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ABSTRACT
Motivation: Patient outcome prediction using microarray
technologies is an important application in bioinformatics.
Based on patients’ genotypic microarray data, predictions
are made to estimate patients’ survival time and their risk of
tumor metastasis or recurrence. So, accurate prediction can
potentially help to provide better treatment for patients.
Results: We present a new computational method for pati-
ent outcome prediction. In the training phase of this method,
we make use of two types of extreme patient samples: short-
term survivors who got an unfavorable outcome within a short
period and long-term survivors who were maintaining a favo-
rable outcome after a long follow-up time. These extreme
training samples yield a clear platform for us to identify
relevant genes whose expression is closely related to the out-
come. The selected extreme samples and the relevant genes
are then integrated by a support vector machine to build a pre-
diction model, by which each validation sample is assigned a
risk score that falls into one of special pre-defined risk groups.
We apply this method to several public data sets. In most
cases, patients in high and low risk groups stratified by our
method have clearly distinguishable outcome status as seen
in their Kaplan-Meier curves. We also show that the idea of
selecting only extreme patient samples for training is effec-
tive for improving the prediction accuracy when different gene
selection methods are used.
Contact: huiqing@i2r.a-star.edu.sg
Supplementary information: http://research.i2r.a-star.edu.sg/
huiqing/supplementaldata/survival/survival.html

INTRODUCTION
Currently, the risk of a cancer patient is mostly measured by
various clinical factors, such as size of the original tumor,
extent of local invasion, spread to distant organs, and so
on. However, in many cases, patients with a similar clinical
diagnosis may have different responses to the same treat-
ment. For example, for patients suffering from acute myeloid
leukemia, the most common acute leukemia in adults, che-
motherapy can induce a complete remission in 70-80% of
younger patients, but many of them have a relapse and die
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of their disease (Bullinger et al., 2004). Though a stem-cell
transplantation approach can prevent relapse of this disease,
this approach is associated with a high treatment-relatedmor-
tality (Bullinger et al., 2004). Therefore, accurate outcome
prediction methods are needed to personalize the treatment
plan for each individual patient. Thus, improper treatment
and subsequent severe sufferings for patients (e.g. decline in
IQ, hormonal deficiency problems) or inefficient treatment
that causes relapse can be avoided.
Microarray technology enables monitoring of disease pro-

gression and prediction of patient outcome at the molecular
level. A few previous studies have shown promising results
for survival prediction from gene expression profiles and cli-
nical data for certain diseases (Rosenwald et al., 2002; Beer
et al., 2002; van de Vijver et al., 2002; Yeoh et al., 2002;
Bullinger et al., 2004). These studies have demonstrated to
be useful for optimizing treatment plans for individual pati-
ent, and also have recommended candidate genes that may
be useful for developing innovative therapies and generating
opportunities for drug discovery.
In early approaches proposed for outcome prediction from

gene expression profiles, the traditional Cox proportional
hazards model (Cox, 1972; Lunn and McNeil, 1995) is
usually used to select genes. By this model, genes most rela-
ted to survival are identified by a univariate Cox analysis, and
a risk score is then defined as a linear weighted combination
of the expression values of the identified genes (Beer et al.,
2002; Rosenwald et al., 2002). Recently, machine learning
technologies are involved. For example, Ando and Katayama
(2002) have proposed a fuzzy neural network system to pre-
dict survival of patients using gene expression profiles as
input; Park et al. (2002) have developed a method to co-relate
gene expression data to patient survival time using a partial
least squares regression technique; and Shipp et al. (2002)
have employed a weighted voting algorithm to identify cured
versus fatal for outcome prediction of diffuse large B-cell
lymphoma (data set of Rosenwald et al., 2002). In a more
recent work (LeBlanc et al., 2003), a gene index technique
has been introduced to identify the associations between gene
expression levels and patient outcome. The core idea of their
method is to combine the correlation between genes with
patient outcome as well as class membership for the ranking.
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Very recently, a semi-supervised method has been proposed
to make use of both clinical information and gene expression
profile for outcome prediction (Bair and Tibshirani, 2004).
In their method, a subset of genes whose Cox score exceeds
a certain threshold are chosen, and then unsupervised lear-
ning techniques (clustering or principal components analysis)
are applied to these genes to group patients into different
risk categories. An important suggestion made by Bair and
Tibshirani (2004) is that analysing patients with different sur-
vival rates based on gene expression data would help identify
subtypes of cancer.
In this paper, we present a new computational method for

