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The support vector machine (SVM), as a novel type of a learning machine, for the first time, was used to
develop a QSPR model that relates the structures of 35 amino acids to their isoelectric point. Molecular
descriptors calculated from the structure alone were used to represent molecular structures. The seven
descriptors selected using GA-PLS, which is a sophisticated hybrid approach that combines GA as a powerful
optimization method with PLS as a robust statistical method for variable selection, were used as inputs of
RBFNNs and SVM to predict the isoelectric point of an amino acid. The optimal QSPR model developed
was based on support vector machines, which showed the following results: the root-mean-square error of
0.2383 and the prediction correlation coefficient R) 0.9702 were obtained for the whole data set. Satisfactory
results indicated that the GA-PLS approach is a very effective method for variable selection, and the support
vector machine is a very promising tool for the nonlinear approximation.

1. INTRODUCTION

The isoelectric point is the pH at which a molecule carries
no net electrical charge, and a substance in a solution is
electrically neutral and has its unique properties. The
isoelectric point of an amino acid is a very important
physical-chemical property of amino acids, which is neces-
sary to separate amino acids because of a special neutral
property of amino acids at the isoelectric point. Due to a
small quantity of amino acids extracted from nature, con-
sumption of reagents determining the isoelectric point of an
amino acid causes a lot of inconvenience to the following
analysis. At the same time, determination of the isoelectric
point of an amino acid by experiments is also time-
consuming and expensive. Alternatively, the quantitative
structure-property relationship (QSPR) provides a promising
method for the estimation of the isoelectric point of an amino
acid based on descriptors derived solely from the molecular
structure to fit experimental data. The advantage of this
approach over other methods lies in the fact that it requires
only the knowledge of the chemical structure and is not
dependent on any experimental properties.1

The QSPR approach has become very useful in the
prediction of physical and chemical properties. This approach
is based on the assumption that the variation of the behavior
of the compounds, as expressed by any measured physical
or chemical properties, can be correlated with changes in
molecular features of the compounds termed descriptors.2

The main steps involved in QSPR include the following: data
collection, molecular geometry optimization, molecular
descriptor generation, descriptor selection, model develop-
ment, and finally model performance evaluation.3 This study
can develop a method for the prediction of the property of

new compounds that have not been synthesized or found. It
can also identify and describe important structural features
of molecules that are relevant to variations in molecular
properties, thus gaining some insight into structural factors
affecting molecular properties. Although QSPR methods have
been successfully used to predict many physicochemical
properties, their use in predicting the isoelectric point of an
amino acid only from the knowledge of the chemical
structure has not been reported to this day.

To develop a QSPR, molecular structures are often
represented using molecular descriptors which encode much
structural information. In recent years there has been a shift
from empirical parameters to purely calculated descriptors,
such as topological indices and quantum chemical descrip-
tors. The advantage of these calculated descriptors over other
empirical descriptors is the possibility of calculating descrip-
tors solely from the molecular structure and then applying
them to the sets of structurally diverse compounds.

After the calculation of molecular descriptors, the follow-
ing step is to reduce the data by selecting pertinent descriptors
from a large set that faithfully describes the activity of
interest. Choosing the adequate descriptors for QSAR/QSPR
studies is difficult because there are no absolute rules that
govern this choice. However, it is well-known, both in the
chemical and the statistical fields, that the accuracy of
classification and regression techniques is not monotonic with
respect to the number of features employed by the model.
Depending on the nature of the regression technique, the
presence of irrelevant or redundant features can cause the
system to focus attention on the idiosyncrasies of the indi-
vidual samples and lose sight of the broad picture that is
essential for generalization beyond the training set. This prob-
lem is compounded when the number of observations is also
relatively small. If the number of variables is comparable to
the number of training patterns, the parameters of the model
may become unstable and unlikely to replicate if the study
were to be repeated. So, selection of descriptors is very
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important in order to remedy this situation by identifying a
small subset of relevant features and using only them to
construct the actual model. Generally, the number of the
samples is five times of the descriptors at least. To deal with
this issue, variable selection techniques were introduced.
Frequent optimization search algorithms such as stepwise
forward and stepwise backward MLR depend on an assumed
linear relationship between the dependent variable and one
or more descriptors, while there exists a nonlinear relation-
ship between the physical-chemical property of compounds
and their structural descriptors generally. Recently, some
published papers suggested that genetic algorithms (GA)
might be useful in data analysis, especially in the task of
reducing the number of features for regression models.4-6

