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A new method support vector machine (SVM) and the heuristic method (HM) were used to develop the
nonlinear and linear models between the capacity factor (logk) and seven molecular descriptors of 75 peptides
for the first time. The molecular descriptors representing the structural features of the compounds only
included the constitutional and topological descriptors, which can be obtained easily without optimizing the
structure of the molecule. The seven molecular descriptors selected by the heuristic method in CODESSA
were used as inputs for SVM. The results obtained by SVM were compared with those obtained by the
heuristic method. The prediction result of the SVM model is better than that of heuristic method. For the
test set, a predictive correlation coefficientR ) 0.9801 and root-mean-square error of 0.1523 were obtained.
The prediction results are in very good agreement with the experimental values. But the linear model of the
heuristic method is easier to understand and ready to use for a chemist. This paper provided a new and
effective method for predicting the chromatography retention of peptides and some insight into the structural
features which are related to the capacity factor of peptides.

1. INTRODUCTION

Peptides belong to the most important biologically active
substances. Acting as hormones, neurotransmitters, immuno-
modulators, coenzymes, enzyme substrates and inhibitors,
receptor ligands, drugs, toxins, and antibiotics play a signif-
icant role in controlling and regulating many vitally important
processes in living organisms. In addition, to understanding
living cell functioning, a comprehensive investigation of the
whole peptide set of a cell (peptidome)- peptidomics-
will be necessary.1,2 Consequently, separation and analysis
of peptides are becoming more and more important.

Among the numerous separation techniques, chromatog-
raphy has played a major role in understanding the mecha-
nisms involved in the analysis and metabolism of proteins.
Liquid chromatography can not only provide a rapid,
sensitive, and very selective method of analysis of proteins
but also permits the isolation or purification of most protein
samples in the range of production most convenient for
biochemistry or pharmaceutical studies, between a few
nanograms and a few kilograms. It is very important because
in vivo assays are often required to ascertain that the proper
protein has been identified and analyzed. At the same time,
an ideal separation method of biopolymer should be able to
give high-purity material with a high production rate and a
good recovery yield, which includes total conservation of
their biological activity at any rate. High-performance liquid
chromatography (HPLC) is the one of the separation methods

which meets all these different requirements. It has been
widely used for analytical separations. Its preparative and
process applications are undergoing rapid development for
the isolation and purification of peptides and proteins.3

Despite the ever increasing usage of HPLC for the
separation and analysis of peptides and proteins, selection
of chromatographic conditions for purification of a given
peptide is still found by time-consuming trial and error
methods. A priori knowledge of the retention time of a given
peptide would simplify the selection of chromatographic
conditions. At present, prediction of the retention behavior
of peptides is mainly based on the amino acid composition.4-8

However, using this method, some experiments for the
standard samples must be performed in order to derive the
group retention coefficients of the amino acid in the given
conditions, which is still time-consuming and is difficult to
generalize the calculated results.

Alternatively, quantitative structure-property relationship
(QSPR) provides a promising method for the estimation of
compounds’ chromatographic behavior based on the descrip-
tors derived solely from the molecular structure to fit
experimental data. The advantage of this approach over other
methods lies in the fact that it requires only the knowledge
of chemical structure and is not dependent on any experiment
properties.

The QSPR approach has become very useful in the
prediction of physicochemical properties. This approach is
based on the assumption that the variation of the behavior
of the compounds, as expressed by any measured physico-
chemical properties, can be correlated with changes in
molecular features of the compounds termed descriptors.9

The main steps involved in QSPR include the following: data
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collection, molecular geometry optimization, molecular
descriptor generation, descriptor selection, model develop-
ment, and finally model performance evaluation.10 This study
can develop a method for the prediction of the property of
new compounds that have not been synthesized or found. It
can also identify and describe important structural features
of the molecules that are relevant to variations in molecular
properties, thus gaining some insight into the structural
factors affecting the molecular properties. Although QSPR
methods have been successfully used to predict many
physicochemical properties, no research group has investi-
gated the quantitative correlation between the structural
parameters and the chromatographic retention of peptides,
which might be due to the optimization of the structures of
the peptides which is very time-consuming because in most
of the cases, the size of the peptides is very large.