outcome prediction based on gene expression profiles. Dif-
ferent from all previous works, our idea to form the training
data is novel. Our training data consists of only two types
of extreme patient samples: short-term survivors who got an
unfavorable outcomewithin a short period and long-term sur-
vivorswhowere maintaining a favorable outcome after a long
follow-up time. We do not consider patient samples between
the two extreme cases in the training. A reason to select these
extreme patient samples for training is that the sharp contrast
between short-term and long-term survivors should be more
informative and reliable (than those medium-term cases) for
building and understanding the relation between genes and
outcome. The addition of the medium-term patient samples
would bring more noise and confusion signals.
To identify genes most associated with the outcome, we

apply a two-phase feature selection method to the selected
training data. The two-phase feature selection method com-
bines an entropy measurement (Fayyad and Irani, 1993) and
the Wilcoxon rank sum test method (Wilcoxon, 1945) for
identifying those sharp discriminative genes. To construct a
model for survival risk estimation, we train a linear kernel
support vector machine (SVM) based on the selected training
samples and the selected genes. When a patient sample is
given for outcome prediction, we calculate a risk score by
feeding the patient’s expression profiles to the established
model. Based on this score, we then assign this patient to
one of pre-defined risk groups such as high risk, intermediate
risk, or low risk group. Explicit threshold values to catego-
rize different risk groups can be easily obtained based on the
training results, so that outcome prediction for new patients
is possible.
We apply our method to three large data sets: a data set

consisting of 240 patients of diffuse large-B-cell lymphoma
(Rosenwald et al., 2002), a data set of 116 patients of adult
acute myeloid leukemia (Bullinger et al., 2004), and a data
set of 295 patients of breast cancer (van de Vijver et al.,
2002). The corresponding Kaplan-Meier plots illustrate that
the patients assigned to different risk groups based on our
risk score have significantly different outcome. To further
examine the idea of the training sample selection, we use a
different feature selection method, called SAM (significance
analysis of microarrays) (Tusher et al., 2001), to find genes

associated with outcome. Comparisons with results of this
approach demonstrate again the effectiveness of our extreme
training sample selection idea.

METHODS
We first present the new idea of selecting extreme training
samples. Then we describe how to identify outcome-relevant
genes from these training samples. Then, we introduce a
scoring function for patients’ risk estimation and outcome
prediction.

Selection of extreme patient samples for training
Since our focus is on the relationship between gene expres-
sion and outcome, two types of extreme cases — short-term
survivors who got an unfavorable outcome within a short
period and long-term survivorswho were maintaining a favo-
rable outcome after a long follow-up time should be more
valuable than those in the “medium-term” status. I.e., we do
not expect reliable prediction could come out from analysing
alive patients whose available follow-up time is short. So,
the training data used in our method consists of only these
two types of samples. This idea is different from all previous
approaches that always use all training samples.
Specifically for an experimental sample , if its follow-up

time is and status at the end of follow-up time is ,
then

short-term survivor, if
long-term survivor, if
others, otherwise

where, stands for “dead” or an unfavorable out-
come, stands for “alive” or a favorable outcome,
and are two thresholds of survival time for selecting

short-term and long-term survivors, respectively. Note that
long-term survivors also include those patients who died after
a very long period. The two thresholds, and , can vary
from disease to disease and from data set to data set. Our
basic guide line for the selection of and is that the
selected training data should contain enough training samp-
les for learning algorithms: generally, we require that each
class should have at least 10 samples, and the total number of
extreme samples should be between one fourth and one half
of all available samples.

Identification of relevant genes
We propose a two-phase feature selection method to iden-
tify genes expressed differentially between short-term and
long-term survivors. In the first phase, we use an entropy-
based feature selection method to identify those features
whose expression statistically differ between the two types
of extreme patient samples. In this phase, motivated by the
study of Liu and Setiono (1995) that discretization has the
potential to perform feature selection among numeric featu-
res, we apply a supervised discretization algorithm (Fayyad
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(a) A feature with high entropy.

(b) A feature with low entropy.