Rogers and Hopfinger first applied this method in QSAR
analysis and proved GA to be a very effective tool with many
merits that other methods did not have. In this paper, we
choose to use GA-PLS, which is a sophisticated hybrid ap-
proach that combines GA as a powerful optimization method
with PLS as a robust statistical method for variable selection,
to choose the adequate descriptors for QSPR studies.7

The last steps in a QSPR study are the data modeling and
prediction. Artificial intelligence techniques have been
applied to the data modeling and prediction of QSPR/QSAR
analysis since the late 1980s, mainly in response to increased
accuracy demands. Machine learning techniques have, in
general, offered greater accuracy than have their statistical
forebears, but there exist accompanying problems for the
SAR analyst to consider. Neural networks, for example, offer
high accuracy in most cases but can suffer from overfitting
the training data.8 Other problems with the use of neural
networks concern the reproducibility of results, due largely
to random initialization of the network and variation of
stopping criteria and lack of information regarding the
classification produced.8 Owing to the reasons outlined
above, there is a continuing need for the application of more
accurate and informative techniques to QSPR study. The
support vector machine (SVM) is a new algorithm from the
machine learning community. Due to its remarkable gener-
alization performance, the SVM has attracted attention and
gained extensive application.9-15 Based on the Structural Risk
Minimization principle which seeks to minimize an upper
bound of the generalization error rather than minimize the
empirical error commonly implemented in other neural
networks, SVMs achieve a higher generalization performance
than traditional neural networks in solving these machine
learning problems. Another key property is that unlike the
training of other networks, which requires nonlinear opti-
mization with the danger of getting stuck in local minima,
training SVMs is equivalent to solving a linearly constrained
quadratic programming problem. Consequently, the solution
of SVM is always unique and globally optimal.16

In this paper, we built the 2D-QSAR model based on
support vector machines which recently were developed from
the machine learning community, with structural descriptors
calculated by the software HYPERCHEM and selected using
the GA-PLS approach, to explore the correlations of the
molecular structure and the isoelectric point of an amino acid.
Radial Basis Function Neural Networks (RBFNNs) were also
applied to predict the isoelectric point of an amino acid in
order to identify the reliability of the support vector
machines.

2. METHODS

2.1. Data Set.The isoelectric point data of 20 familiar
amino acids were taken from ref 17. Other isoelectric point
data were obtained by calculating as follows

wheren is the number of groups with a positive charge when
an amino acid combines with most protons, andpK is the
ionization constant of an amino acid, which was taken from
ref 18. Its calculating step is as follows: (1) SortpK of an
amino acid from small to large. (2) Determine the value of
n: first, judging the kind (the acidic, neutral or alkaline) of
an amino acid; then for an acidic or a neural acid,n is equal
to 1 and for an alkaline amino acid,n is determined as 2.

2.2. Descriptor Calculation. To obtain a QSPR model,
compounds must be represented using molecular descriptor.
Here, the quantum-chemical descriptors were used, and their
calculation was described as follows: The three-dimensional
structures of the molecules were drawn with the ISIS DRAW
program. The final geometries were obtained with the
semiempirical AM1 method in the HYPERCHEM program.
All calculations were carried out at a restricted Hartree-
Fock level with no configuration interaction. The molecular
structures were optimized using the Polak-Ribiere algorithm
until the root-mean-square gradient was 0.001. In addition,
the number of nitrogen atoms (NN) and the number of
carboxyl (NC) atoms, the difference between the number of
oxygen atoms and the number of nitrogen atoms (NONN)
were also used to express molecular structural information.
A full list of 23 calculated descriptors and their chemical
meanings has been given in Table 2.

