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ABSTRACT
Motivation: The development of microarray-based high-throughput
gene profiling has led to the hope that this technology could provide
an efficient and accurate means of diagnosing and classifying tumors,
as well as predicting prognoses and effective treatments. However,
the large amount of data generated by microarrays requires effective
reduction of discriminant gene features into reliable sets of tumor bio-
markers for such multiclass tumor discrimination. The availability of
reliable sets of biomarkers, especially serum biomarkers, should have
a major impact on our understanding and treatment of cancer.
Results: We have combined genetic algorithm (GA) and all paired
(AP) support vector machine (SVM) methods for multiclass cancer
categorization. Predictive features can be automatically determined
through iterative GA/SVM, leading to very compact sets of non-
redundant cancer-relevant genes with the best classification perform-
ance reported to date. Interestingly, these different classifier sets
harbor onlymodest overlapping gene features but have similar levels of
accuracy in leave-one-out cross-validations (LOOCV). Further char-
acterization of these optimal tumor discriminant features, including
the use of nearest shrunken centroids (NSC), analysis of annotations
and literature text mining, reveals previously unappreciated tumor
subclasses and a series of genes that could be used as cancer
biomarkers. With this approach, we believe thatmicroarray-basedmul-
ticlassmolecular analysis can be an effective tool for cancer biomarker
discovery and subsequent molecular cancer diagnosis.
Contact: xuefeng_ling@yahoo.com
Supplementary information: http://www.fishgenome.org/publication/
Liu/bioinformatics/

INTRODUCTION
Traditional cancer diagnosis relies on a complex and inex-
act combination of clinical and histopathological data. These
classic approaches may fail when dealing with atypical tumors
or morphologically indistinguishable tumor subtypes. Advances in
the area of microarray-based expression analysis have led to the
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promise of cancer diagnosis using newmolecular-based approaches;
however, this new type of data presents new challenges. Microarray-
based tumor comparative hybridization profiles have been introduced
for binary and multiclass cancer classifications (Ross et al., 2000;
Ramaswamy et al., 2001; Su et al., 2001; Yeang et al., 2001; Ooi
and Tan, 2003; Peng et al., 2003). The high-throughput nature of
this technology makes it feasible to diagnose a large number of com-
mon malignancies in parallel based on comprehensive microarray
datasets. However, multiclass tumor classification using large-
scale expression databases has significant statistical and analytical
implications.
The support vector machine (SVM) algorithm (Vapnik, 1998) has

been one of the most powerful supervised learning algorithms in bio-
logical data analysis including microarray-based expression analysis
(Brown et al., 2000; Furey et al., 2000), remote protein homology
detection (Jaakkola et al., 1999; Ben-Hur and Brutlag, 2003) and
translation initiation site recognition (Zien et al., 2000). Utilized
as binary categorical classifiers, the SVM method has been shown
to consistently outperform other classification approaches including
weighted voting and k-nearest neighbors (Ramaswamy et al., 2001).
To extend the SVMalgorithm tomulticlass classification, integration
with another algorithm such as the one-versus-all (OVA) or all-paired
(AP) binary comparisons is required.
The genetic algorithm (GA), as introduced by Goldberg (1989),

performs randomized search and optimization mimicking evolu-
tion and natural genetics involving at least three types of genetic
operators: selection, cross over and mutation. These algorithm
implementations benefit from parallel population-based searches in
combination with stochastic genetic operations, distinguishing them
from other search methods (Goldberg, 1989; Goldberg and Deb,
1991). In microarray expression data analysis, GA has been effect-
ively employed for binary (Li et al., 2001) and multiclass cancer
discrimination (Ooi and Tan, 2003; Peng et al., 2003).
Advances in the area of microarray-based cancer diagnosis

promise to greatly advance cancer diagnosis, especially in situations
where tumors are clinically atypical. In addition, microarray-based
classification schemes can potentially detect previously unrecog-
nized tumor subtypes, discover subtype-associated biomarkers and
improve diagnosis accuracy. The nearest shrunken centroids method
(NSC), based upon an enhancement of the simple nearest prototype
(centroid) classifier, has been previously used for tumor subclass
discovery and was demonstrated to be able to identify succinctly

