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Breast cancer prognostication and prediction:
are we making progress?
P. E. Lønning*
Section of Oncology, Institute of Medicine, University of Bergen, and Department of Oncology, Haukeland University Hospital, Bergen, Norway

Currently, much effort is being invested in the identification of new, accurate prognostic and predictive factors in
breast cancer. Prognostic factors assess the patient’s risk of relapse based on indicators such as intrinsic tumor
biology and disease stage at diagnosis, and are traditionally used to identify patients who can be spared
unnecessary adjuvant therapy based only on the risk of relapse. Lymph node status and tumor size are
accepted as well-defined prognostic factors in breast cancer. Predictive factors, in contrast, determine the
responsiveness of a particular tumor to a specific treatment. Despite recent advances in the understanding of
breast cancer biology and changing practices in disease management, with the exception of hormone receptor
status, which predicts responsiveness to endocrine treatment, no predictive factor for response to systemic
therapy in breast cancer is widely accepted. While gene expression studies have provided important new
information with regard to tumor biology and prognostication, attempts to identify predictive factors have not
been successful so far. This article will focus on recent advances in prognostication and prediction, with
emphasis on findings from gene expression profiling studies.
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introduction

Breast cancer is the most commonly occurring malignancy in
women and is responsible for approximately 500 000 deaths per
year worldwide [1]. In 2002, 1.15 million new cases of breast
cancer were diagnosed [2]. Despite the rising incidence of this
disease, survival rates have improved in recent years in many
countries due to the encouraging trend towards earlier
detection, together with increasing use of systemic adjuvant
treatments.
Prognostic factors are important for forecasting outcomes in

individual patients and can be used to help refine treatment
choices. Nodal status (positive or negative) is the most
important parameter used to define risk category in early breast
cancer. Although imperfect, the strength of nodal status as
a prognostic factor relates to the fact that it is a ‘pure’
prognostic factor and does not also predict for response to
therapy [3]; that is, nodal status does not affect response to
systemic therapy [4]. To date, the presence of estrogen
receptors (ERs) and/or progesterone receptors is the only
well-defined predictive factor, and predicts for responsiveness
to endocrine therapy. With respect to chemotherapy, no single
predictive factor has yet been universally accepted.
In theory, the identification, validation and application of

suitable predictive and prognostic factors will help to ensure
that only those patients likely to benefit will receive a given

treatment. Moreover, identification of genes involved in
responsiveness to therapy may lead to the characterization of
new therapeutic targets and the subsequent availability of more
treatment options for patients with resistant disease. The
optimal application of prognostic and predictive factors is
depicted in Figure 1. This article will consider the ability of
emerging predictive and prognostic factors to reduce the overall
treatment burden.

prognostic factors

Traditionally, the dogma has been that prognostic factors help
physicians to determine which patients with breast cancer need
adjuvant therapy, whereas predictive factors indicate which
adjuvant therapy is most appropriate. The most important
benefit of prognostic classification may be to help physicians
identify patients in whom adjuvant therapy could be avoided,
thus sparing these patients from treatment-related side effects.
Nodal status, the major factor defining risk category, may be

considered a ‘pure’ prognostic factor, as patients with multiple
lymph-node metastases can achieve similar benefits from
therapy, in terms of relative reduction in the risk of relapse, as
those with few or no lymph-node metastases [3, 4]. Nodal
status is well accepted as a useful prognostic factor, with node-
negative status (including the sentinel-node-negative
classification) identifying patients with low-risk disease [5].
However, the St Gallen treatment guidelines were updated in
2005 to include the new, intermediate-risk category, so that the
presence of positive axillary nodes in the absence of additional
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high-risk characteristics no longer defines high-risk disease [6].
Two new adverse prognostic factors were also accepted: HER2/
neu overexpression or amplification, and peritumoral vascular
invasion. Further details of the St Gallen risk classification are
provided in Table 1 [6]. Importantly, at the 2005 St Gallen
meeting, for the first time, endocrine responsiveness, not risk
category, was identified as the primary consideration when
making treatment decisions [6].

identification of novel prognostic factors

Prognostic factors in breast cancer have been widely
investigated, and more than 100 individual factors have been
reported in the literature. However, few of these factors have
found their way into clinical application as prognostic tools,
or contributed greatly to our understanding of tumor biology.

Although several novel prognostic factors, including lymph
node micrometastases and PAI-1 expression [7, 8], have been
proposed, their clinical value remains uncertain at this stage. It
should be noted that no new prognostic factor should be
considered independent of its potential predictive role. On the
one hand, there is little benefit in selecting patients for a given
therapy based on the presence of a factor defining poor
prognosis, if the same factor also defines low sensitivity to
the therapeutic agent to be given. On the other hand, and of
even greater concern, is that patients who are considered to
have low-risk disease, but who have tumors that are highly
responsive to a given therapy, may not be offered the treatment
on the basis of prognosis alone, even though it could
substantially improve their long-term outcome [4]. This may
be illustrated using two conventional prognostic factors, TP53
mutational status and HER2/neu amplification. While both
parameters identify patients with a poor prognosis [9–12], both
are also associated with (although not fully predictive for)
responsiveness to specific treatments [13–16].

genomic signatures and multigene RT–PCR
as prognostic tools

Gene profiles with reported prognostic value have been
identified using different microarray techniques, but the
potential predictive component of these profiles remains
unclear. In general, gene profiles have been identified through
one of two statistical methods: hierarchical clustering and
supervised analysis [17].
Perou et al. used hierarchical clustering to characterize

variation in gene expression patterns between different breast
tumors [18]. Large variation was found in expression patternsFigure 1. The need for prognostic and predictive factors in breast cancer.