Artificial intelligence techniques have been applied to
QSPR analysis since the late 1980s, mainly in response to
increased accuracy demands.11 Machine learning techniques
have, in general, offered greater accuracy than have their
statistical forebears, but there exist accompanying problems
for the QSPR analyst to consider. Neural networks, for
example, offer high accuracy in most cases but can suffer
from the reproducibility of results, due largely to random
initialization of the network and variation of stopping criteria
and lack of information regarding the classification pro-
duced.12 Genetic algorithms can suffer in a similar manner.
The stochastic nature of both population initialization and
the genetic operators used during training can make results
hard to reproduce.13 Owing to the reasons outlined above,
there is a continuing need for the application of more accurate
and informative techniques to QSPR analysis.

The support vector machine (SVM) is a new algorithm
developed from the machine learning community. Due to
its remarkable generalization performance, the SVM has
gained much attention and extensive applications.11,14-22

Another important problem for the QSPR applications is
the numerical representation (often called molecular descrip-
tor) of the chemical structure. The built model performance
and the accuracy of the results are strongly dependent on
the way the structural representation was performed. Various
numerical representations of organic compounds were pro-
posed in QSPR studies: constitutional descriptors and
topological descriptors; numerical code; quantum chemistry
descriptors, etc. (Katritzky et al., 1995). The Software
CODESSA23,24developed by the Katritzky group, which can
calculate constitutional, topological, geometrical, electro-
static, and quantum chemical descriptors, has been success-
fully used in various QSPR researches.

In the present investigation, for the first time, SVM and
the heuristic method were used for the prediction of the
capacity factor (logk) of 75 peptides using descriptors
calculated by the software CODESSA as inputs. The aim
was to explore the retention behavior of peptides in high-
performance liquid chromatography, to establish a new
quantitative structure-retention model, and to confirm the
possibility of predicting retention behavior of peptides and,
at the same time, to seek the structural factor affecting their
retention behavior. The prediction results are very satisfactory
in both training set and test set compounds, which proved
SVM to be a useful tool in the prediction of the capacity
factor (logk). Moreover, in this article, only the constitutional
and topological descriptors were calculated without the need
to optimize the structures of the peptides. This can avoid
effectively the main problem among the application of the
QSPR methods in the prediction of the properties of the
peptides especially for those with a large size because the
structural optimizing of peptides is very time-consuming as
mentioned above.

2. EXPERIMENT

The sequences and the capacity factors of the studied
peptides were collected from ref 25 and given in Table 1.
The peptides were obtained by the enzymic degradation of
calmodulin, Bene Jones proteins, lysozyme, and other
proteins that had already been sequenced.

The column packed with carbonex porous microspherical
carbon beads (were obtained from Biotech Research (Saita-
ma, Japan), average particle size, 3.5µm; specific surface
area,>30 m2/g; specific pore volume, 0.35 mL/g; apparent
density, 0.57 g/mL; pore-size range, 10-700 Å) was used
in this system. Sample peptides and proteins were applied
to the column and eluted with a linear 30-min gradient from
10% to 70% acetonitrile in 0.1% aqueous trifluoroacetic acid
at a flow-rate of 1.0 mL/min, with absorbance detection at
210 nm. The operating temperature was room temperature.

Most peptides were eluted under this condition. In this
present investigation, the peptides which can be eluted are
composed of standard amino acid and whose capacity factors
are more than zero were selected as our research objects.

3. COMPUTATIONAL METHODS

3.1. Calculation and Selection of the Descriptors.To
obtain a QSRR model, compounds are often represented by
the molecular descriptors. The calculation process of the
molecular descriptors is described as below: the three-
dimensional structures of the peptides were drawn using the
sequence editor of Hyperchem and saved as the hin files.