(c) A feature with zero entropy.
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Fig. 1. We place the values of a feature on the horizontal axis. There
are 13 samples in two classes, class 1 and class 2. (a) shows a fea-
ture that is a poor signal and there is no cut point can be found to
distinguish samples in the different classes; (b) shows a feature that
is a potentially good signal and indicates a possible cut point. (c)
shows a feature that is a strongest signal and indicates a cut point —
different resulting intervals contains samples of different class.

and Irani, 1993) to each of genes. This algorithm partitions
a value range of a numeric feature in a way such that each
of the resulting intervals contains the same class of samp-
les as many as possible. For those features whose values are
relatively randomly distributed between different classes of
samples, the algorithm does not partition the value range, or,
in other words, the feature can be only discretized to a single
value. This means that those features do not make any signi-
ficant contribution to the separation of the different classes of
samples. Therefore, we discard them from our analysis. On
the other hand, if a resulting value interval induced by the cut
points of a feature contains only the same class of samples,
then this partitioning of this feature has an entropy value of 0.
This is an ideal case since the feature can clearly distinguish
samples in the different classes. Figure 1 briefly illustrates the
entropy measure, cut points and intervals. From our previous
study (Li et al., 2003), this systematic method usually dis-
cretizes less than 10% of the original features. For details of
the algorithm, interested readers are referred to Fayyad and
Irani (1993) and our supplementary web site.
In the second phase, we use the Wilcoxon rank sum test

(Wilcoxon, 1945) to narrow down the features selected in the
first phase by selecting only those more sharply discrimina-
ting features. It is a kind of non-parametric test since it is

based on the rank of samples rather than distribution para-
meters such as mean and standard deviation. Wilcoxon rank
sum test is an alternative to -test but has several advanta-
ges such as its good tolerance to outliers and its robustness
to data transformation. These characteristics make the Wil-
coxon rank sum test a favorable feature selection method in
gene expression profile study (Park et al., 2001; Troyanskaya
et al., 2002). Given a gene with its test statistical measure

calculated by the Wilcoxon rank sum test, if
falls in the interval , where and
are the lower and upper critical test values, then is removed
from further consideration. Otherwise, gene is selected
because it rejects the null hypothesis, and thus its expression
values are significantly different between the two classes. In
the calculation of the two critical values and , a
significant level of 5% or 1% is generally used. We use 5%
in this paper. A description of the method can be found at our
supplementary web site.

Construction of a SVM scoring function
We propose a new scoring function to estimate the outcome
for every patient. This scoring function is based on support
vector machines (SVM) (Vapnik, 1995). The implementation
of our SVM is by Weka (version 3.2), available at http://
www.cs.waikato.ac.nz/ml/weka. In our case, the
SVM regression function is a linear combination of the
expression values of the identified genes:

where the vectors are the support vectors (samples),
are the class labels (1 and -1 used here) of , vector
represents a test sample, and and are numeric parameters
can be determined from the training data.
We map the class label “short-term survivors” to 1 and

“long-term survivors” to -1. If , then the sample
is more likely to be a “short-term survivor”. If ,

then the sample is more likely to be a “long-term survivor”.
To transform the output of into probability-like values,
we use a standard sigmoid function defined as:

So, is in the range . Also note that the smaller the
value is, the better outcome the patient will have. We

term as the risk score of .
If one only categorizes patients into high risk or low risk

groups, the value 0.5 is a natural cutoff for . In other
words, if then the patient will be assigned to
high risk group; otherwise, the patient will belong to low risk
group. If more than two risk groups are considered — such
as high, intermediate, and low — then other cutoffs can be
determined based on the risk scores of the training samples.
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E.g., in training set, if most of short-term survivors have a
risk score greater than and most of long-term survivors
have a risk score smaller than , then,

high risk, if
low risk, if
intermediate risk, if

In general, we require ¿0.5, ; the selection of the
precise values of and can be guided by the risk scores
of the training samples.
To visualize the probability of survival of all patients in dif-

ferent risk groups, we draw Kaplan-Meier curves (Altman,
1991) for all the groups. A point in a survival curve indi-
cates the survival fraction (or percentage) of the patients in
the group at a specific time. In this study, the Kaplan-Meier
survival curves are generated by GraphPad Prism (http:
//www.graphpad.com). To compare the survival charac-
teristics between different risk groups, log-rank test is used.
The log-rank test generates a -value testing the null hypo-
thesis that the survival curves are not different between two
groups. The meaning of -value is that “if the null hypo-
thesis is true, what is the probability of randomly selecting
samples whose survival curves are not different from those
actually obtained?”. So if the -value is small, the difference
between groups is statistically significant. In this paper, we
report -value at 95% confidence interval.