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 2691

http://www.fishgenome.org/publication/


J.J.Liu et al.

discriminant genes for each predicted category (Tibshirani et al.,
2002, 2003).
The lack of specificity of most cancer biomarkers, including the

widely used prostate-specific antigen (PSA) leads to many false
positives (Brawer, 2000). The prevailing view is that, even though
discriminant biomarkers for most solid tumors are not available, the
most powerful single cancer biomarkers may have already been dis-
covered (Diamandis, 2004). Technological advances in the areas of
high-throughput expression profiling, high-density tissue microar-
rays, clinical pathology and bioinformatics have raised expectations
as a small, but growing, number of candidate serum biomarkers have
been identified using array-based observations (Zhou et al., 1998;
Dhanasekaran et al., 2001; Mok et al., 2001; Kim et al., 2002; Rubin
et al., 2002). With the completion of the human genome sequencing
and large sets of high-quality annotations made using automated
algorithms (Pouliot et al., 2001; Harris et al., 2004), global methods
have been utilized to perform large-scale delineation of all secreted
proteins in the search for biomarkers overexpressed in cancer tissue
and serum (Welsh et al., 2003).
As briefly discussed in our recent report (Peng et al., 2003), we

have combined the GA and SVM algorithms, and utilized GA to
evolve AP-SVM-based multiclass cancer classifiers. This algorithm
has derived compact discriminant sets of cancer-related genes with
the highest leave-one-out cross-validation (LOOCV) accuracies seen
in the multiclass tumor classification literature. These predictive
gene sets can achieve similar LOOCV accuracies but only overlap
modestly, suggesting that less sensitive or specific genes could be
discovered and may be applied in panels to devise diagnostic meth-
odologies with improved sensitivity and specificity. In addition to the
GA-based efforts, we utilized the NSC approach to post-process the
GA-selected optimal feature predictors in an effort to discover previ-
ously unappreciated cancer subtypes and the associated biomarkers
that best characterize them. We have used gene annotation, text min-
ing and literature searches to categorize the biological functions of the
GA-selected features as well as their cellular localization and bio-
marker relevancy. This analysis has revealed previously validated
extracellular and membrane-bound tumor biomarkers along with
many novel ones. By using our innovative analytical approaches,
it is likely that microarray-based multiclass molecular analysis can
be utilized for tumor biomarker discovery and effective molecular
cancer diagnosis.

MATERIALS AND METHODS
Datasets
The NCI60 data (Ross et al., 2000) contains gene expression profiles of 9712
spotted cDNAs in 68 cancer cell lines. The unknown, normal breast, lymph
node and prostate cancer cell lines, due to their small numbers, were excluded
from further analysis, leaving 61 cell lines with nine sites of origin. As previ-
ously described at http://genome-www.stanford.edu/nci60/help.shtml (Ross
et al., 2000), following hybridization, arrays were scanned using a laser-
scanning microscope. Separate images were acquired for Cy3 and Cy5.
CH2D/CH1D fluorescent ratios were utilized as measures for mRNA relative
abundance. There are a total of 6116 genes with standard deviations ranging
from 0.32 to 2.63 (Supplementary Fig. 1). The top 1000 genes (standard
deviation >0.99) were selected as the truncated dataset and were analyzed
throughout this study as the ‘NCI60 dataset’.
The Brown dataset (Munagala et al., 2004) consists of 268 primary tumor

samples analyzed on spotted cDNA arrays containing 7452 probes. The
uterus cancer, carcinoid and adrenal benign adenoma tumors were excluded
from further analysis due to their small numbers. The remaining 260 tumor
samples span 15 tissue types: breast, central nervous system, kidney, lung,

ovary, pancreas, prostate, soft tissue, stomach, bladder, liver, lymph node,
skin, testis and colon. Detailed protocols and techniques are available at
http://cmgm.stanford.edu/pbrown/. The primary data tables can be obtained
at http://microarray-pubs.stanford.edu/margin_clus/. Tumor samples or their
associated cancer classes were excluded from the subtype analysis due to
either the lack of clinical subtype information or the small sample size within
the cancer categories.