Table 1. Linear Model between the Structure and the logk of Peptidesa

descriptor coefficient error t-test value

intercept 3.8411 0.8732 4.3992
average complementary information content (order 1) (ASIC1) 0.3314 0.0421 7.8748
relative number of single bonds -6.5586 0.4850 -13.5229
relative number of s atoms 27.3000 5.0266 5.4312
average information content (order 2) (AIC2) 0.9198 0.1055 8.7150
relative number of N atoms -11.3550 1.9517 -5.8181
number of rings -0.0967 0.0228 -4.2347
average information content (order 0) (AIC0) -0.9333 0.3961 -2.3563

a R2 ) 0.9051, Rcv
2 ) 0.8677, F) 89.91, s2 ) 0.0341, N) 75.
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Then their hin files were transferred into software CODES-
SA, developed by the Katritzky group,23,24 to calculate
constitutional and topological descriptors, which has been
successfully used in various QSPR/QSAR researches. The
structural optimization of the large size peptides, which is a
kind of biopolymer, is a challenging task, since the optimiza-
tion is very time-consuming. In the present work, only the
constitutional and topological descriptors were calculated
because their calculation does not need the optimization of
the molecular structure and is high-speed. Constitutional
descriptors are related to the number of atoms and bonds in
each molecule. Topological descriptors include valence and
nonvalence molecular connectivity indices calculated from
the hydrogen-suppressed formula of the molecule, encoding
information about the size, composition, and the degree of
branching of a molecule.

Once molecular descriptors are generated, the heuristic
method in CODESSA was used to accomplish the preselec-
tion of the descriptors. Its advantages are the high-speed and
no restrictions on the size of the data set. The heuristic
method can either quickly give a good estimation about what
quality of correlation to expect from the data or derive several
best regression models. Besides, it will demonstrate which
descriptors have bad or missing values, which descriptors
are insignificant (from the standpoint of a single-parameter
correlation), and which descriptors are highly intercorrelated.
This information will be helpful in reducing the number of
descriptors involved in the search for the best QSPR model.

First of all, all descriptors are checked to ensure (a) that
values of each descriptor are available for each structure and
(b) that there is a variation in these values. Descriptors for
which values are not available for every structure in the data
in question are discarded. Descriptors having a constant value
for all structures in the data set are also discarded. Thereafter
all possible one-parameter regression models are tested, and
insignificant descriptors are removed. In the next step, the
program calculates the pair correlation matrix of descriptors
and further reduces the descriptor pool by eliminating highly
correlated descriptors. All two-parameter regression models
with remaining descriptors are subsequently developed and
ranked by the regression correlation coefficientR2. A
stepwise addition of further descriptor scales is performed
to find the best multiparameter regression models with the
optimum values of statistical criteria (highest values ofR2,
the cross-validatedRcV

2 , and theF-value).

3.2. Methodology.After the descriptors are selected, the
next step is to build the quantitative model by using some
computational methods. In this work, the heuristic method
and support vector machines were used to build the linear
and nonlinear models for the prediction oflogk of peptides,
respectively. As the theory of the heuristic method has been
well described in many monographs and articles, we only
give a brief description on the theory of the SVM for
regression.

3.2.1. Theory of SVM for Regression.26,27 The support
vector machine, developed by Vapnik,28 as a novel type of
machine learning method, is gaining popularity due to many
attractive features and promising empirical performance.
Compared to traditional neural networks, SVM possesses the
following prominent advantages: (1) A strong theoretical
background provides SVM with high generalization capabil-

ity and can avoid local minima. (2) SVM always has a
solution, which can be quickly obtained by a standard
algorithm (quadratic programming). (3) SVM need not
determine network topology in advance, which can be
automatically obtained when the training process ends. (4)
SVM builds a result based on a sparse subset of training
samples, which reduce the workload. Originally, SVM are
developed for pattern recognition problems, such as image
recognition,30 microarray gene expression classification,11

protein folding recognition,31 protein structural class predic-
tion,32 identification of protein cleavage sites, QSAR, and
other pharmaceutical data analysis,11,33 and now, with the
introduction ofε-insensitive loss function, SVM have been
extended to solve nonlinear regression estimation and time-
series prediction and excellent performances have been
obtained.29