2.3. Selection of Descriptors Based on the GA-PLS
Approach. GA-PLS is a sophisticated hybrid approach that
combines GA as a powerful optimization method with PLS
as a robust statistical method for variable selection. GA is a
novel optimization technique that mimics the natural selec-
tion in nature. The natural selection in nature is that species
having a high fitness under some environmental conditions
can prevail in the next generation, and the best species may
be reproduced by crossover together with random mutations
of chromosomes in surviving ones. In GA-PLS, the chromo-
some and its fitness in the species correspond to a set of

Table 1. Amino Acids and Their Isoelectric Points

no. amino acid pI no. amino acid pI

1 alanine 6.11 19 tyrosine 5.63
2 arginine 10.76 20 valine 6.02
3 asparagine 5.43 21 R-aminoadipic acid 3.18
4 aspartic acid 2.98 22 R-aminobutyric acid 6.06
5 cysteine 5.15 23 γ- aminobutyric acid 7.30
6 glutamic acid 3.08 24 R-amino isobutyric acid 5.72
7 glutamine 5.65 25 canavanine 7.93
8 glyeine 6.06 26 citrulline 5.92
9 histidine 7.64 27 2,4-diaminobutyric acid 9.27
10 isoleucine 6.04 28 homocysteine 5.55
11 leucine 6.04 29 homoserine 6.17
12 lysine 9.47 30 3-hydroxyglutamic acid 3.28
13 methionine 5.71 31 δ-hydroxylysine 9.15
14 phenylalanine 5.76 32 hydroxyproline 5.74
15 proline 6.3 33 norleucine 6.09
16 serine 5.7 34 ornithine 9.73
17 threonine 5.6 35 6-amino caproic acid 7.29
18 tryptophan 5.88

pH ) (pKn + pKn+1)/2

162 J. Chem. Inf. Comput. Sci., Vol. 44, No. 1, 2004 LIU ET AL.



variables and internal prediction of the derived PLS model,
respectively.7

The selection of descriptors based on GA-PLS contains
five fundamental steps: (1) The initial population of
chromosomes is created by setting all bits in each chromo-
some to a random value. Bit “1” denotes a selection of the
corresponding variable, and bit “0” denotes a nonselection.
The number of the population (Np) is dependent on dimen-
sions of the application problem. (2) The fitness of each
chromosome which is evaluated by the internal prediction
of the model is expressed as follows

whereq2 is a cross-validatedr2 value (hereafter, denoted by
q2) by the leave-one-out procedure; SSY is the sum of the
squared deviation of the dependent variable values from their
mean; and PRESS is the predicted sum of squares obtained
from the leave-one-out cross-validation method;n is the
number of compounds; andc is the number of selected
variables. Not only the reliability of the model expressed by
q2 but also the number of selected variables were considered
by this fitness function. (3) The chromosomes with the higher
fitness are selected from the population in an arbitrary
proportion. The other necessary chromosomes, which make
up the population in the next generation, are created by the
following crossover and mutation steps in order to ensure
diversity of the population. (4) In a crossover, a pair of
randomly selected chromosomes is individually divided,
mutually exchanged, and merged with a predefined frequency
(crossover frequency:Fc). In a mutation, a binary bit pattern
in each chromosome is changed with a small probability
(mutation rate: Pm). (5) The reinsertion of offspring in a

population replacing parents is preformed according to the
fitness. The cycle of the above four steps (from steps 2 to
5) is repeated until the number of generations reaches the
given maximum (maximum number of generations:Ng).

The values of empirical parameters affecting the perfor-
mance of GA-PLS are defined as follows: the number of
populations (Np) is 200, the maximum number of generations
(Ng) is 1000, the generation gap (GGAP) is 0.9, the crossover
frequency (Fc) is 0.5, and the mutation rate (Pm) is 0.01.
These values were empirically determined by experience
from the series of the GA-PLS studies. The GA-PLS program
was written in m-file and was compiled using a Matlab 6.1
compiler running operating system on a Pentium IV with
256M RAM.