GA/SVM/NSC multiclass tumor classification
The GA/SVM algorithmwas used as previously described (Peng et al., 2003)
with a generation number of 100 000, a population size of 40 and a chromo-
some size of 40. These steps were followed by NSC classification (Tibshirani
et al., 2002, 2003) to identify potential tumor subtypes. The NSC algorithm
has been implemented using the ‘pamr’ package of the R-project. Two hun-
dred iterations of NSC cross-validation were performed to optimize the size
of selected gene sets and minimize the error rate. Genes whose shrunken
class centroids reached zero for the particular tumor class were eliminated.
Average-linkage hierarchical clustering of a centered Pearson correlation
similarity matrix (Hastie et al., 2001) was applied using log-transformed
gene expression values. Implementation details, including source code, are
available in the Supplementary Material.

Assembling comprehensive annotation information
The NCI60 probe gene sets have been annotated according to the Gene
Ontology specifications (http://www.geneontology.org) using the GoPipe
system http://gopipe.fishgenome.org/ (Chen et al., 2005) and the Ingenu-
ity Pathways Analysis application (Palo Alto, http://www.ingenuity.com).
Detailed information can be found in the Supplementary Material.

RESULTS
GA/SVM method allows highly accurate multiclass
tumor classifications
Our GA/SVM algorithm consists of three main components: a
GA-based gene selector, SVM-based binary classifiers distinguish-
ing between tumor samples and multiclass categorization by an
AP/SVM voting strategy (Supplementary Fig. 2A). The iterative
GA’s genetic selection and evolution fitness test achieved substantial
feature reduction, leading to compact sets of non-redundant dis-
criminant genes. NCI60 (Ross et al., 2000), a dataset of cell lines
corresponding to nine tumor types, has been utilized extensively
to compare various methods of classification on microarray expres-
sion analysis (Golub et al., 1999; Ooi and Tan, 2003; Peng et al.,
2003). Before the report of our GA/SVM algorithm (Peng et al.,
2003; and this study), GA/MLHD, a GA approach in combination
with the MLHD classification method, had been found to have the
best multiclass tumor distinction accuracies on the NCI60 datasets
(Ooi and Tan, 2003). However, our replication of the GA/MLHD
data analysis (Ooi and Tan, 2003) revealed that Ooi et al. had
incorrectly labeled some samples in their processed NCI60 dataset.
The labeling inconsistency can be identified by examination of the
header of the NCI_full_train.txt file online at the author’s website
http://www.omniarray.com/bioinformatics/GA/full_data/ (Supple-
mentary Fig. 3). Contrary to the fact that there should be four samples
labeled ‘2—central nervous system tumor’ and five samples labeled
‘8—renal tumor’ as described inOoi et al.’s SupplementaryTableS3a
(Ooi and Tan, 2003), NCI_full_train.txt data file header shows three
central nervous system tumor samples and six renal tumor samples.
A set of 1000 genes had been derived (Ooi and Tan, 2003) to demon-
strate the predicting performance of the GA/MLHD algorithm.
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Table 1. Effects of GA parameters on two different GA-based multiclass tumor classificationsa

Dataset Crossover Selection Pc Pm Number of features LOOCV (%) Algorithm Reference

NCI60b (1000) Uniform SUS 1 0.002 13 85.37 GA/MLHD Ooi and Tan (2003)
NCI60 (1000) Uniform SUS 1 0.002 12 70.73 GA/MLHD This study
NCI60 (1000) Uniform SUS 1 0.002 40 88.52 GA/SVM This study
NCI60b (1000) One-point RWS 0.8 0.02 13 75.61 GA/MLHD Ooi and Tan (2003)
NCI60 (1000) One-point RWS 0.8 0.02 12 68.29 GA/MLHD This study
NCI60 (1000) One-point RWS 0.8 0.02 40 86.89 GA/SVM This study

aMicroarray dataset: NCI60. Two GA selection methods: stochastic universal sampling (SUS); roulette wheel selection (RWS).
bDatasets revealed to be inconsistently processed.