EXPERIMENTS AND RESULTS
This section reports our results on three public data sets. To
demonstrate the high effectiveness of our extreme sample
selection method, we also report good outcome prediction
results obtained by using a different feature selection method
(instead of our two-phase feature selection method) to pick
up important features from extreme training samples for con-
structing the SVM model. This feature selection method is
called SAM (Significance Analysis of Microarrays), which
is a software developed at Stanford University (http:
//www-stat.stanford.edu/˜tibs/SAM/). See our
supplementary web page for more information about SAM.

Diffuse large-B-cell lymphoma
Survival after chemotherapy for diffuse large-B-cell lym-
phoma (DLBCL) patients has been previously studied by
Rosenwald et al (2002) based on gene expression profiling
and a Cox proportional hazards model. In that study, expres-
sion profiles of biopsy samples from 240 patients are used.
The data include a preliminary group consisting of 160 pati-
ents and a validation group of 80 patients, each of them is
described by 7399 microarray features.
We set =1 year and =8 years in Formula (1) to select

short-term and long-term survivors from the preliminary 160-
patient group. There are in total 47 short-term survivors
and 26 long-term survivors. So, our training set consists of
only 73 samples. From these 73 extreme patient samples,

Fig. 2. Kaplan-Meier plots illustrate the estimation of overall sur-
vival among four different patient risk groups for a DLBCL study.
A tick mark on the plot indicates that one sample is censored at the
corresponding time.

we identified 84 features that are related to patient survi-
val status by using our two-phase feature filtering method.
Interestingly, some of the selected genes are also listed in
the Table 2 of (Rosenwald et al., 2002), where significant
survival-associated genes are reported and previously stu-
died. The common ones include AA805575 (GenBank acces-
sion number) in germinal-center B-cell signature, X00452
and M20430 in MHC class II signature, and D87071 in
lymph-node signature. Some other top-ranked genes (with
smaller entropy value) in our list also have clear gene signa-
tures. For example, BC012161, AF061729 and U34683 are
in proliferation signature, BF129543 is in germinal-center
B-cell signature, and K01144 and M16276 are in MHC class
II signature.
We constructed a good SVM model based on the 73

extreme training samples and the 84 discriminative featu-
res. This SVM can completely separate the 47 short-term
survivors and 26 long-term survivors; the lowest risk score
assigned to the short-term survivors by the model is above
0.7, and most of the long-term survivors has a risk score
lower than 0.3. In (Rosenwald et al., 2002), the 80 validation
samples are stratified according to the quartiles of the scores
with each of quartiles consisting of 20 patients ( 0.001). To
compare our results with those achieved in (Rosenwald et al.,
2002), we also partition patients into four risk groups but in
a different way, defined as:

high risk, if
intermediate-high risk, if
intermediate-low risk, if
low risk, if

where the threshold 0.5 is the mean value of 0.7 and 0.3. The
overall survival Kaplan-Meier curves of the four risk groups
are plotted in Figure 2 for the 80 validation samples.
We can see that the five-year survival rates for the high

risk and low risk groups are clearly distinguishable. Though
there is no distinct overall survival between the two interme-
diate groups, the 5-year survival rates of these two groups are
obviously different from that in the high risk group or the low
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Table 1. Comparison of the -value (of log-rank test) obtained by applying
different gene identification schemes and sample selection methods to the
DLBCL data. “Selected SAM” means to use only top genes ranked by SAM
score (cutoff value is 2.32 in this application). The number in the bracket
under each gene identification scheme is the number of genes selected by
the scheme.

