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One important feature of the gene expression data is that the number of genes M far exceeds the number of samples N . Standard
statistical methods do not work well when N < M. Development of new methodologies or modification of existing methodologies
is needed for the analysis of the microarray data. In this paper, we propose a novel analysis procedure for classifying the gene
expression data. This procedure involves dimension reduction using kernel principal component analysis (KPCA) and classification
with logistic regression (discrimination). KPCA is a generalization and nonlinear version of principal component analysis. The
proposed algorithm was applied to five different gene expression datasets involving human tumor samples. Comparison with other
popular classification methods such as support vector machines and neural networks shows that our algorithm is very promising in
classifying gene expression data.

INTRODUCTION

One important application of gene expression data is
the classification of samples into different categories, such
as the types of tumor. Gene expression data are charac-
terized by many variables on only a few observations. It
has been observed that although there are thousands of
genes for each observation, a few underlying gene compo-
nents may account for much of the data variation. Prin-
cipal component analysis (PCA) provides an efficient way
to find these underlying gene components and reduce the
input dimensions (Bicciato et al [1]). This linear transfor-
mation has been widely used in gene expression data anal-
ysis and compression (Bicciato et al [1], Yeung and Ruzzo
[2]). If the data are concentrated in a linear subspace, PCA
provides a way to compress data and simplify the repre-
sentation without losing much information. However, if
the data are concentrated in a nonlinear subspace, PCA
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will fail to work well. In this case, one may need to con-
sider kernal principal component analysis (KPCA) (Rosi-
pal and Trejo [3]). KPCA is a nonlinear version of PCA.
It has been studied intensively in the last several years in
the field of machine learning and has claimed success in
many applications (Ng et al [4]). In this paper, we intro-
duce a novel algorithm of classification, based on KPCA.
Computational results show that our algorithm is effective
in classifying gene expression data.

ALGORITHM

A gene expression dataset with M genes (features) and
N mRNA samples (observations) can be conveniently rep-
resented by the following gene expression matrix:

X =




x11 x12 · · · x1N

x21 x22 · · · x2N
...

...
. . .

...
xM1 xM2 · · · xMN



, (1)

where xli is the measurement of the expression level of
gene l in mRNA sample i. Let xi = (x1i, x2i, . . . , xMi)′ de-
note the ith column (sample) of X with the prime ′ repre-
senting the transpose operation, and yi the corresponding
class label (eg, tumor type or clinical outcome).

KPCA is a nonlinear version of PCA. To perform
KPCA, one first transforms the input data x from the
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original input space F0 into a higher-dimensional feature
space F1 with the nonlinear transform x → Φ(x), where Φ
is a nonlinear function. Then a kernel matrix K is formed
using the inner products of new feature vectors. Finally, a
PCA is performed on the centralized K , which is the es-
timate of the covariance matrix of the new feature vector
in F1. Such a linear PCA on K may be viewed as a nonlin-
ear PCA on the original data. This property is sometimes
called “kernel trick” in the literature. The concept of ker-
nel is very important, here is a simple example to illustrate
it. Suppose we have a two-dimensional input x = (x1, x2)′,
let the nonlinear transform be

x −→ Φ(x) =
(
x2

1 , x
2
2 ,
√

2x1x2,
√

2x1,
√

2x2, 1
)′
. (2)

Therefore, given two points xi = (xi1, xi2)′ and x j = (xj1,
x j2)′, the inner product (kernel) is

K
(

xi, x j
)
= Φ

(
xi
)′
Φ
(

x j
)

= x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2

+ 2xi1xj1 + 2xi2xj2 + 1

=
(
1 + xi1xj1 + xi2xj2

)2 =
(
1 + x′ix j

)2
,

(3)

which is a second-order polynomial kernel. Equation (3)
clearly shows that the kernel function is an inner product
in the feature space and the inner products can be evalu-
ated without even explicitly constructing the feature vec-
tor Φ(x).

