioinformatics and gained a lot of success in this
research area. With this learning approach researchers first develop a large training set, which is a time-
consuming and costly process. Moreover, the proportion of the positive examples and negative examples in
the training set may not represent the real-world data distribution, which causes concept drift. Active learning
avoids these problems. Unlike most conventional learning methods where the training set used to derive the
model remains static, the classifier can actively choose the training data and the size of training set increases.
We introduced an algorithm for performing active learning with support vector machine and applied the
algorithm to gene expression profiles of colon cancer, lung cancer, and prostate cancer samples. We compared
the classification performance of active learning with that of passive learning. The results showed that
employing the active learning method can achieve high accuracy and significantly reduce the need for labeled
training instances. For lung cancer classification, to achieve 96% of the total positives, only 31 labeled
examples were needed in active learning whereas in passive learning 174 labeled examples were required.
That meant over 82% reduction was realized by active learning. In active learning the areas under the
receiver operating characteristic (ROC) curves were over 0.81, while in passive learning the areas under the
ROC curves were below 0.50

1. INTRODUCTION

Machine learning is an automatic and intelligent learning
technique, which has been widely used to solve many real-
world and complex problems. Since their introduction to the
bioinformatics community, machine learning approaches
helped to accelerate several major researches, such as
biomolecular structure prediction, gene finding, genomics
and proteomics. Because machine learning techniques are
efficient and inexpensive in solving bioinformatics problems,
the applications of these approaches in bioinformatics are
becoming popular and continue to develop.1 Shavlik et al.
(1995)2 described the field of molecular biology as tailor-
made for machine learning.

Generally, there are two types of learning schemes in
machine learning: supervised learning where the output has
been given a priori labeled or the learner has some prior
knowledge of the data; and unsupervised learning where no
prior information is given to the learner regarding the data
or the output. The overall tasks for the learner are to classify,
characterize, and cluster the input data. Supervised learning,
such as classification, is the most common task in biological
problem where given two different sets of examples, namely
positiveE+ and negativeE_ examples (E+ ‚ E- ) Ø), the
learner needs to construct a classifier to distinguish between
the positive examples and the negative ones. This classifier
can then be used as the basis for classifying as yet unseen
data in the future.1

The weakness of supervised learning approach is that it
requires a training set, the size of which is reasonably large.
Even if we have a good supervised-learning method, we
cannot get high-performance without a good training set.
However, labeling instances to create a training set is labor
intensive and very expensive. Furthermore, when selecting
training set, a bias will be introduced if the proportions of
positive and negative examples do not represent the real
world data distribution. The result of this bias is the concept
shift between the training set and the test set. While such
situations are usually avoided by machine learning research-
ers, it is not uncommon in the real world, where it can be
difficult to obtain exactly the right training set for the
intended usage of the classifier. Such concept drift can
severely impair the performance of a deployed classifier.3

Therefore, finding ways to minimize the number of labeled
instances and the difference between distribution of the
training set and the real-world data is beneficial. A promising
approach is active learning. Unlike most conventional
learning methods where the training set used to derive the
model remains static, the classifier can actively choose the
training data and the size of training set increases. The
classifier selects examples to be labeled, and then requests
a teacher to label them and the model is recomputed based
on all the examples labeled so far. It is hoped that allowing
the learner this extra flexibility will reduce the learner’s need
for large quantities of labeled data. Pool-based active learning
was introduced by Lewis and Gale (1994).4 The learner has
access to a pool of unlabeled data and can request the true
class label for a certain number of instances in the pool.
Active learning has been extensively studied in economic
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theory and statistics,5 text categorization,4,6,7 and drug
discovery.3,8

Cancer classification has been the central topic of research
in cancer treatment. The conventional approach for cancer
classification is primarily based on the morphological ap-
pearance of the tumor. The limitations for this approach are
the strong bias in identifying the tumor by experts and also
the difficulties in differentiating between cancer subtypes.
This is due to most cancers being highly related to the
specific biological insights such as responses to different
clinical treatments. It therefore makes biological sense to
perform cancer classification at the genotype level compared
to the phenotypic observation. Due to the large amount of
gene expression data available on various cancerous samples,
it is important to construct classifiers that have high
predictive accuracy in classifying cancerous samples based
on their gene expression profiles.9

We describe here the use of active learning with support
vector machine to classify cancers based on gene expression
profiles. We analyze data from gene expression profiles of
colon cancer, lung cancer, and prostate cancer samples.