In SVM, the basic idea is to map the datax into a higher-
dimensional feature space F via a nonlinear mappingΦ and
then to do linear regression in this space. Therefore,
regression approximation addresses the problem of estimating
a function based on a given data set G) {(xi, di)} i)1

l (xi is
input vector,di is the desired value). SVM approximate the
function in the following form

where{Φ(xi)} i)1
l are the features of inputs, and{ωi} i)1

l and
b are coefficients. They are estimated by minimizing the
regularized risk function (2)

where

andε is a prescribed parameter.
In eq 2, C(1/N)∑i)1

N Lε(di,yi) is the so-called empirical
error (risk), which is measured byε-insensitive loss function
Lε(d,y), which indicates that it does not penalize errors below
ε. The second term, 1/|w|2, is used as a measurement of
function flatness.C is a regularization constant determining
the tradeoff between the training error and the model flatness.
Introduction of slack variables “ê” leads eq 2 to the following
constrained function:

subject to

Thus, decision function (1) becomes the following form

y ) ∑
i)1

l

wiΦ(xi) + b (1)

R(C) ) C
1

N
∑
i)1

N

Lε(di,yi) +
1

2
|w|2 (2)

Lε(d,y) ){|d - y| - ε |d - y| gε

0 otherwise} (3)

Max R(w,êi,ê* i) )
1

2
|w|2 + C*∑

i)1

n

(êi + ê* i) (4)

wΦ(xi) + b - di eε + ê* i

di - wΦ(xi) - b e ε + êi

êi,êi
/* g 0 (5)
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In eq 6,Ri,Ri* are the introduced Lagrange multipliers.
They satisfy the equalityRi‚Ri* ) 0,Ri g 0, Ri* g 0; i )
1,‚‚‚,l and are obtained by maximizing the dual form of
function (4); which has the following form:

subject to

Based on the Karush-Kuhn-Tucker (KKT) conditions of
quadratic programming, only a number of coefficients (Ri

- Ri*) will assume nonzero values, and the data points
associated with them could be referred to as support vectors.

In eq 6,K(xi,xj) is the kernel function. The value is equal
to the inner product of two vectorsxi andxj in the feature
spaceΦ(xi) and Φ(xj), that is,K(xi,xj) ) Φ(xi)‚Φ(xj). The
elegance of using kernel function lies in the fact that one
can deal with feature spaces of arbitrary dimensionality
without having to compute the mapΦ(x) explicitly. Any
function that satisfies Mercer’s condition can be used as the
kernel function. In support vector regression, the Gaussian
kernelK(u,V) ) exp(-|u - V|2/δ2) is commonly used.

3.2.2. SVM Implementation and Computation Envi-
ronment. All calculation programs implementing SVM were
written in R-file based on R script for SVM. All scripts were
compiled using R1.7.1 compiler running operating system
on a Pentium IV with 256M RAM.

4. RESULTS AND DISCUSSION

4.1. The Heuristic Method Model.Through the heuristic
method, the best linear model with seven descriptors was
obtained, which was shown in Table 1. By interpreting the
descriptors in the regression model, it is possible to gain some
insight into factors that are likely to govern the chromato-
graphic retention of peptide on a microspherical carbon
column. It is generally agreed that three types of intermo-
lecular interactions are the main factors influencing the
retention of solute:34 (a) polar interactions from permanent
or induced dipoles between solute, stationary-phase, and
mobile phase molecules; (b) dispersive interactions; (c)
hydrogen bond interactions [Considering that the acetonitrile-
trifluoroacetic acid mobile phase is liable to form a hydrogen
bond with the oxygen and nitrogen atoms in the residues,
the hydrogen bond must be taken into account]; (d) steric
interactions between the solute and the stationary phase.

In the linear model, there are four constitutional descriptors
and three topological descriptors. According to the t-test

(Table 1), the most important descriptor affecting the
retention of the peptides is a constitutional descriptor, the
relative number of single bonds. The relative number of
single bonds affects the density of the electron cloud of the
molecule. The larger the relative number of single bonds is,
the lower the density of the electron cloud of the molecule
is and the weaker the polar interaction between the solute
and mobile phase is. Thus, an increase in this descriptor leads
to a decrease in the capacity factor of the compound. The
relative number of single bonds is also related to the rigidity
of the molecule. Generally, the flexibility of the molecule
increases as the relative number of single bonds increases,
and then resistance of the solute through the solvent will
decrease, which leads to the decrease in the capacity factor.
Therefore, the regression coefficient of this descriptor is
negative.

