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Abstract

In this work, we develop and evaluate several least squares support vector machine (LS-SVM)

classifiers within the Bayesian evidence framework, in order to preoperatively predict malignancy of

ovarian tumors. The analysis includes exploratory data analysis, optimal input variable selection,

parameter estimation, and performance evaluation via receiver operating characteristic (ROC) curve

analysis. LS-SVM models with linear and radial basis function (RBF) kernels, and logistic regression

models have been built on 265 training data, and tested on 160 newly collected patient data. The

LS-SVM model with nonlinear RBF kernel achieves the best performance, on the test set with the

area under the ROC curve (AUC), sensitivity and specificity equal to 0.92, 81.5% and 84.0%,

respectively. The best averaged performance over 30 runs of randomized cross-validation is also

obtained by an LS-SVM RBF model, with AUC, sensitivity and specificity equal to 0.94, 90.0% and

80.6%, respectively. These results show that the LS-SVM models have the potential to obtain a

reliable preoperative distinction between benign and malignant ovarian tumors, and to assist the

clinicians for making a correct diagnosis.
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1. Introduction

Ovarian masses are a very common problem in gynecology. Detection of ovarian

malignancy at an early stage is very important for the survival of the patients. The 5-year

survival rate for ovarian cancer when detecting at a late clinical stage is 35% [17]. In

contrast, the 5-year survival for patients with stage I ovarian cancer is about 80% [29].

However, nowadays 75% of the cases are only diagnosed at an advanced stage, resulting

into the highest mortality rate among gynecologic cancers. The treatment and management

of different types of ovarian tumors differ greatly. Conservative management or less

invasive surgery suffices for patients with a benign tumor; on the other hand, those with

suspected malignancy should be timely referred to a gynecologic oncologist. An accurate

diagnosis before operation is critical to obtain the most effective treatment and best advice,

and will influence the outcome for the patient and the medical costs. Therefore, a reliable

test for preoperative discrimination between benign and malignant ovarian tumors is of

considerable help for clinicians in choosing the appropriate treatment for patients.

Several attempts have been made in order to automate the classification process. The risk

of malignancy index (RMI) is a widely used score which combines the CA 125 values with

the ultrasonographic morphologic findings and the menopausal status of the patient [10]. In

a previous study, based on a smaller data set, several types of black-box models such as

logistic regression models (LRs) and multi-layer perceptrons (MLPs) have been developed

and tested [22,23], using the selected variables via the stepwise logistic regression. Both

types of models have been shown to perform better than the RMI. A hybrid approach that

integrates the Bayesian belief network (which represents the expert knowledge in the

graphical model) into the learning of MLPs, has also been investigated in [2–4]. The

integration of the white-box models (e.g. belief networks) with the black-box models

(e.g. MLPs) leads to so-called grey-box models. This can be done for example by transforma-

tion of the belief network into an informativeprior distribution for black-box models by using

virtualpriorsamples.However,findingthestructureandlearningof thegraphicalmodel isnot

so easy and very time consuming. MLPs also suffer from the problem of multiple local

minima. In this paper, we will focus on the development of black-box models, in particular

least squares support vector machines (LS-SVMs), to preoperatively predict malignancy of

ovarian tumors based on an enlarged data set, and validating the models for clinical purposes.

Support vector machines (SVMs) are extensively used for solving pattern recognition

and nonlinear function estimation problems [28,6]. They map the input into a high-

dimensional feature space, in which an optimal separating hyperplane can be constructed.

The attractive features of these kernel-based algorithms include: good generalization

performance, the existence of a unique solution, and strong theoretical background, i.e.

statistical learning theory [28], supporting their good empirical results. In this paper, a least

squares version of SVMs (LS-SVMs) [19,20] is considered, in which the training is

expressed in terms of solving a set of linear equations in the dual space instead of quadratic

programming as for the standard SVM case. To achieve a high level of performance with

LS-SVM models, some parameters have to be tuned, including the regularization para-

meter and the kernel parameter corresponding to the kernel type. The Bayesian evidence

framework proposed by MacKay provides a unified theoretical treatment of learning in

order to cope with similar problems in neural networks [13]. Recently, the Bayesian
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method has also been integrated into the LS-SVMs, and a numerical implementation was

derived. This approach has been successfully applied to several benchmark problems [26]

and to the prediction of financial time series [27]. Within this Bayesian evidence frame-

work, we are able to perform parameter estimation, hyperparameter tuning, model

comparison, input selection, and probabilistic interpretation of the output in a unified way.