2.4. Support Vector Regression.19-21 In recent years,
there has been a lot of interest in studying support vector
machines (SVMs) in the field of machine learning due to
many attractive features and promising empirical perfor-
mances of SVMs. SVMs are a class of supervised learning
algorithms initially proposed by Vapnik. To date, SVMs have
been applied successfully to a wide range of pattern
recognition problems, such as image recognition,22 microar-
ray gene expression classification,23 protein folding recogni-
tion,24 protein structural class prediction,25 identification of
protein cleavage sites,26 QSAR, and other pharmaceutical
data analysis.23,27Although SVMs were originally developed
for classification, Vapnik enabled them to solve regression
problems by choosing a suitable cost function (ε-insensitive
loss function).

In SVR, the basic idea is to map the datax into a higher-
dimensional feature space F via a nonlinear mappingΦ and
then to do linear regression in this space. Therefore,
regression approximation addresses the problem of estimating
a function based on a given data set G) {(xi; di)}i)1

l (xi is
the input vector anddi is the desired value). SVMs ap-
proximate the function in the following form

where{Φi(x)}i)1
l are the features of inputs, and{ωi}i)1

l and
b are coefficients. They are estimated by minimizing the
regularized risk function (2)

where

andε is a prescribed parameter.
In eq 2

is the so-called empirical error (risk), which is measured by
ε-insensitive loss functionLε(d,y), which indicates that it does
not penalize errors belowε. The second term, 1/|w|2, is used
as a measurement of function flatness.C is a regularized

Table 2. A Full List of 35 Descriptors and Their Chemical
Meaning

symbol meaning

TE total energy
BE binding energy
IAE isolated atomic energy
EE electronic energy
CCI core-core interaction
HF heat of formation
CN1 the maximum of the net atomic charge on the N atom
CN2 the submaximum of the net atomic charge on the N atom
CO1 the minimum of the net atomic charge on the O atom

of carboxyl
CO2 the subminimum of the net atomic charge on the O atom

of carboxyl
HOMO energy of highest occupied molecular orbital
LUMO energy of lowest unoccupied molecular orbital
SAA molecular surface area (approximately)
SAG molecular surface area (Grid)
VOL molecular volume
HYE hydration energy
LOGP the octanol/water partition coefficient
REF refractivity
POL polarizability
NC number of carboxyl
NN number of the N atoms
NONN difference between the number of oxygen atoms and the

number of nitrogen atoms
LUMO1 energy of sublowest unoccupied molecular orbital

fitness) 1 -
(n - 1)(1 - q2)

(n - c)

q2 ) 1 - PRESS
SSY

y ) ∑
i)1

l

wiΦi(x) + b (1)

R(C) ) C
1

N
∑
i)1

N

Lε(di, yi) +
1

2
|w|2 (2)

Lε(d,y) ) {|d-y|-ε |d-ygε|
0 otherwise

(3)

C
1

N
∑
i)1

N

Lε(di,yi)
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constant determining the tradeoff between the training error
and the model flatness. Introduction of slack variables “ê”
leads eq 2 to the following constrained function:

Thus, decision function (1) becomes the following form

In function (6), Ri,Ri* are the introduced Lagrange
multipliers. They satisfy the equalityRi ‚Ri* ) 0,Ri g 0,Ri*
g 0; i ) 1, ‚ ‚ ‚, l, and are obtained by maximizing the dual
form of function (4), which has the following form

with the following constraints:

Based on the Karush-Kuhn-Tucker (KKT) conditions of
quadratic programming, only a number of coefficients (Ri

- Ri*) will assume nonzero values, and the data points
associated with them could be referred to as support vectors.

In eq 6,K(xi,xj) is the kernel function. The value is equal
to the inner product of two vectorsxi andxj in the feature
spaceΦ(xi) andΦ(xj). That is,K(xi,xj) ) Φ(xi)•Φ(xj). The
elegance of using the kernel function lies in the fact that
one can deal with feature spaces of arbitrary dimensionality
without having to compute the mapΦ(x) explicitly. Any
function that satisfies Mercer’s condition can be used as the
kernel function. In support vector regression, the Gaussian
kernelK(x,y) ) exp(-(x - y)2/δ2) is commonly used.