Table 1. Risk categories for patients with operable breast cancer [6]

Risk category Disease/patient characteristics

Low

Node-negative plus all of the following
! Pathological tumor size £2 cm
! aTumor grade 1
! No peritumoral vascular invasion
! HER2/neu gene neither over-expressed nor amplified
! Patient age ‡35 years

Intermediate

Node-negative plus at least one of the following
! Pathological tumor size >2 cm
! aTumor grade 2–3
! Peritumoral vascular invasion
! Confirmed HER2/neu gene over-expression or amplification
! Patient age <35 years

OR

Node-positive (1–3 nodes) plus
! HER2/neu gene neither over-expressed nor amplified

High

Node-positive (1–3 nodes) plus
! Confirmed HER2/neu gene over-expression or amplification

Node-positive (‡4 nodes)

aHistological and/or nuclear grade.

Adapted from Goldhirsch et al. Ann Oncol 2005; 16: 1569–1583.
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from individual tumors, reflecting the great diversity of breast
cancer as a disease. Furthermore, tumors could be classified
into different phenotypic subtypes based on differences in
their gene expression profiles, and a hierarchical order was
identified: luminal subtypes A, B and C; normal breast-like;
basal-like; and HER2+ tumors [18–20]. Further analyses
revealed the prognostic power of the subgroups identified by
Perou et al. [18, 19]. However, it has recently been shown
that neither hierarchical clustering nor supervised analysis
allows predictive profiles to be generated from the same
material [21].
In contrast, van’t Veer et al. used supervised analysis to

identify a 70-gene ‘poor prognosis’ signature, which was
strongly predictive of a short time to distant metastases. [22].
The prognostic power of this ‘Amsterdam’ 70-gene signature
was confirmed in a study of 295 patients who were classified
as having either poor or good prognosis. The results showed
the Amsterdam profile to be a more powerful predictor of
disease outcome than standard systems based on clinical and
histological criteria [23]. Importantly, the prognostic signature
was found to predict outcome among patients with node-
negative disease (who are not generally given adjuvant
treatment) and those with node-positive disease (the majority
of whom will receive chemotherapy). However, the number
of patients included and the design of the study may not fully
exclude a predictive component of this signature. The
prognostic value of the Amsterdam 70-gene signature has since
been independently confirmed [24]. Alternative prognostic
signatures have recently been identified, including the
‘Rotterdam’ 76-gene profile [25]. However, the existence of
a unique prognostic profile has been brought into question
by others [26], after the demonstration that a ‘family’ of
different profiles could be generated from the data set used by
the Amsterdam group.
Histological grading has been used for many years to assign

risk categories, but only half of all breast cancers are classified as
grade 1 (low-risk) or 3 (high-risk), the remainder being
classified as grade 2. Recently, attention has turned to genomic
grading to help refine histological grading, specifically grade 2,
which, when used alone, has little prognostic value. Using
microarray analysis, the Brussels Genomic Grade 97-gene
signature was identified, which could accurately reclassify
patients with histologic grade 2 tumors into those with a high
or low risk of recurrence, thereby improving the prognostic
value of tumor grading [27].
Several other prognostic gene signatures have been identified

using microarray analysis. For example, a ‘stem cell’ 11-gene
signature described by Glinsky et al. was shown to be associated
with high malignant potential, aggressive disease course and
poor outcome after therapy in multiple solid tumors, including
breast cancer [28].
While the studies summarized should be considered pilot

projects exploring the potential for prognostic signatures to
be generated, larger studies have been implemented to confirm
their clinical validity. The largest and most ambitious project
is the MINDACT (Microarray In Node-negative Disease may
Avoid ChemoTherapy) clinical trial initiated by the TRANSBIG
organization, which aims to determine whether microarray
techniques are better than traditional methods as indicators

of prognosis [29]. This trial is ongoing, and results are not yet
available.
While it is not yet possible to use gene profiles in clinical

practice to select the most effective therapy for individual
patients [17], some general conclusions may be drawn. For
example, it can be concluded from these findings that the
inclusion of a gene in a prognostic genetic profile does not
necessarily mean that it is important in the disease pathology,
or in the response to therapy. Despite limitations, multiple gene
expression analyses may offer other insights into breast cancer
care. For example, in experimental studies [30] and in patients
with breast cancer [31], such techniques have recently been
used to identify gene profiles associated with distant metastasis
to specific organs such as bone. However, these findings still
require confirmation, as do the prognostic value of the ‘stem
cell signature’ described by Glinsky and colleagues [28], and the
21-gene profile [32] and the 2-gene expression ratio [33]
reported to forecast outcome in tamoxifen-treated patients.
Gene expression profiling studies are becoming increasingly
common, and the St Gallen expert consensus guidelines
overwhelmingly endorse further prospective studies to identify
potential predictive and prognostic factors [6]. Further studies
are required to ascertain the impact of gene profiling on patient
treatment.