2. METHODS

2.1. Active Learning.2.1.1. Learning Algorithm.In pool-
based active learning we have a pool of unlabeled examples.
It is assumed that the examplesx are independently and
identically distributed according to some underlying distribu-
tion F(x) and the labels are distributed according to some
conditional distributionP(y|x). Given an unlabeled poolU,
an active learnerl has three components(f, q, X). The first
component is a classifier,f: ø f {-1, 1}, trained on the
current set of labeled dataX. The second componentq(X) is
the selecting function that, given a current labeled setX,
decides which examples inU to select next. The active
learner can return a classifierf after each selection or after
some fixed number of selections.7

Initially, when the training set is empty, candidates may
be chosen randomly until one positive example and one
negative example have been confirmed. Then the positive
example and negative example are used to build an initial
classifier. Figure 1 shows an algorithm of pool-based active
learning.4

2.1.2. Batch Size m.The obvious batch sizem is 1, which
means the example with the largest predicted value was
chosen. It has been shown that this is a good strategy to
find many positive examples in a few iterations.3,8 However,

if the lab can efficiently handle a batch ofm >1 at a time,
then them strongest predictions would be taken to label. To
evaluate the effect of the batch size (the number of examples
selected to be labeled in each iteration) on the classification,
in this paper, we chosem ) 1, which meant that the most
informative example was chosen, andm ) 5.

2.2. Passive Leaning.In passive learning the next example
was randomly selected to be labeled. This strategy does not
make use of the examples obtained in previous iterations.6

2.3. Data Sets.2.3.1. Colon Cancer. This is a collection
of gene expression profiles of 40 colon cancer and 22 normal
colon tissue samples.10 These profiles were obtained by
hybridization on the Affymatrix microarray containing probes
from more than 6500 genes.

2.3.2. Lung Cancer.The second group of data was a set
of lung cancer samples, which was first reported by Gordon
et al.11 The authors used gene expression ratios and rationally
thresholds to classify between malignant pleural mesothe-
lioma (MPM) and adenocarcinoma (ADCA) of the lung.
There were 181 tissue samples (31 MPM and 150 ADCA).
The training set contained 32 of them, 16 MPM and 16
ADCA. The rest of the 149 samples were used for testing.
Each sample was described by 12 533 genes. In this study,
MPM was treated as positive and ADCA as negative
examples.

2.3.3. Prostate Cancer.The third data set was prostate
cancer samples.12 Tumor versus Normal classification: train-
ing set contained 52 prostate tumor samples and 50 nontumor
(labeled as “Normal”) prostate samples with around 12 600
genes. An independent set of testing samples was from a
different experiment13 and had a nearly 10-fold difference
in overall microarray intensity from the training data.

All the data in this paper were from http://sdmc.lit.org.sg/
GEDatasets/Datasets. In this study, for the datasets of lung
cancer and prostate cancer, the training set and testing set
were combined as single datasets.

2.4. Classifier. After the training set was built either
actively (them most informative examples were chosen to
label) or passively (examples were randomly chosen to label),
one classifier derived a model from the training set and the
model was used to classify the cancer examples. In this study,
support vector machine (SVM) was use for cancer clas-
sification. SVM was found to be very suitable for the active
learning setup.6-8 Furthermore, SVM has been successfully
applied to cancer classification using gene expression
data.13-16

SVM is a kind of blend of linear modeling and instance-
based learning. An SVM selects a small number of critical
boundary samples, calledsupportVectors, from each category
and builds a linear discriminate function that separates them
as widely as possible. In the case that no linear separation is
possible, the technique of “kernel” will be used to automati-
cally inject the training samples into a higher-dimensional
space and to learn a separator in that space.17,18 In linearly
separable cases, SVM constructs a hyperplane which sepa-
rates two different categories of feature vectors with a
maximum margin, i.e., the distance between the separating
hyperplane and the nearest training vector. The training
instances that lie closest to the hyperplane aresupport
Vectors. The hyperplane was constructed by finding another

Figure 1. Algorithm of pool-based active learning.
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vectorw and a parameterb that minimizes||w||2 and satisfies
the following conditions

whereyi is the category index (i.e., active, inactive),w is a
vector normal to the hyperplane,|b|/||w|| is the perpendicular
distance from the hyperplane to the origin, and||w||2 is the
Euclidean norm ofw. After the determination ofw andb, a
given vectorx can be classified by sign[(w‚x) + b].19

In this paper SVMLight v.3.5 was used.17 Linear kernel
was applied.