The paper is organized as follows. In Section 2, the exploratory data analysis is

described. In Section 3, the LS-SVMs and the Bayesian evidence framework are briefly

reviewed; a design of a LS-SVM classifier within the evidence framework in combination

with a sparse approximation process, and a forward input selection procedure are proposed.

In Section 4, we demonstrate the application of LS-SVM to the prediction of malignancy of

the ovarian tumors, including several practical issues during model development and

evaluation; the performance of different models with different kernels are assessed via

receiver operating characteristic (ROC) analysis. In Section 5, we will discuss several

issues when using these models in clinical practice. Finally, conclusions are drawn and

topics for future research are indicated.

2. Data

The data set includes the information of 525 consecutive patients who were referred to a

single ultrasonographer at University Hospitals Leuven, Belgium, between 1994 and 1999.

These patients have a persistent extrauterine pelvic mass, which was subsequently

surgically removed. The study is designed mainly for preoperative differentiation between

benign and malignant adnexal masses [22]. Patients without preoperative results of serum

CA 125 levels have been excluded from this analysis, the number of which is Nmiss ¼ 100.

Results of histological examination were considered as the gold standard for discrimina-

tion of the tumors. Among the available 425 cases, 291 patients (68.5%) had benign

tumors, whereas 134 ones (31.5%) had malignant tumors.

The following measurements and observations were acquired before operation: the age

and menopausal status of patients; serum CA 125 levels; the ultrasonographic morphologic

findings, in particular locularility, papillation, solid areas, echogenic descriptions of the

mass, the amount of ascites; color Doppler imaging and blood flow indexing, in particular,

the resistance index, and color score (a subjective semi-quantitative assessment of the

amount of blood flow). For a detailed explanation, the reader is referred to [22–25].

A rigorous approach to pattern recognition requires a good understanding of the data.

Our exploratory data analysis aims to gain insights into the data and consists of the

following steps.

2.1. Data preprocessing

The original data set contains 25 features. Feature histograms and boxplots have been

used to identify outliers and quantization effects. Some feature values have been trans-

formed prior to further analysis, in particular, CA 125 serum level was rescaled by taking

its logarithm; the nominal scaled variable color score with values from 1 to 4 was recoded

to three binary variables. Hence, we have in total 27 candidate input variables.
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2.2. Univariate analysis

Table 1 lists the 27 variables that were considered, together with their mean value

and standard deviations or the occurrence in case of benign and malignant tumors,

respectively.

2.3. Multivariate data analysis

To get a first idea of the important predictors, we performed a factor analysis using the

technique of principal components factoring (PCF), which is essentially principal

component analysis based on the correlation matrix, with the assumption that estimates

of the communalities are one. Fig. 1 shows the biplot in a two-dimensional space

generated by the first two principal components called PC1 and PC2. The biplot visualizes