predictive factors

predictors of response to chemotherapy

While the identification of reliable predictive factors has the
potential to spare patients from ineffective treatment and
unnecessary side effects, the reverse—that a factor may
guarantee therapeutic success—may be more difficult to
achieve. Thus, while ER negativity is associated with lack of
response to endocrine manipulation, not all patients with
ER+ tumors may benefit from such therapy. Similarly, while the
absence of HER2/neu overexpression has been established as
a predictive factor for non-responsiveness to trastuzumab
therapy, not all HER2/neu-overexpressing tumors are
trastuzumab sensitive [34], reflecting the complexity of breast
cancer genetics.
A second issue relates to whether a predictive factor may

be a causal factor or just a co-variate. Whereas early studies
suggested that HER2 overexpression or amplification of the
HER2/neu gene predict for sensitivity to anthracyclines [35,
36], recent studies have shown that TOPO-IIa, not HER2,
overexpression predicts for anthracycline sensitivity in tumors
with coamplification of the two genes [37–41]. The ongoing
‘Trial Of Principle’ will prospectively test the value of TOPO-
IIa in predicting the efficacy of anthracycline therapy in women
with hormone-receptor-negative breast cancer [42].
Mutations in TP53 and overexpression of p53 (the protein

encoded by the TP53 gene) have also been shown to correlate
with chemosensitivity in patients with breast cancer.
Specifically, responsiveness to anthracycline- or mitomycin-
containing chemotherapy is reduced by defective TP53 status.
In contrast, the efficacy of paclitaxel seems independent of
p53 expression [13–15, 43]. However, available data from trials
do not support the use of tumor TP53 status when selecting
patients for a given treatment. Firstly, the number of patients in
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these trials was limited. Secondly, the predictive power of
mutant TP53 is not by itself sufficient for therapy selection;
tumors harboring mutant p53 may still be responsive to
anthracycline therapy, while some tumors with wild-type p53
are resistant to therapy, indicating that additional factors are
involved in the control of chemosensitivity. Furthermore, every
gene product, including p53, works as part of cellular
‘cascades’, which include upstream ‘activators’ and downstream
‘executors’. Thus, while epigenetic silencing and somatic
mutations in the p21 gene (which acts downstream of p53)
have been excluded as a cause of drug resistance [44], the TP53
upstream activator, chk2, is subject to multiple splicing, and
some of these splice variants may influence gene function [45].
Thus, more research is necessary before TP53 status can be
accepted as a predictive tool for breast cancer therapy.

gene expression profiles as predictive factors

Several ongoing trials are using microarray analysis and gene
expression profiling with the aim of identifying better
predictive factors for response to chemotherapy. As microarray
techniques allow for the simultaneous analysis of multiple
genes, in theory, this should be a promising approach for
identifying multiple factors acting in concert to influence
response to therapy. Gene profiles revealing variable association
to chemosensitivity have been described by several groups
[21, 46–51]. Interestingly, the National Surgical Adjuvant
Breast and Bowel Cancer Project (NSABP) group has further
explored their 21-gene signature, previously shown to have
prognostic value in women with hormone-receptor-positive
disease taking adjuvant tamoxifen [32], with respect to
cyclophosphamide, methotrexate and 5-fluorouracil (CMF)
treatment. In this study, it was shown that the 21-gene
signature also has predictive value for responsiveness to CMF in
the same group of patients [52].
Critical examination of these studies reveals that each profile

was developed and validated in a limited number of patients.
For most studies, the sensitivity and specificity reported to date
does not support their use in therapy selection, and none of
these profiles have been accepted for general use in the clinic.
While ongoing studies are assessing potential predictive profiles
for chemotherapy as well as endocrine therapy, others have
questioned the theoretical basis for developing such predictive
profiles [53–55]. In a recent study, gene expression profiles
obtained from tumors in patients undergoing neoadjuvant
chemotherapy failed to correctly classify patients with
chemoresistant disease at high risk of disease progression [21],
but the same classification clearly outlined prognosis in the
same cohort [19].

conclusions

Current breast cancer treatment guidelines are based on clinical
trial evidence obtained in defined patient populations, and
treatment algorithms are developed by relating clinical trial
findings to specific patient subgroups. There is a general
consensus that better prognostic and, in particular, predictive
factors are needed to assist in treatment decision-making on an
individual patient basis.

Considering prognostication, gene profiling seems
promising, although further validation, particularly with
respect to potential ‘predictive interactions’, is mandatory.
For predictive testing, emerging evidence suggests TOPO-II
amplification or deletions may be appropriate factors for
selecting patients for anthracycline dosing. Gene expression
profiling may become important as a tool to define predictive
factors; however, to achieve this goal, statistical approaches
analyzing gene expression profiles, based on functional
hypotheses about gene networks, will be required [4, 56, 57].
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