The relative number of N atoms correlates with the ability
of forming hydrogen bonds between the solute and mobile
phase. As this value increases, the tendency of forming a
hydrogen bond between the solute and mobile phase
increases, leading to a decrease in a value of the capacity
factor.

The positive coefficient for the number of sulfur atoms
indicates an increase in the value of this descriptor which
leads to an increase in the value of logk. The negligible
difference of electronegativity between sulfur and carbon,
about 0.03 units in the Pauling scale,35 leads to relatively
small bond dipoles disfavoring the solute-solvent interac-
tions and therefore increasing the dispersive interactions with
the stationary phase and consequently increasing the value
of logk.

In this data set, the number of rings is the same as the
number of aromatic rings. The special mobility ofπ electrons
will result in an enhanced polarizability and the interaction
of unsaturated molecules with the mobile phase and therefore
favors the elution process. Furthermore, the number of rings
encodes the hydrophobicity of the compound, thus, an
increase in this descriptor strengthens the hydrophobicity of
the molecule, enhances the interaction between the solute
and stationary phase, and then disfavors the elution process.
Both these interactions can lead to a decrease in the value
of logk on the whole.

The topological descriptors, the average complimentary
information content, and average information content are
defined on the basis of the Shannon information theory. They
can be calculated for different orders of neighborhoods,r (r
) 0, 1, 2, ...,F), whereF is the radius of the molecular graph
G. At the zero-order level, the atom set is partitioned solely
on the basis of its chemical nature; at the level of the first-
order topological neighborhood, the atoms are partitioned
into disjoint subsets on the basis of their chemical nature
and their first-order bonding topology. At the next level, the
atom set is decomposed into equivalence classes using their
chemical nature and bonding pattern up to the second-order
bonded neighbors.36 The three topological indexes average
complimentary information content (order 1), average in-
formation content (order 0), and average information content
(order 2) reflect the branching of the molecule and reflect
how information rich the molecule is. “Information rich”
describes how many different atoms there are in the molecule
and how diverse the branching of these atoms is at zero to
second valence level (coordination sphere). In other words,

f(x,Ri,Ri*) ) ∑
i)1

l

(Ri - R
i* )K(xi,xj) + b (6)

Φ(Ri,Ri*) ) ∑
i)1

l

di(Ri - Ri*) - ε∑
i)1

l

(Ri - Ri*) -

1

2
∑
i)1

l

∑
j)1

l

(Ri - Ri*)(Rj - Rj*)K(Ri,Rj) (7)

∑
i)1

l

(Ri - Ri*) ) 0

0 eRi e C, i ) 1,‚‚‚,l

0 eRi* e C, i ) 1,‚‚‚,l (8)
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they represent the difference between the maximum possible
complexity of a graph and the realized topological informa-
tion of the chemical species as defined by the information
content. Therefore, they can describe the difference of the
hydrophobicity and steric property of the solute comprehen-
sively. As the hydrophobic and steric interaction is the main
interaction between the solute and the stationary phase, these
three topological descriptors play an important role in the
elution process and have high correlation with the logk.

From the above discussion, these descriptors can account
for the structural features responsible for the capacity factor
of peptides in the certain condition. The calculated and
experimental values of the logarithm of the capacity factor
by the heuristic method were given in Table 2, and the scatter
plot was shown in Figure 1. The root-mean-square error of
this model is 0.1733, and the prediction correlation coef-
ficient is 0.9513, respectively. From Table 1 and Figure 1,
it can be seen that the model of MLR was not sufficiently
accurate (R2 ) 0.9051, RcV

2 = 0.8677, s2 ) 0.0341), and for
the separation system of high performance liquid chroma-
tography, the factors influencing resolution were complex
and not all of them were linear correlation with the
chromatographic behavior. The nonlinear correlation model
by SVM was used further to discuss the correlation between
the molecular structure and the logk.

4.2. Result of SVM. 4.2.1. SVM Parameters Optimiza-
tion. Similar to other multivariate statistical models, the
performances of SVM for regression depend on the combi-
nation of several parameters. They are capacity parameter
C, ε of the ε-insensitive loss function, the kernel type K,
and its corresponding parameters.C is a regularization
parameter that controls the tradeoff between maximizing the
margin and minimizing the training error. IfC is too small,
then insufficient stress will be placed on fitting the training
data. If C is too large, then the algorithm will overfit the
training data. But, ref 29 indicated that the prediction error
was scarcely influenced by C. To make the learning process
stable, a large value should be set up forC (e.g.,C ) 100).