Table 1

Demographic, serum marker, color Doppler imaging and morphologic variables

Variable (symbol) Benign Malignant

Demographic Age (Age) 45:6 � 15:2 56:9 � 14:6

Post-menopausal (Meno) (%) 31.0 66.0

Serum marker CA 125 (log) (L_CA125) 3:0 � 1:2 5:2 � 1:5

CDI Weak blood flow (Colsc2) (%) 41.2 14.2

Normal blood flow (Colsc3) (%) 15.8 35.8

Strong blood flow (Colsc4) (%) 4.5 20.3

Pulsatility index (PI) 1:34 � 0:94 0:96 � 0:61

Resistance index (RI) 0:64 � 0:16 0:55 � 0:17

Peak systolic velocity (PSV) 19:8 � 14:6 27:3 � 16:6

(Time-averaged) mean velocity (TAMX) 11:4 � 9:7 17:4 � 11:5

B-mode ultrasonography Abdominal fluid (Asc) (%) 32.7 67.3

Unilocular cyst (Un) (%) 45.8 5.0

Unilocular solid (Unsol) (%) 6.5 15.6

Multilocular cyst (Mul) (%) 28.7 5.7

Multilocular solid (Mulsol) (%) 10.7 36.2

Solid tumor (Sol) (%) 8.3 37.6

Morphologic Bilateral mass (Bilat) (%) 13.3 39.1

Smooth wall (Smooth) (%) 56.8 5.8

Irregular wall (Irreg) (%) 33.8 73.2

Papillations (Pap) (%) 13.0 53.2

Septa > 3 mm (Sept) (%) 13.0 31.2

Acoustic shadows (Shadows) (%) 12.2 5.7

Echogenicity Anechoic cystic content (Lucent) (%) 43.2 29.1

Low level echogenicity (Low_level) (%) 12.0 19.9

Mixed echogenicity (Mixed) (%) 20.3 13.5

Ground glass cyst (G_glass) (%) 19.8 8.5

Hemorrhagic cyst (Haem) (%) 3.9 0.0

Note: For continuous variables, mean � S:D: in case of benign and malignant, respectively are reported; for

binary variables, the occurrences (%) of the corresponding features are reported.
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the correlation between the variables, and the relations between the variables and classes.

In particular, a small angle between two variables such as (Age, Meno) points out that

those variables are highly correlated; the observations of malignant tumors (indicated by

‘þ’) have relatively high values for variables Sol, Age, Meno, Asc, L_CA125, Colsc4,

Pap, Irreg, etc. but relatively low values for the variables Colsc2, Smooth, Un, Mul, etc.

The biplot reveals that many variables are correlated, implying the need of variable

selection. On the other hand, quite a lot of overlap between the two classes can also be

observed, suggesting that the classical linear techniques might not be enough to capture

the underlying structure of the data, and a nonlinear classifier might give better results

than a linear classifier.

3. Least squares support vector machines and Bayesian evidence framework

MLPs have become very popular black-box classifiers, however they suffer from

several drawbacks like non-convexity of the underlying optimization problem and

difficulties in choosing the best number of hidden units. In support vector machines

Fig. 1. Biplot of the ovarian tumor data. The observations are plotted as points (�: benign, þ: malignant),

the variables are plotted as vectors from the origin, i.e. taking the respective factor loadings as the

coordinates.
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[28], the learning problem is formulated and represented as a convex quadratic pro-

gramming (QP) problem. The basic idea of the SVM classifier is the following: map an

n-dimensional input vector x 2 Rn into a high nf -dimensional feature space by the mapping

jð�Þ : Rn ! Rnf : x ! jðxÞ. A linear classifier is then constructed in this feature space by

minimizing an appropriate cost function. Using Mercer’s theorem [14], the classifier is

obtained by solving a finite-dimensional QP problem in the dual space avoiding explicit

knowledge of the high-dimensional mapping and using only the related kernel function. In

least squares support vector machines [19], one uses equality constraints instead of

inequality constraints and a least squares error term in order to obtain a linear set of

equations in the dual space.

However, to achieve a high level of performance, some parameters in the LS-SVM

model must be tuned. These adjustable hyperparameters include: a regularization para-

meter, which determines the tradeoff between minimizing the training errors and mini-

mizing the model complexity; and a kernel parameter such as the width of the RBF kernel.

One popular way to choose the hyperparameters is cross-validation. Alternatively, one can

utilize an upper bound on the generalization error resulting from Vapnik–Chervonenkis

(VC) learning theory [28].

On the other hand, a similar problem of finding good hyperparameters in the training of

feedforward neural networks, has been tackled by applying the Bayesian framework

[5,15,13]. In comparison with the traditional approaches, the Bayesian methods provide a

rigorous framework for the automatic adjustment of the regularization parameters to their

near optimal values, without the need to set data aside in a validation set. Moreover,

Bayesian techniques also provide assessments of the confidence associated with its

prediction, which is essential for any biomedical pattern recognition system. In contrast

to the maximum likelihood framework, which finds a set of parameters by minimizing an

error function, the Bayesian approach handles uncertainty by integrating over all possible

sets of parameters. Particularly the Bayesian evidence method performs integration using

an approximate analytic solution.