Table 2. Comparison of GA/SVM on NCI60 dataset with other previously
described multiclass tumor distinction methods

Classification
method

LOOCV (%) Number of
features (genes)

Reference

Hierarchical clustering 81 6831 Ross et al. (2000)
GA/MLHD 85.37 13 Ooi and Tan (2003)
GA/MLHD 70.73 12 This study
GA/SVM 88.52 40 This study

Since this 1000 gene setwas derived from the full (erroneous) dataset,
its validity is questionable as well.
The two GA-based multiclass tumor classification algorithms,

GA/MLHD and GA/SVM, were compared in this study on our pro-
cessed NCI60 dataset. The effects of different GA parameters and
numbers of selected features on LOOCV results are summarized
in Table 1. The GA/MLHD did not perform as well as was previ-
ously described—the LOOCV accuracy of 70.73%we observed was
a significant drop from the reported 85.37% (Ooi and Tan, 2003).
In comparison, GA/SVM achieved an LOOCV accuracy of 88.52%
on the same dataset (Table 2), indicating that AP/SVM significantly
outperformed the MLHD approach as a categorical classifier.

GA/SVM algorithm derives multiple compact
predictor sets with similar classification accuracies
Wehaveprocessed theNCI60 expression dataset formulticlass tumor
discrimination. For this analysis, the GA/SVM parameters were pre-
set with a population size of 40, a maximum number of generations
of 100 000 and a chromosome size of 40. One hundred series of
independent GA/SVM operations were performed with random ini-
tial seeding from the NCI60 gene set (Supplementary Fig. 2B). Upon
the completion of all GA generations, the best predictive feature set
from each final generation was compared with all the others to locate
the set with the highest overall accuracy. The 100 generated pre-
dictor sets fall into a narrow range of LOOCV accuracies, between
78.69 and 88.52% (Fig. 1A). Thus, these optimal sets evolving from
different randomly seeded populations yield reproducibly accurate
multiclass tumor classifications.
After sorting the selected genes by the standard deviation of

their expression values, the frequency of selection of gene features
across all the optimal predictive set series was plotted (Fig. 1B).

Interestingly, a small number of the genes have been repeatedly
selected beyond what would be expected at random. Details of the
genes and their selection frequencies are summarized in the Supple-
mentary Material. The optimal predictive sets of 40 features each
harbor modest overlapping genes. The numbers of pairwise overlaps
range from 0 to 12 with a mode of 4 (Supplementary Fig. 4A). For
comparison, a set of 100 randomly selected gene sets have pairwise
overlaps in the range of 0–7 with a mode of 2. Only 208 genes of the
total 1000NCI60 geneswere never selected. Among the 792 selected
genes, most were selected no more than three times, but there exists
a small group of frequently selected genes in a pattern not seen with
the randomgene sets (Supplementary Fig. 4B). This observation sug-
gests that the GA-based feature selection approach can lead to the
identification of largely independent optimal predictor gene sets.

Characterization of GA/SVM-derived optimal
predictors—feature annotation and text mining for
cancer biomarker discovery
The gene index, GA selection frequency, gene name and description
for each predictor have been summarized and shown in the Sup-
plementary Material. The genes of the optimal predictor sets have
been annotatedwith theGOontology (http://www.geneontology.org)
using GoPipe (http://gopipe.fishgenome.org/, Chen et al., the
Chinese Academy of Sciences, unpublished) and the Ingenuity
Pathways Analysis tool (Palo Alto, http://www.ingenuity.com). In
general, the annotation efficiency for the set of the gene predictors is
low. Among the total of 792 GA-derived NCI60 gene features, only
39.9% have biological localization annotation, and only 23.6% have
defined biological functions (Supplementary Fig. 6A and B).
The GA/SVM-selected genes were further annotated with the