The following are among the popular kernel func-
tions:

(i) first norm exponential kernel

K
(

xi, x j
)
= exp

(
− β

∥∥xi − x j
∥∥), (4)

(ii) radial basis function (RBF) kernel

K
(

xi, x j
)
= exp

(
−
∣∣xi − x j

∣∣2

σ2

)
, (5)

(iii) power exponential kernel (a generalization of RBF
kernel)

K
(

xi, x j
)
= exp

[
−
(∣∣xi − x j

∣∣2

r2

)β]
, (6)

(iv) sigmoid kernel

K
(

xi, x j
)
= tanh

(
βx′ix j

)
, (7)

(v) polynomial kernel

K
(

xi, x j
)
=
(

x′ix j + p2
)p1 , (8)

where p1 and p2 = 0, 1, 2, 3, . . . are both integers.

For binary classification, our algorithm, based on
KPCA, is stated as follows.

KPC classification algorithm
Given a training dataset {xi}ni=1 with class labels

{yi}ni=1 and a test dataset {xt}ntt=1 with labels {yt}ntt=1, do
the following.

(1) Compute the kernel matrix, for the training data,
K = [Kij]n×n, where Kij = K(xi, x j). Compute the
kernel matrix, for the test data, Kte = [Kti]nt×n,
where Kti = K(xt , xi). Kti projects the test data xt

onto training data xi in the high-dimensional fea-
ture space in terms of the inner product.

(2) Centralize K using and Kte

K =
(

In −
1
n

1n1′n

)
K
(

In −
1
n

1n1′n

)
,

Kte =
(
Kte −

1
n

1nt 1
′
nK
)(

I− 1
n

1n1′n

)
.

(9)

(3) Form an n × k matrix Z = [z1 z2 · · · zk], where
z1, z2, . . . , zk are eigenvectors of K that correspond
to the largest eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk > 0.
Also form a diagonal matrix D with λi in a position
(i, i).

(4) Find the projections V = KZD−1/2 and Vte =
KteZD−1/2 for the training and test data, respec-
tively.

(5) Build a logistic regression model using V and
{yi}ni=1 and test the model performance using Vte

and {yt}ntt=1.

We can show that the above KPC classification al-
gorithm is a nonlinear version of the logistic regression.
From our KPC classification algorithm, the probability of
the label y, given the projection v, is expressed as

P
(
y|w, v

)
= g

(
b +

k∑

i=1

wivi

)
, (10)

where the coefficients w are adjustable parameters and g
is the logistic function

g(u) =
(
1 + exp(−u)

)−1
. (11)

Let n be the number of training samples and Φ the non-
linear transform function. We know each eigenvector zi
lies in the span of Φ(x1),Φ(x2), . . . ,Φ(xn) for i = 1, . . . , n
(Rosipal and Trejo [3]). Therefore one can write, for con-
stants zi j ,

zi = zi1Φ
(

x1
)

+ zi2Φ
(

x2
)

+ · · · + zinΦ
(

xn
)
=

n∑

j=1

zi jΦ
(

x j
)
.

(12)

Given a test data x, let vi denote the projection of Φ(x)
onto the ith nonlinear component with a normalizing fac-
tor 1/

√
λi, we have

vi =
1√
λi

(
z′iΦ(x)

)
= 1√

λi

n∑

j=1

zi jK
(

x j , x
)
. (13)
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Substituting (13) into (10), we have

P
(
y|w, v

)
= g

(
b +

n∑

j=1

cjK
(

x j , x
)
)
, (14)

where

cj =
k∑

i=1

1√
λi
wizi j , i = 1, . . . , n. (15)

When K(xi, x j) = x′ix j , (14) becomes logistic regression.
K(xi, x j) = x′ix j is a linear kernel (polynomial kernel with
p1 = 1 and p2 = 0). When we first normalize the input
data through minusing their mean and then dividing their
standard deviation, linear kernel matrix is the covariance
matrix of the input data. Therefore KPC classification al-
gorithm is a generalization of logistic regression.