2.5. Performance Evaluation. In this study receiver
operating characteristic (ROC) was used to evaluate the
performance of active learning.

ROC analysis has long been used in clinical applications
to evaluate the usefulness of diagnostic tests.20,21 Recently,
ROC analysis has been increasingly recognized as an
important tool for evaluation and comparison of classifiers.22

Research has shown that ROC analysis offers more robust
evaluation of the relative prediction performance of alterna-
tive models than traditional comparison of relative errors.23-28

ROC includes elements of both sensitivity and specific-
ity.29,30The ROC is evaluated by means of a plot of the true
positive rate (sensitivity) vs the true negative rate (1-
specificity). The true positive and false positive rates are
defined as follows

The area under the ROC curve (AUC) measures the
probability of correct classification, so its values lie between
0 (worst) and 1 (best). The closer AUC is to 1, the better
the overall classification performance of the test, and a test
with an AUC value of 1 is one that is perfectly accurate. An
area of 0.9, for instance, indicates that an example chosen
from the positive group has a probability of 0.9 of predicted
value higher than an example chosen from the negative
group.

3. RESULTS

3.1. Active Learning vs Passive Learning in Cancer
Classification.Figure 2 shows the number of positives found
after each round of learning. Either active learning or passive
learning carried to the end would finish with all positives
found. To provide an upper bound, we also plotted the
number of positives of the unrealistic optimal selection
strategy, which chose purely positives in the pool until all
positives were selected. In this ideal case the learner
identified all the positives at the beginning, yielding a 45°
slope until the positives were exhausted. In passive learning
the example was randomly selected to be labeled. The
number of positives grew only linearly with the number of
iterations. For each of the three data sets tested, active
learning outperformed passive learning. For lung cancer
classification, before all 31 positives were found, only 2 false

w‚xi + b g +1, for yi ) +1 Category 1 (positive)

w‚xi + b e -1, for yi ) -1 Category 2 (negative)

true positive rate) (true positives predicted)/
(total positives in the data set)

false positives rate) (false positives predicted)/
(total negatives in the data set)

Figure 2. Number of positive examples of colon cancer (A),
prostate cancer (B), and lung cancer (C) found after each iteration.
Initially a positive example and a negative example were chosen
randomly to form the training set, which was used to build an initial
classifier. The classifier was applied to each unlabeled example,m
examples that were most informative for the classifier were selected
to add to the training set, and a new classifier was derived from all
labeled examples. To evaluate the effect of the batch size (the
number of examples selected to be labeled in each iteration) on
the classification, in this paper, we chosem ) 1, which meant that
the most informative example was chosen, andm ) 5. To provide
an upper bound, we also plotted the number of positives of the
unrealistic optimal selection strategy, which chose purely positives
in the pool until all positives were selected. In this ideal case, the
learner identified all the positives at the beginning, yielding a 45°
slope until the positives were exhausted. In passive learning the
example was randomly selected to be labeled. The number of
positives grew only linearly with the number of iterations. For each
of the three data sets tested, active learning outperformed passive
learning.
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positives were selected. Therefore, the curve was almost
identical to that of the ideal case (Figure 2C).

3.2. Active Learning Reduced Cost. Active learning
significantly reduced the cost (number of examples labeled)
to obtain a majority of the positives (Table 1). For lung
cancer classification, to achieve 96% of the total positives
only 31 labeled examples were needed in active learning with
m) 1 or 5, whereas in passive learning 174 labeled examples
were required. That meant over 82% reduction was realized
by active learning. For the other two data sets (prostate cancer
and colon cancer), active learning also reduced the cost.

3.3. Receiver Operating Characteristic (ROC) Curve.
To present these results in more familiar terms, we expressed
them as ROC curves (Figure 3). The areas under the ROC
curves (AUC) are shown in Table 2. In active learning the
areas under the ROC curves were over 0.81, while in passive
learning the areas under the ROC curves were below 0.50.
For lung cancer classification, the area under the ROC curve
was 0.99 when active learning was applied withm ) 5,
whereas when passive learning was used the area under the
ROC curve was 0.49.