2.5. SVM Implementation and Computation Environ-
ment. All calculation programs implementing SVM were
written in R-file using libsvm based on R script for SVM.
All scripts were compiled using an R1.7.1 compiler running
operating system on a Pentium IV with 256M RAM.

3. RESULTS AND DISCUSSION

3.1. The Results of GA-PLS.GA-PLS was applied to
the data set of amino acids in order to reduce the number of
field variables and increase the prediction power of the
model. The model with the highest fitness value is considered

as the best model. At the same time, the model with more
than 7 parameters was not considered because the number
of compounds should be 5 times at least the number of the
parameters generally. Through the procedure of GA-PLS,
the best model was found, which contained 7 parameters
(see Table 3) with the fitness value of 0.5528, when the
leave-one-out cross-validationq2 was 0.6317. The 7 selected
parameters were used to build the following model of
RBFNNs and SVMs.

3.2. Results of the RBFNNs.Recently, there is a growing
interest in the use of neural networks for QSAR/QSPR due
to its flexibility in modeling a nonlinear problem. Neural
networks are particularly useful in cases where it is difficult
to specify an exact mathematical model, which describes a
specific structure-property relationship. Most of these works
used neural networks based on the back-propagation learning
algorithm, which has some disadvantages such as the
following: local minimum; slow convergence; time-consum-
ing nonlinear iterative optimization; difficulty in explicit
optimum network configuration, etc. In contrast, the param-
eters of radial basis function neural networks (RBFFNs) can
be adjusted by fast linear methods. It has advantages of short
training times and is guaranteed to reach the global minimum
of error surface during training. The optimization of its
topology and learning parameters are easy to implement. So,
we applied the RBFFNs to build the nonlinear model
predicting the isoelectric point of an amino acid.

In the RBFNNs, the spread and the number of the radial
basis function (the hidden layer units) are the two important
parameters influencing the performances of the RBFNNs.

Max R(w,ê*) )
1

2
|w|2 + C*∑

i)1

n

(êi + êi*) (4)

s.t.wΦ(xi) + b - di e ε + êi,

di - wΦ(xi) - bi e ε + êi,

ê,ê* g 0. (5)

f(x, Ri, Ri*) ) ∑
i)1

l

(R* - Ri)K(x,xi) + b (6)

Φ(Ri,Ri*) ) ∑
i)1

l

di(Ri - Ri*) - ε∑
i)1

l

(Ri - Ri*) -

1

2
∑
i)1

l

∑
j)1

l

(Ri - Ri*)(Rj - Rj*)K(Ri,Rj) (7)

∑
i)1

l

(Ri - Ri*) ) 0

0 e Ri e C,i ) 1, ‚ ‚ ‚, l

0 e Ri* e C,i ) 1, ‚ ‚ ‚, l (8)