With sample selection
Validation All genes Phase I Phase II Selected SAM
data (7399) (132) (84) (91)

80 samples 0.0125 0.0048 0.0001 0.0015
167 samples 0.0069 0.0008 0.0001 0.0005

Without sample selection
Validation All genes Phase I Phase II Selected SAM
data (7399) (88) (30) (100)

80 samples 0.2499 0.2788 0.7368 0.4513

risk group. This suggests that three groups would be appro-
priate for these DLBCL samples. So in the rest of this study,
we merge intermediate-high and intermediate-low risk pati-
ents into a single intermediate risk category. Figure 3 shows
Kaplan-Meier curves where we can see a significant survi-
val difference for patients in each of our risk categories, for
the 80 testing samples, for the 167 validation samples (80
testing samples plus 87 (=160-73) “non-extreme” samples in
the original training set) and for the total 240 samples.
Other results on the validation samples obtained from this

data set are reported in Table 1. These include -values of
the following tests: (i) using all features, features selected in
Phase I, features selected by our two-phase method, or featu-
res selected by SAM based on the extreme patient samples;
(ii) the above feature selection methods but based on the ori-
ginal training samples (taking status as class labels). From
these results, we can see that using all training samples irre-
spective of the extreme cases can not achieve a good -value
no matter which feature selection method is applied. For
more information, interested readers are referred to Figure
F1 of our supplementary information to see Kaplan-Meier
survival curves of these experiments (only for those with trai-
ning sample selection). By the way, on the same data set,
Bair and Tibshirani (2004) achieved =0.00124 by categori-
sing the patients into two risk groups using a semi-supervised
machine learning approach.

Breast cancer
Currently, breast cancer patients with the same stage of
disease have markedly different treatment responses and
overall outcome (van’t Veer et al., 2002). The widely used
clinical predictors for metastases, such as lymph node status
and histological grade, can not provide accurate classifi-
cations for the tumors. Thus, more accurate methods of
prognostication in breast cancer are needed to improve the
selection of patients for adjuvant systemic therapy (van de
Vijver et al., 2002).
A comprehensive study for predicting the time to metasta-

sis in breast cancer has been conducted by van’t Veer et al.

(2002) where a 70-gene prediction model has been developed
using gene expression profile of 78 breast cancer patients.
Those important genes were identified from more than 5000
genes using a complicated method. The method has the fol-
lowing steps: (i) first calculating the correlation coefficient
of the expression for each gene with disease outcome and
sorting the magnitude of the correlation coefficient to form
a rank-ordered list, (ii) then sequentially adding subsets of 5
genes from the top of the list to the classification model, (iii)
then evaluating the model using leave-one-out cross valida-
tion, (iv) repeating (ii) and (iii) until an optimal number of
marker genes is reached. This 70-gene prediction model was
re-used later in a separate study by van de Vijver et al. (2002)
for analysing a bigger data set of 295 breast cancer patients.
In our study, we use van de Vijver’s data set. Note that

this data set contains the 61 lymph-node-negative patients
of van’t Veer’s data set. We conduct two kinds of analyses:
metastasis and survival.

Metastasis prediction for breast cancer patients
Distant metastases are defined as a first event to be a treat-
ment failure, and the data on patients is usually analysed from
the date of surgery to the time of the first event (i.e. distant
metastases or dead) or the date when the data is censored (van
de Vijver et al., 2002). Patients involved in metastasis study
include those who had had distant metastases as a first event
within five years and those who had remained free of disease
for at least five years.
To select extreme cases, we set =3 years and =10 years

in Formula (1). A total of 52 short-term survivors (i.e. who
had distant metastases within three years) and 76 long-term
survivors (i.e. who remained free of disease at least ten years)
are among the 295 patients. As there is no independent vali-
dation data in this data set, we randomly selected 40 samples
from each of these two types extreme cases to form our trai-
ning set, and all the remaining samples (215 samples) are
treated as validation data. We identified 9 genes from the 70
available genes based on the 80 training samples. The 9 genes
are all selected by the entropymethod in Phase I, and theWil-
coxon rank sum test does not remove any of them in Phase II.
The constructed SVMmodel assigns a validation sample to
the high risk group if the risk score , or otherwise
to the low risk group if . From the Kaplan-Meier
curves drawn in Figure 4, we can see a significant difference
in the probability that patients would remain free of distant
metastases between the high and low risk groups of patients.
Results of using different gene identification schemes and

our selected training samples are also good for this study
— using all 70 genes or 31 SAM-selected genes can also
achieve very small -value ( 0.0001) on the validation samp-
les. Please refer to Figure F2 of our supplementary infor-
mation to see Kaplan-Meier survival curves of these two
tests. By the way, we find 6 common features selected by
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(A) 80 testing samples (B) 167 validation samples (C) All 240 samples

Fig. 3. Kaplan-Meier plots illustrate the estimation of survival among different risk groups for a DLBCL study. (A) for the 80 testing
samples, (B) for the 167 validation samples (80 testing samples plus 87 “non-extreme” samples in the original training set), and (C) for the
entire 240 samples.