In [26], the evidence framework has been applied to LS-SVMs for classification.

Because of the least squares formulation of LS-SVMs, the derivation of analytic expres-

sions on the different levels of inferences is possible. Relating a probabilistic framework to

the LS-SVM formulation on the first level of Bayesian inference, the hyperparameters are

inferred on the second level. Model comparison is performed on the third level in order to

select the kernel parameters.

In the following subsections, we briefly review the use of LS-SVMs in binary

classification problems, and how to apply the Bayesian framework to LS-SVM classifiers.

For more mathematical details and other applications the interested reader may consult the

book [20] and the papers [19,21,26,27]. Then we introduce an LS-SVM input variable

selection scheme and sparse approximation procedures for LS-SVM classifiers within the

evidence framework.

3.1. Probabilistic inferences in LS-SVM within the evidence framework

The LS-SVM classifier yðxÞ ¼ sign½wTjðxÞ þ b� is inferred from the data

D ¼ fðxi; yiÞgN
i¼1 with binary targets yi ¼ �1 (in this tumor classification problem, þ1
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corresponds to ‘malignant’ and �1 to ‘benign’), by minimizing the following cost

function:

min
w;b;e

J1ðw; eÞ ¼ mEW þ zED ¼ m
2

wTw þ z
2

XN

i¼1

e2
i (1)

subject to the equality constraints

ei ¼ 1 � yi½wTjðxiÞ þ b�; i ¼ 1; . . . ;N: (2)

The regularization and sum of squares error term are defined as EW ¼ ð1=2ÞwTw, and

ED ¼ ð1=2Þ
PN

i¼1 e2
i , respectively. The tradeoff between the training error and regulariza-

tion is determined by the ratio g ¼ z=m.

One defines the Lagrangian

Lðw; b; e; aÞ ¼ J1 �
XN

i¼1

aifyi½wTjðxiÞ þ b� � 1 þ eig;

where ai are Lagrange multipliers. The Kuhn–Tucker conditions for optimality @L=@w ¼ 0,

@L=@b ¼ 0, @L=@ei ¼ 0, @L=@ai ¼ 0 provide a set of linear equations w ¼PN
i¼1 aiyijðxiÞ,

PN
i¼1 aiyi ¼ 0, ai ¼ gei, yi½wTjðxiÞ þ b� � 1 þ ei ¼ 0, for i ¼ 1; . . . ;N,

respectively. Elimination of w and e gives

(3)

with Y ¼ ½y1 � � � yN �T, a ¼ ½a1 � � � aN �T, e ¼ ½e1 � � � eN �T, 1v ¼ ½1 � � � 1�T, and IN the N � N

identity matrix. Mercer’s theorem is applied to the matrix O with

Oij ¼ yiyj jðxiÞTjðxjÞ ¼ yiyj Kðxi; xjÞ, where Kð�; �Þ is a chosen positive definite kernel

that satisfies Mercer condition [14]. The most common kernels include a linear kernel

Kðxi; xjÞ ¼ xT
i xj and an RBF kernel Kðxi; xjÞ ¼ expð� k xi � xj k2

2 =s2Þ. The LS-SVM

classifier is then constructed in the dual space as:

yðxÞ ¼ sign
XN

i¼1

ai yi Kðx; xiÞ þ b

" #
: (4)

It is interesting to notice here that the least squares formulation is related to kernel Fisher

discriminant analysis (FDA). In addition an LS-SVM with linear kernel corresponds to

linear Fisher discriminant analysis with regularization term [26].

3.1.1. Inference of model parameters (level 1)

The parameters w and bias term b for given value of m; z are inferred from the data D at

the first level. By applying Bayes’ rule, a probabilistic interpretation for (1) and (2) is

obtained:

pðw; bjD; log m; log z;HÞ ¼ pðDjw; b; log m; log z;HÞpðw; bjlog m; log z;HÞ
pðDjlog m; log z;HÞ ; (5)
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where the model H corresponds to the kernel function K with different kernel parameters

such as the width of an RBF kernel s. The evidence pðDjlog m; log z;HÞ is a normalizing

constant and will be needed in the next level of inference.