Table 3. Selected Parameters and Corresponding Values

no. HF CN2 CO1 LUMO SAG HYE REF

1 -98.39 0 -0.2882 0.9421 245.72 48.28 20.5
2 -82.14 -0.0103 -0.2873 0.7619 391.66 37.57 43.51
3 -133.86 -0.0299 -0.2956 0.6927 293.09 102.51 28.35
4 -183.81 0 -0.311 0.6231 289.03 100.36 26.53
5 -87.61 0 -0.302 0.043 271.53 47.47 28.17
6 -186.87 0 -0.3142 0.4158 308.31 102.33 31.29
7 -139.22 -0.0205 -0.2788 0.7269 325.75 102.02 33.11
8 -93.6 0 -0.3114 0.9059 216.77 44.42 16
9 -62.73 -0.0303 -0.2914 0.5029 330.41 43.54 39.7
10 -113.49 0 -0.3011 0.9711 312.34 55.12 34.09
11 -116.08 0 -0.3057 0.9754 320.72 54.44 34.17
12 -108.59 -0.0351 -0.3054 0.9305 355.07 48.27 37.81
13 -100.22 0 -0.301 0.1339 337.31 51.13 37.83
14 -69.45 0 -0.2842 0.1596 356.67 48.29 45.12
15 -99.95 0 -0.3075 1.0517 277.59 53.32 28.06
16 -138.37 0 -0.3094 0.7261 252.07 42.95 22.04
17 -143.3 0 -0.3194 0.7145 276.49 46.61 26.46
18 -50.9 -0.0251 -0.2827 -0.0211 397.47 43.6 56.5
19 -114.54 0 -0.2833 0.1599 369.61 40.27 46.81
20 -105.76 0 -0.2763 0.9823 289.47 54.05 29.49
21 -196.01 0 -0.3044 0.793 350.63 102.33 35.89
22 -102.9 0 -0.2845 0.9494 273.88 50.91 25.02
23 -104.53 0 -0.3081 0.9139 278.03 47.95 25.46
24 -106.4 0 -0.2948 0.7833 267.21 49.36 25.21
25 -79.65 0.0369 -0.2975 0.5235 376.65 31.81 40.48
26 -145.26 -0.0181 -0.2965 0.6378 385.03 98.26 41.33
27 -98.59 -0.0362 -0.2961 0.7144 294.67 44.81 28.56
28 -95.85 0 -0.2966 0.1575 305.7 48.6 33.03
29 -144.27 0 -0.2973 0.7001 287.05 43.75 26.91
30 -231.88 0 -0.3305 0.4985 324.53 99.67 32.5
31 -149.79 -0.0367 -0.2968 0.6594 360.2 43.53 39.17
32 -143.12 0 -0.3015 0.8304 284.39 48.31 29.38
33 -116.64 0 -0.2983 0.7349 333.56 53.75 34.22
34 -103.85 -0.0328 -0.2992 0.7089 325.99 46.54 33.21
35 -110.23 0 -0.3131 0.9424 308.38 48.99 30.06
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To find the optimized values of two parameters and
prohibit the overfitting of the model, the data set was
separated into a training set of 28 compounds and a test set
of 7 compounds randomly, and leave-one-out cross-validation
of the whole training set was performed. The leave-one-out
(LOO) procedure consists of removing one example from
the training set, constructing the decision function on the
basis only of the remaining training data, and then testing
on the removed example. In this fashion one tests all
examples of the training data and measures the fraction of
errors over the total number of training examples. The MSE
was used as an error function, and it is computed according
to the following equation

wheredi are the teaching outputs (desired outputs) in the
training set,oi are the actual outputs obtained from the leave-
one-out cross-validation method, andn is the number of
samples in the training set.

The selected parameters were as follows: the number of
hidden layers is 10 and the optimal spread is 2.9. The
obtained results of the optimal RBFNNs were given in Table
4. The root-mean-square error of the training set and the

testing set are 0.2124 and 0.4963, respectively, and the
prediction correlation coefficient R) 0.9583 were obtained
for the whole data set.

3.3. Results of SVM. 3.3.1. SVM Parameters Optimiza-
tion. Similar with other multivariate statistical models, the
performances of SVM for regression depend on the combi-
nation of several parameters. They are capacity parameter
C, ε of ε-insensitive loss function, the kernel type K, and its
corresponding parameters.C is a regularization parameter
that controls the tradeoff between maximizing the margin
and minimizing the training error. IfC is too small, then
insufficient stress will be placed on fitting the training data.
If C is too large, then the algorithm will overfit the training
data.

The optimal value forε depends on the type of noise
present in the data, which is usually unknown. Even if
enough knowledge of the noise is available to select an
optimal value forε, there is the practical consideration of
the number of resulting support vectors.ε-insensitivity
prevents the entire training set meeting boundary conditions
and so allows for the possibility of sparsity in the dual
formulation’s solution. So, choosing the appropriate value
of ε is critical from theory.19

The kernel type is another important one. For regression
tasks, the Gaussian kernel is commonly used. The form of
the Gaussian function in R is as follows

whereγ is a constant, the parameter of the kernel;u andV
are two independent variables;γ controls the amplitude of
the Gaussian function and, therefore, controls the generaliza-
tion ability of SVM. We have to optimizeγ and find the
optimal one.