The optimal value forε depends on the type of noise
present in the data, which is usually unknown. Even if
enough knowledge of the noise is available to select an
optimal value forε, there is the practical consideration of
the number of resulting support vectors.ε-insensitivity
prevents the entire training set meeting boundary conditions
and so allows for the possibility of sparsity in the dual
formulation’s solution. So, choosing the appropriate value
of ε is critical from theory.

The kernel type is another important one. For regression
tasks, the Gaussian kernel is commonly used. The form of
the Gaussian function in R is as follows

whereγ is a constant, the parameter of the kernel;u andV
are two independent variables; andγ controls the amplitude
of the Gaussian function and, therefore, controls the gener-
alization ability of SVM. We have to optimizeγ and find
the optimal one.

To find the optimum values of two parameters (γ andε)
and prohibit the overfitting of the model, the data set was
separated into a training set of 57 compounds and a test set
of 18 compounds randomly, and the leave-one-out cross-

validation of the whole training set was performed. The
leave-one-out (LOO) procedure consists of removing one
example from the training set, constructing the decision
function on the basis only of the remaining training data,
and then testing on the removed example. In this fashion
one tests all examples of the training data and measures the
fraction of errors over the total number of training examples.
The root-mean-square error (RMS) was used as an error
function which was defined as below

wheredi are the teaching outputs (desired outputs) in the
training set,oi are the actual outputs obtained from the leave-
one-out cross-validation method, andn is the number of the
samples in the training set.

Detailed process of selecting the parameters and the effects
of every parameter on generalization performance of the
corresponding model were shown in Figures 2 and 3. To
obtain the optimalγ, the support vector learning machines
with different γ were trained, theγ varying from 0.002 to
0.02, every 0.001. We calculated the rms on differentγ,
according to the generalization ability of the model based
on the LOO cross-validation for the training set in order to
determine the optimal one. The curve of rms versus the
gamma was shown in Figure 2. The optimalγ was found as
0.011. To find an optimalε, the RMS on differentε was
calculated. The curve of the RMS versus the epsilon was
shown in Figure 3. From Figure 3, the optimalε was found
as 0.001.

4.2.2. The Predicted Result of SVMs.From the above
discussion, theγ, ε, andC were fixed to 0.011, 0.001, and
100, respectively. The predicted results of the optimal SVM
were shown in Table 2 and Figure 4. As can be seen from
Figure 4, the proposed models were statistically stable and
fitted the data well. The experimental and predicting values
of the test set by the SVM model were listed in Table 2.
The rms error of the training set, the test set, and the whole
set is 0.1324, 0.1523, and 0.1374, and the prediction
correlation coefficient is 0.9727, 0.9801, and 0.9714, re-
spectively. It can be concluded that the predicted values are
in very good agreement with the experimental values. By
comparing results from the heuristic method and SVM, it
can be seen that the SVM model has better predicting ability.
At the same time, the complexity of the nonlinear model
will not increase comparing with that of the linear model
since the SVM method always can obtain the solution quickly
by applying a standard optimization algorithm (quadratic
programming) and only use a sparse subset of training
samples.

Analysis of the results obtained indicates that the model
we proposed can correctly represent structure-retention
relationships of these compounds, and molecular descriptors
calculated solely from structures could describe the structural
features of the compounds responsible for their capacity
factor. From the selected parameters, it can be seen that the
capacity factor of peptides on the microspherical carbon
column are mainly determined by several intermolecular