Described in terms of binary classification, our classi-
fication algorithm can be readily employed for multiclass
classification tasks. Typically, two-class problems tend to
be much easier to learn than multiclass problems. While
for two-class problems only one decision boundary must
be inferred, the general c-class setting requires us to ap-
ply a strategy for coupling decision rules. For a c-class
problem, we employ the standard approach where two-
class classifiers are trained in order to separate each of the
classes against all others. The decision rules are then cou-
pled by voting, that is, sending the sample to the class with
the largest probability.

Mathematically, we build c two-class classifiers based
on a KPC classification algorithm in the form of (14) with
the scheme “one against the rest”:

pi = P
(
y = i|x

)
= g

(
bi +

n∑

i=1

wijK
(

xi, x
)
)
, (16)

where i = 1, 2, . . . , c. Then for a test data point xt , we have
the predicted class

ŷt = arg max
i=1,...,c

pi
(

xt
)
. (17)

Feature and model selections

Since many genes show little variation across samples,
gene (feature) selection is required. We chose the most in-
formative genes with the highest likelihood ratio scores,
described below (Ideker et al [5]). Given a two-class prob-
lem with an expression matrix X = [xli]M×N , we have, for
each gene l,

T
(

xl
)
= log

σ2

σ ′2
, (18)

where

σ2 =
N∑

i=1

(
xli − µ

)2
,

σ ′2 =
∑

i∈ class 0

(
xli − µ0

)2 +
∑

i∈ class 1

(
xli − µ1

)2
.

(19)

Here µ, µ0, and µ1 are the whole sample mean, the Class
0 mean, and the Class 1 mean, alternatively. We selected
the most informative genes with the largest T values. This
selection procedure is based on the likelihood ratio and
used in our classification.

On the other hand, the dimension of projection (the
number of eigenvectors) k used in the model can be se-
lected based on Akaike’s information criteria (AIC):

AIC = −2 log
(
L̂
)

+ 2(k + 1), (20)

where L̂ is the maximum likelihood and k is the dimen-
sion of the projection in (10). The maximum likelihood L̂
can also be calculated using (10):

L̂ =
n∏

i=1

(
p
(
y|w, v

))y(1− p
(
y|w, v

))1−y
. (21)

We can choose the best k with minimum AIC value.

COMPUTATIONAL RESULTS

To illustrate the applications of the algorithm pro-
posed in the previous section, we considered five gene ex-
pression datasets: leukemia (Golub et al [6]), colon (Alon
et al [7]), lung cancer (Garber et al [8]), lymphoma (Al-
izadeh et al [9]), and NCI (Ross et al [10]). The classifi-
cation performance is assessed using the “leave-one-out
(LOO) cross validation” for all of the datasets except for
leukemia which uses one training and test data only. LOO
cross validation provides more realistic assessment of clas-
sifiers which generalize well to unseen data. For presenta-
tion clarity, we give the number of errors with LOO in all
of the figures and tables.

Leukemia

The leukemia dataset consists of expression profiles
of 7129 genes from 38 training samples (27 ALL and 11
AML) and 34 testing samples (20 ALL and 14 AML).
For classification of leukemia using a KPC classification
algorithm, we chose the polynomial kernel K(xi, x j) =
(x′ix j + 1)2 and 15 eigenvectors corresponding to the first
15 largest eigenvalues with AIC. Using 150 informative
genes, we obtained 0 training error and 1 test error. This
is the best result compared with those reported in the lit-
erature. The plot for the output of the test data is given
in Figure 1, which shows that all the test data points are
classified correctly except for the last data point.

Colon

The colon dataset consists of expression profiles of
2000 genes from 22 normal tissues and 40 tumor samples.
We calculated the classification result using a KPC clas-
sification algorithm with a kernel K(xi, x j) = (x′ix j + 1)2.
There were 150 selected genes and 25 eigenvectors selected
with AIC criteria. The result is compared with that from
the linear principal component (PC) logistic regression.
The classification errors were calculated with the LOO
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Figure 1. Output of the test data with KPC classification algo-
rithm.