The LS-SVM learning process can be given the following probabilistic interpretation.

The error function is interpreted as the negative log likelihood for a noise model:

pðDjw; b; log z;HÞ / expð�zEDÞ. Thus the use of the sum of squares error ED corre-

sponds to an assumption of Gaussian noise on the target variable, and the parameter z
defines a noise level (variance) 1=z.

We assume a separable Gaussian prior on the parameters w, with variance 1=m,

pðwjlog m;HÞ ¼ ðm=2pÞnf =2
expð�m=2wTwÞ, and a Gaussian prior for b with variance

s2
b ! 1 to approximate a uniform distribution. Thus the regularization term EW is

interpreted in terms of a log prior probability distribution over the parameters w and

b : pðw; bjlog m; log z;HÞ ¼ pðwjlogm;HÞpðbjlog sb;HÞ / expð�mEWÞ.
Hence the expression for the first level of inference becomes

pðw; bjD; log m; log z;HÞ / expð�mEWÞexpð�zEDÞ ¼ expð�J1ðw; bÞÞ: (6)

The maximum a posteriori estimates wMP and bMP are then obtained by minimizing the

negative logarithm of (1), i.e. solving the linear set of equations in (3).

3.1.2. Class probabilities for the LS-SVM classifiers (level 1)

Given the posterior probability of the model parameters w and b we will now integrate

over all w and b values so as to obtain the posterior probability pðyjx;D; log m; log z;HÞ.
In the evidence framework, we assume that the posterior distribution of w can be

approximated by a single Gaussian at wMP. We define two error variables corresponding

to different classes (indicated by subscripts ‘þ’ and ‘�’) as e� ¼ wTðjðxÞ � m̂�Þ, where

m̂þ and m̂� are the centers of the positive and negative class, respectively. After margin-

alizing over w the distribution of e� will also be Gaussian, centering around mean me� with

variance ðz�1
� þ s2

e�Þ. The expression for the mean is

me� ¼ wT
MPðjðxÞ � m̂�Þ ¼

XN

i¼1

aiyiKðx; xiÞ �
1

N�

XN

i¼1

aiyi

X
j2I�

Kðxi; xjÞ; (7)

where Iþ and I� indicate the sets of indices whose corresponding data points have

positive and negative labels, respectively. The computation of the variance from the target

noise z�1
� will be discussed in the next section. While the corresponding expression of the

additional variance due to the uncertainty in the parameters w is

s2
e�

¼ ½jðxÞ � m̂��TQ11½jðxÞ � m̂��; (8)

where Q11 is the upper left nf � nf block of the covariance matric Q ¼ covarð½w; b�; ½w; b�Þ,
which is related to the Hessian H of the LS-SVM cost function J1ðw; bÞ,

Q ¼ H�1 ¼ H11 H12

H21 H22

� ��1

¼
@2J1

@w2

@2J1

@w@b
@2J1

@b@w

@2J1

@b2

2
664

3
775
�1

: (9)
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And the variance will be finally computed in the dual space. Let yðxÞ ¼
½Kðx; x1Þ � � �Kðx; xNÞ�T, C be the N � N kernel matrix with element Cij ¼ Kðxi; xjÞ,
and a centering matrix M ¼ ðIN � ð1=NÞð1v1T

v ÞÞ. Further define 1þ; 1� 2 RN as the vector

with element zero or one, for i ¼ 1; . . . ;N, 1�;i ¼ 1 if yi ¼ �1, otherwise 1�;i ¼ 0.

By using matrix algebra and applying the Mercer condition, we obtain:

s2
e� ¼ 1

m
Kðx; xÞ � 2

mN�

X
i2I�

Kðx; xiÞ þ
1

mN2
�

X
i;j2I�

Kðxi; xjÞ

� z
m
ðyTðxÞ � 1

N�
1T
�CÞMðmIN þ zMCMÞ�1

MðyðxÞ � 1

N�
C1�Þ: (10)

Thus the conditional probabilities can be computed as:

pðxjy ¼�1;D; logm; logz; logz�;HÞ ¼ ð2pðz�1
� þ s2

e�
ÞÞ�1=2

exp �
m2

e�

2ðz�1
� þ s2

e�
Þ

 !
:

(11)

By applying Bayes’ rule the following posterior class probabilities of the LS-SVM

classifier are obtained (for notational simplicity, log m; log z; log z�;H are dropped in

this expression):

pðyjx;DÞ ¼ pðyÞpðxjy;DÞ
pðy ¼ 1ÞPðxjy ¼ 1;DÞ þ Pðy ¼ �1Þpðxjy ¼ �1;DÞ ; (12)

where pðyÞ corresponds to the prior class probability. The posterior probability could also

be used to make minimum risk decisions in case of different error costs. Let cþ� and c�þ
denote the cost of misclassifying a case from class ‘�’ and ‘þ’, respectively. One trick to

combine the posterior probability with the different error costs is by replacing pðyÞ in (12)

with the adjusted class prior:

P0ðy ¼ 1Þ ¼
Pðy ¼ 1Þc�þ

Pðy ¼ 1Þc�þ þ Pðy ¼ �1Þcþ�
;

and

P0ðy ¼ �1Þ ¼ Pðy ¼ �1Þcþ�
Pðy ¼ 1Þc�þ þ Pðy ¼ �1Þcþ�

:

3.1.3. Inference of hyperparameters (level 2)

The second level of inference via Bayes’ rule is the following:

pðlog m; log zjD;HÞ

¼ pðDjlog m; log z;HÞpðlog m; log zjHÞ
pðDjHÞ / pðDjlog m; log z;HÞ; (13)

where a uniform distribution is assumed in log m and log z for the prior pðlog m; log zjHÞ ¼
pðlog mjHÞpðlog zjHÞ. The probability pðDjlogm; log z;HÞ is equal to the evidence of the
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previous level. Using Gaussian density at the maximum a posteriori estimates wMP; bMP,

we obtain:

pðlog m; log zjD;HÞ /
ffiffiffiffiffiffiffiffiffiffiffi
mnf zN

p
ffiffiffiffiffiffiffiffiffiffiffi
det H

p expð�J1ðwMP; bMPÞÞ; (14)

with the Hessian H defined in (9). The expression for det H is given by

Nmnf �Neff z
QNeff

i¼1 ðmþ zlG;iÞ, where Neff eigenvalues lG;i are the non-zero eigenvalues of

the centered kernel matrix in the feature space and are the solution of the eigenvalue

problem

ðMCMÞnG;i ¼ lG;inG;i; i ¼ 1; . . . ;Neff � N � 1: (15)

The effective number of parameters [5,12] for LS-SVM, is equal to:

geff ¼ 1 þ
XNeff

i¼1

zMPlG;i

mMP þ zMPlG;i
¼ 1 þ

XNeff

i¼1

gMPlG;i

1 þ gMPlG;i
; (16)

where the first term is due to the fact that no regularization is applied on the bias term b of

the LS-SVM model. Since Neff � N � 1, the estimated number of effective parameters

cannot exceed the number of data points N.

In the optimum of the level 2 cost function, the following relations can be obtained:

2mMPEWðwMPÞ ¼ geff � 1 and 2zMPEDðwMP; bMPÞ ¼ N � geff . The last equality can be

viewed as the Bayesian estimate of the variance z�1
MP ¼

PN
i¼1 e2

i =ðN � geffÞ of the noise ei.

However in this paper, when computing the posterior of the class probability, the variances

of the noise with different classes may differ, and are approximated in this way:

z�1
� ¼

P
j2I�

e2
�;j

N� � geffðN�=NÞ : (17)

In practice, one can reformulate the optimization problem in m and z into a scalar

optimization problem in g ¼ z=m:

min
g
J2ðgÞ ¼

XN�1

i¼1

log lG;i þ
1

g

� �
þ ðN � 1Þlog½EWðwMPÞ þ gEDðwMP; bMPÞ�; (18)

with lG;i ¼ 0 for i > Neff. The expressions for ED and EW can be given in the dual variables

usingthe relationai ¼ giei:ED¼ð1=2g2Þ
PN

i¼1 a
2
i ,EW ¼ ð1=2Þ

PN
i¼1 aiðyi � ðai=gÞ � bMPÞ.