To find the optimized combination of several parameters,
leave-one-out cross-validation of the training set was per-
formed using the mean squared error as the error function.

The detailed process of selecting parameters and the effects
of every parameter on the generalization performance of the
corresponding model were shown in Figures 1-3. To obtain
the optimalγ, the support vector learning machines with
different γ were trained, theγ varying from 0.001 to 0.01.
We calculated the MSE on differentγ, according to the
generalization ability of the model based on LOO cross-
validation for the training set in order to determine the
optimal one. The curve of MSE versus the gamma was
shown in Figure 1. The optimalγ was found as 0.003.

To find an optimal ε, the MSE on differentε was
calculated. The curve of the MSE versus the epsilon was
shown in Figure 2. The performance of the SVM is
insensitive first and then better, finally worse, and unstable
as ε increases from Figure 2. The optimalε was found as
0.04.

The last important parameter is the regularization param-
eterC, which the effect on the MSE was shown in Figure 3.
From Figure 3, the performance of the model becomes better
first and then worse asC increases and which its optimal
value was 800.18

3.3.2. The Predicted Results of SVMs.From the above
discussion, theγ, ε, andC were fixed to 0.003, 0.04, and
800, respectively. The predicted results of the optimal SVMs

Table 4. Predicted Results Using SVMs and RBFNNs

results of SVMs results of RBFNNs

no. exp. pred residue pred residue

1a 6.11 6.10 -0.01 5.64 -0.47
2 10.76 9.42 -1.34 10.71 -0.05
3 5.43 5.5 0.07 5.50 0.07
4 2.98 3.48 0.5 3.43 0.45
5 5.15 4.67 -0.48 4.91 -0.24
6 3.08 2.54 -0.54 3.30 0.22
7 5.65 5.15 -0.5 4.87 -0.78
8 6.06 6.53 0.47 6.10 0.04
9 7.64 8.5 0.86 7.96 0.32

10a 6.04 5.70 -0.34 6.63 0.59
11 6.04 6.33 0.29 6.80 0.76
12 9.47 10.18 0.71 9.94 0.47
13 5.71 6.07 0.36 5.84 0.13
14 5.76 5.58 -0.18 6.77 1.01
15 6.3 5.6 -0.7 5.80 -0.50
16 5.7 5.59 -0.11 5.83 0.13
17 5.6 5.91 0.31 5.61 0.01
18 5.88 5.51 -0.37 4.90 -0.98
19 5.63 5.83 0.2 5.73 0.10
20 6.02 6.4 0.38 5.90 -0.12
21 3.18 3.66 0.48 3.50 0.32
22a 6.06 6.46 0.4 6.10 0.04
23a 7.3 6.75 -0.55 6.45 -0.85
24 5.72 5.81 0.09 6.23 0.51
25 7.93 8.01 0.08 7.50 -0.43
26 5.92 6.2 0.28 5.84 -0.08
27 9.27 9.06 -0.21 9.49 0.22
28a 5.55 5.58 0.03 5.68 0.13
29 6.17 6.09 -0.08 6.34 0.17
30 3.28 2.83 -0.45 2.74 -0.54
31 9.15 8.95 -0.2 8.78 -0.37
32a 5.74 4.97 -0.77 5.94 0.20
33a 6.09 6.92 0.83 7.54 1.45
34 9.73 9.18 -0.55 9.51 -0.22
35 7.29 6.96 -0.33 6.77 -0.52

a The compounds in the test set.
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are shown in Table 4. The root-mean-square error of the
training set and the testing set are 0.2359 and 0.2822,
respectively, and the prediction correlation coefficient R)
0.9702 were obtained for the whole data set. For the
isoelectric point values of amino acids with high noise, it
can be concluded that the predicted values are in very good
agreement with the experimental values from the above
results. By comparing the results from the RBFNNs model,
it can be seen that the results of SVMs are almost as good

as the RBFNNs on the LOO cross-validation of the training
set, but for the testing results of the test set, the SVM is
much better, which showed practically that SVM has a better
generalization performance than the traditional neural net-
works in solving this kind of nonlinear problem and can
avoid the overfitting effectively.