(A) Training samples (B) Validation samples (C) All samples

Fig. 4. Kaplan-Meier plots show the probability that patients would remain metastasis-free among different risk groups for a breast cancer
study. (A) for the 80 training samples, (B) for the 215 validation samples, and (C) for all the 295 samples.

both our method and SAM. They are Contig38288 RC, Con-
tig55725 RC, NM 020974, NM 003981, NM 016359 and
X05610.
Our result obtained on this data set is not directly compara-

ble to that obtained by van de Vijver et al. (2002) because the
70-genemodel they used was built on van’t Veer’s data. They
have reported a good result of 0.001 on these 295 samples.
As mentioned, these 295 patients include 61 (of 78) training
samples with lymph-node-negative. In a study on the same
data, Bair and Tibshirani (2004) selected only five genes from
70 candidate using those 78 training samples. With a pro-
posed supervised principal components method, they have
achieved 0.001 for all 295 patients and =0.00328 for 234
patients excluding those used for training, respectively. The
reason that we do not follow the same training and validating
strategy is that we can not find clear indications in van de
Vijver’s data set for the 61 training samples.

Survival prediction for breast cancer patients
Besides the probability of remaining free of distant meta-
stases, we also analyse the overall survival of breast cancer
patients using gene expression profile of these 295 samples.
To select extreme cases, we set =5 years and =10 years

in Formula (1). 48 short-term survivors and 83 long-term
survivors are thus found among the 295 patients. Similar to
the metastases study, we randomly selected 30 samples from
each of these two types extreme cases to form our training
set, all the remaining samples (235 samples) are treated as

validation data. We identified 16 genes based on the 60 selec-
ted training samples. The constructed SVM model assigns a
validation sample to the high risk group if the risk score

, or otherwise to the low risk group if
. From the Kaplan-Meier curves drawn in Figure 5, we

can see a significant difference in overall survival between
the high and low risk groups of patients.
Results of using different gene identification schemes

and our selected training samples are also good for this
study — using all 70 genes or 35 SAM-selected genes
can also achieve very small -value ( 0.0001) on the vali-
dation samples. Please refer to Figure F3 of our sup-
plementary information to see Kaplan-Meier survival cur-
ves of these two tests. In addition, we find 14 com-
mon genes selected by both our method and SAM.
They are NM 007203, NM 005915, Contig38288 RC, Con-
tig55725 RC, Contig46223 RC, NM 020974, NM 016577,
Contig35251 RC, NM 014791, NM 003981, NM 006681,
X05610, NM 000849 and Contig56457 RC.

Adult acute myeloid leukemia
Currently, the prognostic indicators to identify the appro-
priate therapy for acute myeloid leukemia (AML) patients
include age, cytogenetic findings, the white-cell count and
the presence or absence of recurrent cytogenetic aberrations
(Bullinger et al., 2004). However, these factors do not fully
reflect the molecular heterogeneity of the disease and treat-
ment stratification is difficult. Thus, predictors built on gene
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(A) Training samples (B) Validation samples (C) All samples

Fig. 5. Kaplan-Meier plots show the overall survival among different risk groups for a breast cancer study. (A) for the 60 training samples,
(B) for the 235 validation samples, and (C) for all the 295 samples.

expression profiles are expected to accurately predict the cli-
nical outcome at molecular level so that appropriate treatment
can be tailored for individual patient.
Bullinger et al. (2004) have studied gene expression in

peripheral-blood samples or bone marrow samples from 116
adults with AML and identified new molecular subtypes of
AML by unsupervised hierarchical clustering analysis. They
have randomly divided these 116 samples into a training set
containing 59 samples and a test set containing 57 samples—
with a similar number of samples in each set are from pati-
ents who had died. In the training set, 26 patients were alive
with follow-up time from 138 days to 1625 days, and 33 were
dead with follow-up time from 1 day to 730 days.
To select extreme cases, we set =1 year and =2 years

in Formula (1). A total of 29 short-term survivors and 8
long-term survivors are found among the 59 training samp-
les. So, our training set consists of only these 37 samples.
From these 37 extreme patient samples, we identified 50 fea-
tures that are related to patient survival status by using our
feature filtering method. The constructed SVM model assi-
gns a validation sample to the high risk group if the risk
score , or otherwise to the low risk group if