Ingenuity Pathways Analysis tool for biological pathway analysis.
The NCI60 optimal gene features were clustered into 56 interaction
networks (Supplementary Tables 1 and 2, and SupplementaryMater-
ial of pathway network diagrams). The most common pathways
in the Ingenuity networks were ERK/MAPK signaling, Wnt/beta-
catenin signaling, p38 MAPK signaling, cell cycle G1/S check-
point regulation, PI3K/AKT signaling, apoptosis signaling, cell
cycle G2/M DNA damage checkpoint regulation, B cell receptor
signaling, insulin receptor signaling, SAPK/JNK signaling and
TGF-beta signaling. Most of the biological pathways revealed in
this study are already known to be involved in tumorigenesis. In line
with our observation, the Wnt/beta-catenin pathway, an important
pathway in tumorigenesis, has been previously identified through
microarray-based multiclass cancer analysis (Ramaswamy et al.,
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Fig. 1. Analysis of the GA/SVM-derived NCI60 optimal feature sets. (A) LOOCV accuracy is plotted for each predictor set generated by GA/SVM.
(B) Frequency of gene selection into the 100 optimal predictor sets (blue). Genes have been sorted from high to low standard deviations of expression
(left to right). Frequencies of selection of genes in 100 randomly generated sets are shown for comparison (red).

2001). Deregulation of these pathways alters cell proliferation, cell
survival, adhesion and migration, all of which can potentially lead to
tumorigenesis.
Unfortunately, a number of important cancer biomarkers including

prostate specific antigen (PSA), CA125, CA15.3, CA19.9, MIC-1,
alpha fetoprotein (AFP), kallikreins 6 and 10, prostasin, human
chorionic gondaotropin (hCG) and bombesin are not represented
in the NCI60 dataset and therefore would not be discovered by
our microarray-driven approach. To address the potential clinical
utility of the GA/SVM-derived optimal genes for cancer biomarker
studies, the selected genes were annotated and those with protein
products localizing to the extracellular space or plasma membrane

were selected and analysed. A heat map representation using these
antigen biomarkers was generated (Fig. 2). In the heat map, color is
proportional to the log-transformed expression values of the genes,
with red representing high expression and green low expression.

GA/SVM-derived predictors were further
characterized through the NSC method, revealing
previously unappreciated tumor subtypes
Classification using NSC was performed on our GA/SVM-derived
predictors to identify potential subtypes of the nine cancer classes
in our NCI60 dataset. This was done to reveal potential tumor
subclasses and their associated biomarkers. It has been shown
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BRE COL LEU MEL NSC OVA REN REPCNS
Biomarker   GA Freq

BF 19

ANXA1 13

PTPRK 4

EGFR 6

C19ORF10 5

ANXA5 6

TNFRSF5 2

PLAUR 4

LGALS3 5

FGF2 3

MGLL 16

EFEMP1 23

TIMP3 27

DDR2 27

PRG1 2

NMBR 37

APOD 11

F11R 3

DLG3 13

MMP14 7

Fig. 2. Potential biomarker panel expression heat map. Rows represent genes and columns represent NCI60 cancer cell lines, ordered by hierarchical clustering
in the gene dimension. Red represents high expression levels and green represents low expression levels. Tissue of origin of the cell lines: breast (BRE), central
nervous system (CNS), colon (COL), leukemia (LEU), melanoma (MEL), non-small-cell-lung (NSC), ovarian (OVA), renal (REN) and reproductive (REP).

previously (Tibshirani et al., 2002, 2003) that the ‘shrunken’
centroids generated by NSC can be utilized to identify the subsets of
genes that best characterize each category. The NSC classification
computes the standard nearest centroid for each class and ‘shrinks’
each class centroid toward the overall centroid for all classes. This
shrinkage consists of moving the centroid towards zero sequen-
tially by predefined intervals, with the amount of optimal shrinkage
determined by cross validation. New samples are then assigned to
the nearest shrunken class centroid.
In order to find a balance between classification accuracy and gene

marker numbers, 200 iterations of NSC CVs were performed. The
NSCmodel with the fewest genes contained 678 genes, had a shrink-
age amount of 0.72 and an error rate of up to 32.8%. The best NSC
model achieved contained 779 genes, had a shrinkage amount of 0.83
and an error rate of 24.6%. In comparison, a previous NSC classific-
ation with zero subclasses using the NCI60 dataset yielded an error
rate of 42.8% (Tibshirani et al., 2003). The NSC-selected subsets of
genes for each specific tumor type were utilized for tumor subtype
characterization and potential discovery of novel cancer subtypes.
Divisions of the tumor types into putative subtypes based on gene
expression through manual examination of heat maps generated for
each tumor type are shown in Supplementary Figure 7. Potential
subclass patterns can be found for renal cancer, colon cancer, breast
cancer and melanoma.
Although NCI60 cancer cell lines have been extensively used as