RMS) x∑
i)1

n

(di - oi)
2

n

exp(-γ* |u - ν|2)
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Table 2. Predicted Results Using SVM and Heuristic Method

results of SVM results of HM

no. peptide (sequence) exp. pred. residue pred. residue

1 LI -0.6990 -0.6985 5E-4 -0.1375 0.5615
2a AS -0.6990 -0.8149 -0.1159 -0.8525 -0.1535
3 GV -0.6021 -0.7017 -0.0996 -0.8102 -0.2081
4 LG -0.5229 -0.5236 -7E-4 -0.4998 0.0231
5 APK -0.5229 -0.3669 0.156 -0.2474 0.2755
6 PGK -0.5229 -0.5232 -3E-4 -0.3984 0.1245
7 HK -0.5229 -0.1467 0.3762 -0.0778 0.4451
8 PSK -0.4559 -0.4407 0.0152 -0.2976 0.1583
9 QSNNK -0.4559 -0.3659 0.09 -0.0573 0.3986
10a AV -0.4437 -0.713 -0.2693 -0.7949 -0.3512
11 C -0.1611 -0.1619 -8E-4 -0.1216 0.0395
12 PF 0.2253 0.4144 0.1891 0.5491 0.3238
13a MK 0.4048 -0.003 -0.4078 0.2599 -0.1449
14 VDIK 0.4654 0.6291 0.1637 0.4335 -0.0319
15 TPGSP 0.5132 -0.0242 -0.5374 0.1509 -0.3623
16a HAVE 0.5490 0.5279 -0.0211 0.4676 -0.0814
17 ADSSPVK 0.5922 0.4523 -0.1399 0.5233 -0.0689
18 F 0.6170 0.6163 -7E-4 0.5874 -0.0296
19 AGVETTK 0.6180 0.7328 0.1148 0.6021 -0.0159
20a KNSISPE 0.6335 0.6101 -0.0234 0.6776 0.0441
21 ADGSPVK 0.6415 0.5637 -0.0778 0.6107 -0.0308
22 AGVETTTPSK 0.6415 0.7316 0.0901 0.7811 0.1396
23a VTALSQPK 0.6794 0.769 0.0896 0.6878 0.0084
24 DGDGTITTK 0.6875 0.7719 0.0844 0.7501 0.0626
25 HASLEKPKDE 0.7059 0.8634 0.1575 0.9226 0.2167
26 Y 0.7101 0.7105 4E-4 0.6428 -0.0673
27 GF 0.7292 0.7296 4E-4 0.6629 -0.0663
28 VFDK 0.7679 0.944 0.1761 0.8363 0.0684
29 TFKRD 0.8129 0.8121 -8E-4 0.7973 -0.0156
30a LTVLRQPK 0.8274 0.9036 0.0762 0.7126 -0.1148
31 YINEHK 0.8669 1.0939 0.227 1.1076 0.2407
32 ADYEK 0.8704 0.8712 8E-4 0.8848 0.0144
33 LTVLGQPK 0.8733 0.8729 -4E-4 0.7348 -0.1385
34 VFGR 0.8876 0.8873 -3E-4 0.6867 -0.2009
35 EAFR 0.8887 0.8698 -0.0189 0.734 -0.1547
36 YVLNKHNE 0.9106 1.0222 0.1116 1.0442 0.1336
37 RVY 0.9196 0.7844 -0.1352 0.6231 -0.2965
38 LY 0.9243 0.6805 -0.2438 0.7743 -0.15
39 DGHAHSHLIQQHIEK 0.9400 0.9404 4E-4 1.0319 0.0919
40 ELGTVMR 0.9415 0.9409 -6E-4 1.0379 0.0964
41 VDNALQSGNSQESVTEQDSK 0.9479 0.9483 4E-4 1.1392 0.1913
42 VPVVFVKKE 0.9567 0.9559 -8E-4 0.8788 -0.0779
43 VKDGHAHSHLIQQHIE 0.9590 0.9794 0.0204 1.0471 0.0881
44a HGLDNYR 0.9881 0.9991 0.011 1.0891 0.101
45 ISRGQHKYEPE 0.9983 0.9991 8E-4 1.0891 0.0908
46 HVLFGGGTK 0.9987 1.098 0.0993 1.0358 0.0371
47 KLSGHIYE 1.0174 1.2728 0.2554 1.2562 0.2388
48a TWGVTKAAELQ 1.0183 1.1711 0.1528 1.152 0.1337
49a VQWK 1.0504 1.0799 0.0295 0.9761 -0.0743
50a AVRYINE 1.0542 1.0984 0.0442 0.9635 -0.0907
51 DSTYSLSSTLTLSK 1.0704 0.9913 -0.0791 0.9981 -0.0723
52 DTDSEEEIR 1.0730 1.0619 -0.0111 1.0129 -0.0601
53a GQTLVVQFTVK 1.0770 1.1258 0.0488 0.9499 -0.1271
54 W 1.0874 1.0867 -7E-4 1.2523 0.1649
55a ANPTVTLFPPSSEELQANK 1.0917 1.0333 -0.0584 1.0632 -0.0285
56 ANPSVTLFPPSSEELQANK 1.0924 1.002 -0.0904 1.0434 -0.049
57 TWGVTKAAE 1.0927 1.0629 -0.0298 1.0818 -0.0109
58 VHVIFNYK 1.1021 1.2279 0.1258 1.1452 0.0431
59 GW 1.1106 1.111 4E-4 1.0725 -0.0381
60 AKNWADD 1.1193 0.8685 -0.2508 0.9574 -0.1619
61 IHPF 1.1238 1.1247 9E-4 1.0277 -0.0961
62a WKPRQIDNPE 1.1483 1.0758 -0.0725 1.0201 -0.1282
63 DPTVYFK 1.1670 1.1662 -8E-4 1.1998 0.0328
64a NTDGSTDYGILQINSR 1.1709 1.1593 -0.0116 1.285 0.1141
65 EAFSLFDKDGDGTITTK 1.1709 1.2724 0.1015 1.3659 0.195
66a DRVYIHPFHL 1.1775 1.4758 0.2983 1.2082 0.0307
67 HHQEHPYTAGE 1.1844 1.1839 -5E-4 1.0739 -0.1105
68 VKIDNSQVE 1.1853 1.0637 -0.1216 0.8629 -0.3224
69 NTDGSTDYGILQIN 1.1878 1.0637 -0.1241 0.8629 -0.3249
70a LLISDNYNRPSGVPARFSGSK 1.2122 1.1099 -0.1023 1.2006 -0.0116
71 GTDVQAWIR 1.2460 1.2133 -0.0327 1.161 -0.085
72 RTVAAPSVFIFPPSDEQLK 1.2737 1.2745 8E-4 1.1645 -0.1092
73a DRVYIHPF 1.2943 1.4118 0.1175 1.2365 -0.0578
74 VFDKDGDGYISAAELR 1.3610 1.3607 -3E-4 1.4076 0.0466
75 RVYIHPE 1.3705 1.361 -0.0095 1.1594 -0.2111