. The Kaplan-Meier curves in Figure 6 shows a
significant difference in overall survival between the high and
low risk groups of patients: for the 57 testing samples, for the
79 validation samples (including 22 “non-extreme” cases in
the original training set), and for the entire 116 samples.
For this data set, we also obtained the results of using dif-

ferent feature selection schemes or without training sample
selection. In Table 2, -value for each of these tests are listed.
Kaplan-Meier survival curves for some of these experiments
can be found in Figure F4 of our supplementary information.
Generally, we use similar number of SAM-selected genes as
that selected by our method.
On the same data set, Bullinger et al. has applied 149

SAM-selected cDNAs that identified from all training samp-
les and a clustering method to estimate the outcome. They
has reported a good result ( =0.006) on overall survival of
the patients in their poor-outcome and good-outcome groups.
We tried to feed same number of SAM-selected features to

Table 2. Comparison of the -value (of log-rank test) obtained by apply-
ing different gene identification schemes and sample selection methods to
the AML data. “Selected SAM” means to use number of top genes ranked
by SAM score. The number in the bracket under each gene identification
scheme is the number of genes selected by the scheme.

With sample selection
Validation All genes Phase I Phase II Selected SAM Selected SAM
data (6283) (61) (50) (100) (50)

57 samples 0.0133 0.0008 0.0007 0.0015 0.0015
79 samples 0.0230 0.0020 0.0024 0.0020 0.0045

Without sample selection
Validation All genes Phase I Phase II Selected SAM Selected SAM
data (6283) (133) (80) (149) (80)

57 samples 0.2938 0.1843 0.0889 0.0133 0.1478

Table 3. Number of samples in original training data and selected training
set of the DLBCL and AML data sets.

Application Original training set Our training set
Alive Dead Total Long-term Short-term Total

DLBCL 72 88 160 26 47 73
AML 26 33 59 8 29 37

our model, but we only obtained a result of =0.0133 by
using all training samples (see results in Table 2). However,
we achieved better performance by using our selected trai-
ning samples. In addition, our results are also better than that
( =0.00136) reported in (Bair and Tibshirani, 2004) on the
same data set.

DISCUSSION
Recall that we select only long-term and short-term survi-
vors for training the prediction models. Table 3 lists the size
change from the original training samples to our selected trai-
ning set for the DLBCL and AML applications. Oberve that
our method uses roughly half of the samples as training. As
already shown in Table 1 and Table 2, these informative trai-
ning samples can indeed make performance improvement,
even using SAM for gene selection.
As discussed in Section METHOD, we have some basic

guide lines to determine the thresholds and that defi-
ned in Formula (1). Bearing these minimum constraints in
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(A) 57 testing samples (B) 79 validation samples (C) All 116 samples

Fig. 6. Kaplan-Meier plots estimate the overall survival among different risk groups for an adult acute myeloid leukemia study. (A) for the
57 testing samples, (B) for the 79 validation samples (57 testing samples plus 22 “non-extreme” cases in the original training set), and (C)
for the entire 116 samples.

mind, we have tried several different and values in our
study. In Table 4, -value (of the log-rank test) associated
with the Kaplan-Meier survival curves on validation samp-
les under different selections of the and from DLBCL
study are listed. All results are based on the selected genes
using our gene identification scheme. We can see that for a
range of and (i.e. years and years), we
can achieve better predictions by selecting extreme samples.
In any case, the selection of and can be further refined
by running cross-validation on training samples.
To demonstrate the effectiveness of selecting extreme