3.4. The Analysis of Results and the Discussion of the
Input Parameters. From the above results, the following
can be concluded: (1) The selected parameters by the GA-
PLS approach can account for the structural features of the
compounds related to the isoelectric point, which indicates
that the GA-PLS approach is a very effective method for
variable selection. (2) The support vector machine is a very
promising tool for the nonlinear approximation, which has
a better generalization ability than the RBFNNs. Generally,
there exists a nonlinear relationship between the property of
the compounds and their structure, and we cannot express
this kind of relationship simply. So the best way to solve
this kind of problem is by nonlinear approximation. The heat
of formation HF is the enthalpy gained in forming a molecule
from its constituent atoms. It is a measure of the relative
thermal stability of a molecule and reaction activity, and the
more negative which a value is, the more stable and weak
reactivity it has.28 REF is another thermodynamic descriptor.
The REF (Refractivity) index of a compound is a combined
measure of its size and polarizability.29 SAG (surface area)
is mainly the size of a molecule. The above three parameters
indicate that the isoelectric point of an amino acid is related
to the polarity, the reactivity, and the bulkiness of the
molecule. The HYE (calculated hydration energy) is the
enthalpy gained when the molecule is combined with water,
which expresses the reactivity of the molecule in water. The
descriptor LUMO is an electronic parameter, which measures
the electrophilicity of the molecules. When a molecule acts
as a Lewis acid (an electron pair acceptor) in a bond
formation, incoming electrons are received in its LUMO.
Molecules with low-lying LUMO are more able to accept
electrons than those with high energy LUMO.28 CO1 (the
minimum of the net atomic charge on the O atom of
carboxyl) and CN2 (the submaximum of the net atomic
charge on the N atom) are two other electronic parameters.
The more negative value that CO1 is, the more difficult it is
to break away from the molecule proton on the hydroxy.
For the molecule with only one N atom, the CN2 is
prescribed as zero. At the same time, for the molecule with
more than one N atom, the higher its CN2 value is, the easier
it is for its second amino-group to release the proton. From
the above discussion, it can be seen that the isoelectric point
of an amino acid is determined by several aspects of the
structural factor such as polarity, reactivity, electrophilicity
and their steric features, etc.

CONCLUSION

Support vector machines, a novel machine learning
method, were applied to build the QSPR model for predicting
the isoelectric point of an amino acid, based on descriptors
calculated from the molecular structure alone and selected
by the GA-PLS approach. Satisfactory results were obtained
with the proposed method. From the analysis of the results
obtained, the following can be concluded: (1) GA-PLS is
very powerful for variable selecting in QSPR analysis, which

Figure 1. The gamma versus MSE error of the training set based
on LOO cross-validation (C) 1000,ε ) 0.01).

Figure 2. The epsilon versus MSE error of the training set based
on LOO cross-validation (C) 1000,γ ) 0.003).

Figure 3. The epsilon versus MSE error of the training set based
on LOO cross-validation (ε ) 0.04,γ ) 0.003).

166 J. Chem. Inf. Comput. Sci., Vol. 44, No. 1, 2004 LIU ET AL.



combines GA as a powerful global optimization method with
PLS as a robust statistical method and offers a new approach
to build effective QSPR models. (2) The models proposed
could identify and provide some insight into what structural
features are related to the isoelectric point of an amino acid
of these compounds. (3) Additionally, nonlinear models using
SVMs produced better models with good predictive ability
than the RBFNNs. SVMs proved to be a useful tool in the
prediction of the isoelectric point of an amino acid. It has
some advantages over the other techniques of converging to
the global optimum and not to a local optimum. Besides, as
the only support vectors (only a fraction of all data) used in
the generalization process, the SVM adapts particularly to
the problem with a great deal of data in cheminformatics.
At last, there are fewer free parameters to be adjusted in the
SVM. Then the model selecting process is easily controlled.
Therefore, the SVM is a very promising machine learning
technique from many aspects and will gain a more extensive
application. Furthermore the proposed approach can also be
extended in other QSPR/QSAR investigations.
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