experimental models of neoplastic diseases, such cell lines are fun-
damentally different from both normal and cancerous tissues. Thus,
we have applied our GA based algorithm to a more comprehensive
tumor microarray dataset, the Brown data (Munagala et al., 2004).
This dataset contains gene expression profiles for 260 primary tumor

samples spanning 15 different classes. Consistent with the high per-
formance of multiclass cancer discrimination seen with the NCI60,
the GA/SVM algorithm achieved 81.23% LOOCV accuracy with
the Brown dataset, and derived a combined set of 730 optimal gene
features from 100 GA classifier sets of similar LOOCV accuracies.
Further NSC analysis was utilized to select gene markers that best
characterized each tumor subtype. As shown in Figure 3, unsu-
pervised hierarchical clustering of the NSC-selected gene features’
expression data readily separated and largely agreed with clinically
observed tumor subtypes in CNS, kidney, ovary and soft tissue tumor
classes. In addition, the expression heat map (Fig. 3) revealed dis-
tinguishable patterns within the clinically observed tumor subtypes.
The RNA-level heterogeneity among tumor subtype samples, reflec-
ted by this GA based analysis, may expose previously undetected
tumor heterogeneity. In both the NCI60 tumor cell line and Brown
human tumor datasets, our GA based molecular analysis discovered
potentially novel, clinically unappreciated tumor categories.

DISCUSSION
As seen in our array-based cancer classification study, microarray
technology is a powerful taxonomic tool because of its ability to
discriminate between very different cell types. However, our use of
array datasets to model cancer classifiers and to derive biomarkers
with diagnostic potential does not lead to the determination of which
genes and networks are causative in complex diseases like human
cancers. Microarray hybridization signals are not necessarily linearly
related to true gene expression levels; the relationship being com-
plex and dependent on many factors. Thus, one should be cautious in
using microarray-prioritized genes in the molecular understanding
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Fig. 3. NSC cancer subtype analysis in CNS, kidney, lung, ovary and soft tissue tumor classes. From left to right tumor panels, each solid box represents a
particular tumor subclass in the Brown dataset: central nervous system (CNS), subclasses of medulloblastoma and glioblastoma; kidney, subclasses of renal cell
carcinoma (RCC) clear cell, RCC chromophobe; lung, subclasses of small cell, large cell, squamous, unknown, adeno; ovary, subclasses of serous papillary
carcinoma, poorly/undifferentiated adenocarcinoma; soft tissue, subclasses of malignant fibrous histocytoma (MFH), gastrointestinal stromal tumor (GIST),
benign solitary fibrous tumor (SFT), liposarcoma, leiomyosarcoma. Asterisks indicate potential novel or unappreciated subclasses.

of tumor development and behavior, an area that requires biolo-
gical validation and extensive bioinformatics (Miklos andMaleszka,
2004).
We report here our novel analytical methods for multiclass cancer

classification and gene biomarker discovery. Our GA/SVM method
has achieved the best LOOCV accuracy performances of all repor-
ted methods, both for 9-class (NCI60) and 14-class (GCM, Online
Supplementary Material) cancer classifications. The GA-based gene
selection leads to significant feature reduction. For example, with
this methodology, 40 genes are sufficient to allow highly accurate
multiclass tumor distinctions. This is in contrast to the previously
described SVM-based classification method (Ramaswamy et al.,
2001) in which all 16063 GCM genes were required to ensure
optimal classification performance. Any feature reductions in that
context compromised predictive accuracies. Our AP/SVM categor-
ical classifier significantly outperformed the previously reported
MLHD approach (Ooi and Tan, 2003). This observation is consistent
with previous observations (Furey et al., 2000) that SVM is the
system of choice for expression studies where data can be sparse and
noisy, and each experiment usually contains thousands of expression
measurements. The significant feature reduction capability and high
classification performance of the GA/SVM method offer a practical
solution for microarray-based clinical diagnosis of tumors.
A unique feature of the GA-based classification scheme is that