samples, we have also done following tests. (i) Using only
“non-extreme” samples in the original training set to build
prediction model. As expected, the results are not good. For
example, in DLBCL study, there are 87 “non-extreme” samp-
les left after we select 73 extreme cases from 160 samples in
the preliminary group of the data. When we use these samp-
les to train model, we get =0.4481 (40 features selected
by our method) and =0.5887 (all genes) on 80 valida-
tion cases. (ii) Incorporating the idea of transductive SVM
(tSVM) to include those “non-extreme” cases into training
data as unlabeled samples to build prediction model. The
results are not better than those we presented above. In the
AML study, tSVM achieves =0.0574 (50 features selec-
ted by our method), =0.0487 (top 100 features selected by
SAM) and =0.0468 (all genes) on the 57 validation samples.
In the DLBCL study, tSVM achieves =0.0044 (84 features
selected by out method), and =0.0113 (all genes) on the
80 validation samples. The software we used is SVM
(version 6.01, http://svmlight.joachims.org/).
According to our experience on gene expression data ana-

lysis, the entropymeasure can filter out about 90-95% of total
number of genes (Li et al., 2003). This point has been verified
again in our outcome prediction: for example, the entropy
measure retains only 61 features (out of total 6283 candida-
tes) in AML study. After further being filtered by Wilcoxon
rank sum test, only 50 of them are kept to build prediction
model. Most importantly, these selected genes achieve bet-
ter experimental performance — using only Wilcoxon rank

Table 4. Results of using different thresholds (years) and (years)
in training sample selection on DLBCL study. All results are based on
our proposed gene identification scheme and on validation samples only.
Column “Short-term”/“Long-term” means the number of short-term/long-
term survivors.

-value Short-term Long-term No. genes
1 5 0.2962 47 57 121
1 7 0.0110 47 36 79
1 8 0.0001 47 26 84
1 9 0.0570 47 22 40
2 8 0.0047 61 26 55
3 8 0.0761 76 26 51

Table 5. Number of genes left after feature filtering for each phase of our
gene identification scheme and for only applying Wilcoxon rank sum test
(i.e. RSTOnly) in the DLBCL and AML studies. The percentage in the
brackets indicates the proportion of the remaining genes on original feature
space.

Data set Orignal Phase I Phase II RSTOnly
DLBCL 7399 132 (1.8%) 84 (1.1%) 3632 (49.1%)
AML 6283 61 (1.0%) 50 (0.8%) 252 (4.0%)

sum test to select features (i.e. no Phase I) will lead to a lar-
ger number of selected genes but worse results. For example,
if we only apply rank sum test to the 70 genes provided by
the breast cancer data, 40 genes will be selected for metasta-
sis prediction and 42 genes selected for survival prediction.
With these larger number of genes, the values for testing on
validation samples are only 0.0004 (metastasis) and 0.0007
(survival), respectively. This observation indicates that only
applying rank sum test may not be powerful enough to reduce
number of genes and thus, we use it at second phase after
more than 90% genes have been removed by the entropy-
based algorithm. Table 5 shows in DLBCL and AML studies,
the number-change trend of features from original data, to the
entropy selection (Phase I) and to Wilcoxon rank sum test
(Phase II), as well as to applying only the rank sum test. It
can be seen that the feature reduction is mostly by the entropy
selection.
In the current study, a simple linear kernel SVM is trained

on the selected samples and genes to build a scoring model.
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The model then assigns each validation sample a risk score to
predict patient outcome. Based on the training results, we can
derive explicit thresholds (e.g., 0.5, 0.3, 0.7) of our risk score
to categorize patients into different risk groups. Thus, when a
new case comes, we are able to assign it to the corresponding
risk group easily according to its risk score.
In summary, we have applied statistical and machine lear-

ning technologies to predict patient outcome from gene
expression profiles and clinical information. Different from
other works, we pick out extreme cases to form the training
set, consisting of only short-term survivors who died within
a short period and long-term survivors who were still alive
after a relevant long follow-up time. Our in-silico experi-
mental results on three public gene expression data sets have
demonstrated the high effectiveness of our idea.
We have some ongoing studies. (1) Data sets from other

tumors are under analysis. (2) In order to obtain a more
refined set of genes, some matrices to measure the correla-
tion between the genes selected by our two-phase filtering
method are under testing— correlation test will be conducted
within each of the two groups of genes left by the Wilcoxon
rank sum test (i.e. one group contains genes whose statisti-
cal measure less than the lower bound critical value and one
group contains genes whose statistical measure larger than
the upper bound critical value). (3) Directly predict patient
survival time using regression algorithms. But one concern is
that those alive patients with short-term follow-ups may not
be useful for this direct regression approach.
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