Table 1. Comparison for lung cancer.

Methods Number of errors

KPC with a polynomial kernel 6
KPC with an RBF kernel 8
Linear PC classification 7
SVMs 7
Regularized logistic regression 12

method. The average error with linear PC logistic regres-
sion is 2 and the error with KPC classification is 0. The
detailed results are given in Figure 2.

Lung cancer

The lung cancer dataset has 918 genes, 73 samples,
and 7 classes. The number of samples per class for this
dataset is small (less than 10) and unevenly distributed
with 7 classes, which makes the classification task more
challenging. A third-order polynomial kernel K(xi, x j) =
(x′ix j +1)3, and an RBF kernel with σ = 1 were used in the
experiments. We chose the 100 most informative genes
and 20 eigenvectors with our gene and model selection
methods. The computational results of KPC classification
and other methods are shown in Table 1. The results from
SVMs for lung cancer, lymphoma, and NCI shown in this
paper are those from Ding and Peng [11]. Six misclassi-
fications with KPC and a polynomial kernel are given in
Table 2. Table 1 shows that KPC with a polynomial kernel
is performed better than that with an RBF kernel.

Lymphoma

The lymphoma dataset has 4026 genes, 96 samples,
and 9 classes. A third-order polynomial kernel K(xi, x j) =
(x′ix j + 1)3 and an RBF kernel with σ = 1 were used in our
analysis. The 300 most informative genes and 21 eigenvec-
tors corresponding to the largest eigenvalues were selected
with the gene selection method and AIC criteria. A com-
parison of KPC with other methods is shown in Table 3.
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Figure 2. Outputs with (a) linear PC regression and (b) KPC
classification.

Table 2. Misclassifications of lung cancer.

Sample index True class Predicted class

6 6 4
12 6 4
41 6 3
51 3 6
68 1 5
71 4 3

Table 3. Comparison for lymphoma.

Methods Number of errors

KPC with a polynomial kernel 2
KPC with an RBF kernel 6
PC 5
SVMs 2
Regularized logistic regression 5

Misclassifications of lymphoma using KPC with a poly-
nomial kernel are given in Table 4. There are only 2 mis-
classifications of class 1 using our KPC algorithm with a
polynomial kernel, as shown in Table 4. The KPC with a
polynomial kernel outperformed that with an RBF kernel
in this experiment.

NCI

The NCI dataset has 9703 genes, 60 samples, and 9
classes. The third-order polynomial kernel K(xi, x j) =
(x′ix j + 1)3 and an RBF kernel with σ = 1 were chosen in
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Table 4. Misclassifications of lymphoma.

Sample index True class Predicted class

64 1 6
96 1 3

Table 5. Comparison for NCI.

Methods Number of errors

KPC with a polynomial kernel 6
KPC with a RBF kernel 7
PC 6
SVMs 12
Logistic regression 6

Table 6. Misclassifications of NCI.

Sample index True class Predicted class

6 1 3
7 1 4

27 4 3
45 7 9
56 8 5
58 8 1

this experiment. The 300 most informative genes and 23
eigenvectors were selected with our simple gene selection
method and AIC criteria. A comparison of computational
results is summarized in Table 5 and the details of mis-
classification are listed in Table 6. KPC classification has
equivalent performance with other popular tools.

DISCUSSIONS

We have introduced a nonlinear method, based on
kPCA, for classifying gene expression data. The algorithm
involves nonlinear transformation, dimension reduction,
and logistic classification. We have illustrated the effec-
tiveness of the algorithm in real life tumor classifications.
Computational results show that the procedure is able to
distinguish different classes with high accuracy. Our ex-
periments also show that KPC classifications with second-
and third-order polynomial kernels are usually performed
better than that with an RBF kernel. This phenomena may
be explained from the special structure of gene expression
data. Our future work will focus on providing a rigor-
ous theory for the algorithm and exploring the theoretical
foundation that KPC with a polynomial kernel performed
better than that with other kernels.
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