4. DISCUSSION

Machine learning is the subfield of artificial intelligence
which focuses on methods to construct computer programs
that learn from experience with respect to some class of tasks
and a performance measure.31 Machine learning methods are
suitable for molecular biology data due to the learning
algorithm’s ability to construct classifiers/hypotheses that can
explain complex relationships in the data. Therefore, machine
learning has increasingly gained attention in bioinformatics
research. Cancer classification based on gene expression data
remains a challenging task in identifying potential points for
therapeutics intervention, understanding tumor behavior, and
also facilitating drug development.9

4.1. Active Learning Outperformed Passive Learning.
Traditional supervised learning, such as classification, re-
quires a large training set. Labeling examples to create a
training set is time-consuming and costly. Furthermore, the
training set is chosen to be a random sampling of examples,
which is similar to passive learning in this paper.7 However,
in many cases active learning can be employed. In this report
we presented the experimental results showing that active
learning consistently performed better than passive learning
over all three tested data sets. By applying active learning,
much fewer labeled examples were required to achieve
similar accuracy (Table 1). Moreover, the areas under the

ROC curves for active learning were significantly greater
than the area under the ROC curve for passive learning
(Table 2). Therefore, active learning considerably reduces

Table 1. Number of Labeled Examples Required to Find a
Majority of the Positives

positives
found

active
learning
(m ) 1)

active
learning
(m ) 5)

passive
learning

colon cancer 50% 23 25 31
90% 41 40 57
96% 43 45 62

prostate cancer 50% 42 47 68
90% 84 92 119
96% 101 112 127

lung cancer 50% 16 15 90
90% 29 30 157
96% 31 31 174

Figure 3. Receiver operating characteristic (ROC) curves for colon
cancer (A), prostate cancer (B), and lung cancer (C). In active
learning the areas under the ROC curves were over 0.81, while in
passive learning the areas under the ROC curves were below 0.50.
For lung cancer classification the area under ROC curve was 0.99
when active learning was applied withm) 5, whereas when passive
learning was used the area under ROC curve was 0.49.

Table 2. Areas under the ROC Curves

active
learning
(m)1)

active
learning
(m)5)

passive
learning

colon cancer 0.85 0.81 0.41
prostate cancer 0.90 0.86 0.49
lung cancer 0.91 0.99 0.49
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manual labeling cost while keeping and even improving
performance.

4.2. Concept Drift. In traditional classifiers the training
set is often drawn from an earlier point in time or from a
restricted subset of geographical samples, having a somewhat
different distribution than encountered in actual use. The
sample distribution in the training set can significantly affect
the derived model and eventually the quality of the clas-
sification. Concept drift between training set and test set is
an important factor which can impair the performance of a
classifier. Complete immunity from concept drift is impos-
sible; however, active learning has significantly less exposure
to this risk since it is continuously learning on the very
examples it is being used to classify and the pool of available
examples is changed over time and takes on a different
character from the earlier examples.3 Furthermore, active
learning is a general framework and does not depend on tasks
or domain.6

4.3. Effect of Batch Size on Classification.There are
different strategies to select the example to be labeled. One
obvious strategy is to select the example with the largest
predicted value (largest positive strategy). Warmuth et al.8

tested different selection strategies and showed that the
largest positive strategy is a good strategy to find many
positive examples in a few iterations. To evaluate the effect
of the batch size (the number of examples selected to be
labeled in each iteration) on the classification, in this paper,
we testedm ) 1, which meant that the most informative
example was chosen, andm ) 5. The results showed that
the classification withm ) 5 had similar performance as
that withm) 1 but had a much smaller number of iterations.
Similar results were reported by Forman3 when active
learning was applied for drug discovery. Therefore, larger
batch size can be used to achieve good performance with
fewer iterations.

5. CONCLUSION

Active learning has been an active research topic in
machine learning but is still relatively new to the bioinfor-
matics community. Most of the machine-learning-oriented
bioinformatics literature still largely concentrates on tradi-
tional learning approaches. Active learning is suitable for
bioinformatics applications due to the fact that the classifiers
have the freedom to choose the training data and reduce the
risk of concept drift. We demonstrated that active learning
with support vector machines can accurately classify cancers
based on expression data from DNA microarray hybridization
experiments and presented some theoretical explanations on
the performance of active learning. We believe this approach
has significant potential and should be considered for the
task of classifying gene expression data for cancerous
samples.

Abbreviations: SVM: support vector machine. ROC:
receiver operating characteristic. AUC: area under ROC
curve.
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