a The compounds in the test set for SVM model.
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interactions, such as hydrophobic and steric interactions
between the solute and stationary phase and polar and
hydrogen bond interactions between the solute and mobile
phase. From the performance comparison of the nonlinear
model and that of the heuristic method, it proved that
nonlinear model can simulate the relationship between the
structural descriptors and the chromatography retention of
peptides more accurately.

5. CONCLUSION

Accurate linear and nonlinear QSRR models of 75 peptides
were built based on the heuristic method and support vector
machine, respectively, by using the constitutional and
topological descriptors whose calculation is simple and fast.
By comparing the linear and nonlinear models, it is proved
that nonlinear SVM models gave better results with better
predictive ability than a linear model. It can be concluded
that (1) the proposed models could identify and provide some
insight into structural features related to the mobility of
peptides on the microspherical carbon column from the
molecular level. (2) A nonlinear relationship can describe
the relationship between the structural parameter and the logk
of the 75 peptides more accurately. (3) SVM proved to be a
useful tool in the prediction of the chromatography behavior
of the peptides. It has some advantages over the other
techniques, such as convergence to the global optimum and
good generalization. Besides, because only support vectors
(only a fraction of all data) are used in the generalization
process, the SVM is suitable particularly to the problems
with a great deal of data in cheminformatics. Furthermore,
there are fewer free parameters to be adjusted in the SVM,
and the model selecting process is easy to control. Therefore,
the SVM is a very promising machine learning technique
from many aspects and will gain more extensive application.

In summary, this investigation developed a new method
to predict the chromatographic behavior of peptides and
explained the factors affecting chromatographic behavior
from the microcosmic perspective. It can also provide an
idea for dealing with the QSAR/QSPR problem of biopoly-
mers.
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