a random initial seeding of the GA gene selection can lead to inde-
pendent optimal predictive sets, which are compact, and with similar
classification accuracies, yet with only modest overlaps in gene con-
tent. Although each of the selected gene sets performs with high
accuracy, none of the component genes alone offers the adequate
sensitivity, specificity or predictive value needed formulticlass tumor
distinctions. Therefore, our GA-based gene selection method is cap-
able of discovering features which are less individually sensitive or
specific but which could be used in small panels with robust classific-
ation performance. Most of the current established biomarkers, such
as PSA, are single genes that generally are not robust enough to give
accurate predictions for large-scale population screening (Brawer,
2000). Though not yet validated in expression-based cancer dia-
gnosis, the application of biomarker panels for cancer diagnosis

usingmethodologies includingmass spectrometry and biochip-based
screening has been under active investigation (Petricoin et al., 2002).
The hypothesis is that biological molecules can work in panels for
cancer diagnosis as long as the relative abundance in the panels of
‘informativemolecules’ is sufficient to discriminate and reflect ongo-
ing physiological and pathological events during tumorigenesis. We
propose that the same premise can also be applied to microarray-
based cancer diagnosis and biomarker discovery platforms. The
GA-based process described here may allow for the discovery of
biomarkers which might otherwise be missed due to their individu-
ally low sensitivity or specificity, but which in panels could be used
for diagnostic approaches with improved sensitivity and specificity.
As shown inSupplementaryFigure 5, themodest overlaps between

the gene sets cannot be simply explained by a comparison of feature
selection frequency and/or feature expression variance. As pointed
out previously (Ooi and Tan, 2003), the GA-based approach avoids
reliance upon a rank-based gene selection scheme, which tends to
select genes that share similar hybridization patterns across the data-
set. Thus, the multiclass cancer distinction feature panels derived
from GA/SVMmay turn out to be more useful for biological discov-
ery and understanding of the biology underlying tumorigenesis. The
extreme complexity and redundancy of the gene expression pathways
in different cancer types are likely to have contributed to what we
have observed, with different gene panels having similar accuracies
in cancer classification. It is also likely that some putative biomarkers
that would be strongly selected by our approach are simply miss-
ing from the starting microarray gene set. Further application of the
GA/SVMalgorithm to larger andmore comprehensive datasets, such
as those derived from whole genome arrays as well as larger tumor
sets, will shed new light on this issue.
Classical cancer diagnosis has been largely based upon the sub-

jective interpretation and examination of a tumor’s morphology and
depends on highly skilled pathologists. However, many tumors are
morphologically ambiguous and hard to classify using this approach.
Our array-based GA/SVM approach offers the promise of objective
and accurate tumor classification. Subsequent NSC cancer subtyping
and biomarker selection, using the NCI60 and Brown cancer data-
sets, demonstrate previously unappreciated sub-categories where
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heterogeneous gene expression occurs withinmorphologically indis-
tinguishable cancer samples. Our GA based algorithmmay facilitate
the discovery of novel surrogate markers and clinically relevant
molecular subtypes, providing clinicians with new information for
improved cancer diagnosis, prognosis and treatment stratification.
Ideally, tumor biomarkers would be assayed non-invasively and

economically in blood or other readily accessible biological samples.
Thus, the best cancer biomarkers would be secreted (Welsh et al.,
2003) or otherwise shed into the circulatory system during tumori-
genesis. To determine how our selected genes matched these criteria,
we annotated them for the expected localization of their protein
products. We compiled a set of 20 genes from our larger GA selec-
ted NCI60 gene set (Supplementary Table 3) that we predict to be
optimal biomarkers, with protein products localized in the extracel-
lular space or cell membrane. As shown in the heat map in Figure 2,
this ‘optimal’ antigen panel gives an LOOCV accuracy of 82% for
array-based multiclass tumor distinction. Additional histochemical
analyses will be needed to further validate the clinical usefulness
of these biomarkers. Nevertheless, this result has significant clinical
implications: molecular tumor classification can be done relatively
non-invasively in the clinic using a relatively small set of antigen
biomarkers. We believe that this approach can lead to quicker, more
accurate, less invasive andmore comprehensive tumor identification.
This should have tremendous implications for the future of oncology.
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