This optimal hyperparameter g is then obtained by solving the optimization problem (18)

with gradients. Given the optimal gMP, one can easily compute mMP and zMP using their

relations in the optimum.

3.1.4. Bayesian model comparison (level 3)

After determining the hyperparameter mMP and zMP on the second level of inference,

we still have to select a suitable model Hj. The prior pðHjÞ over all possible models

is assumed to be uniform. Thus the posterior for the model Hj is in the form

290 C. Lu et al. / Artificial Intelligence in Medicine 28 (2003) 281–306



of pðHjjDÞ / pðDjHjÞpðHjÞ / pðDjHjÞ. At this level, no evidence or normalizing

constant is used since it is infeasible to compare all possible models Hj.

A separable Gaussian prior for pðlogmMP; log zMPjHjÞ is assumed for all models

Hj, with the constant standard deviations slog m and slog z. These prior widths of the

hyperparameters are generally assumed to be broad and they cancel out when alternative

models are compared. Also we assume that pðlog m; log zjD;HjÞ can be well approxi-

mated by using a separable Gaussian with error bars slog mjD and slog zjD. The posterior

likelihood pðDjHjÞ corresponds to the evidence at the previous level and can be evaluated

by:

pðDjHjÞ / pðDjlog mMP; log zMP;HjÞ
slog mjDslog zjD
slog mslog z

: (19)

The models can thus be ranked according to the evidence pðDjHjÞ, that is the tradeoff

between the goodness of fit from the previous level pðDjlog mMP; log zMP;HjÞ and the

Occam factor slog mjDslog zjD=slog mslog z [12].

The error bars of pðDjlog mMP; log zMP;HjÞ can be approximated by s2
log mjD ’

ð2=ðgeff � 1ÞÞ and s2
log zjD ’ ð2=ðN � geffÞÞ. And the expression for the evidence in the

dual space is the following:

pðDjHjÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mNeff

MP z
N�1
MP

ðgeff � 1ÞðN � geffÞ
QNeff

i¼1ðmMP þ zMPlG;iÞ

s
: (20)

One selects the kernel parameters, e.g. the width of an RBF kernel, with maximal

posterior pðDjHjÞ.

3.2. Design of the LS-SVM classifier in a Bayesian evidence framework

Before building an LS-SVM classifier, it is better to normalize componentwise the

training inputs to zero mean and unit variance [5]. We denote the normalized training data

as D ¼ fðxi; yiÞgN
i¼1, with xi the normalized inputs and yi 2 f�1; 1g the corresponding

class label. The new inputs collected in the test set and for evaluating the trained model will

also be normalized in the same way as the training data, i.e. using the mean and variance

estimates from the training data. Now, we start the design of the LS-SVM classifier in a

Bayesian framework. Several procedures including hyperparameter tuning, input variable

selection and sparse approximation are to be established.

3.2.1. Hyperparameter tuning

Select the model Hj by choosing a kernel type Kj with possible kernel parameters, e.g.

the width of an RBF kernel sj. Infer the optimal gMP, mMP and zMP on level 2 inference and

evaluate the model evidence as follows:

1. Solve the eigenvalue problem (15).

2. Solve the scalar optimization problem (18) in g ¼ m=z using, e.g. a quasi-Newton

method.

3. Given the optimal gMP, compute mMP and zMP and geff .

4. Calculate pðDjHjÞ from (20) at the third level.
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For a kernel Kj with tuning parameters, refine the tuning parameters, such that a higher

model evidence pðDjHjÞ is obtained. For example, for an RBF kernel, the parameter s is

inferred on the third level.

3.2.2. Input variable selection

In the Bayesian framework, given the likelihoods of the models H0 and H1, two

models can be compared by the ratio of posterior probabilities: pðDjH1ÞpðH1Þ=
ðpðDjH0ÞpðH0ÞÞ ¼ pðH1Þ=pðH0ÞB10, where B10 ¼ pðDjH1Þ=pðDjH0Þ is the Bayes

factor for model H1 against H0 from data D. If equal priors are assigned to the models,

the posterior odds ratio then equals the Bayes factor, which can be seen as a measure of

the evidence given by the data in favor of a model compared to a competing one. When the

Bayes factor is greater than 1, the data favor H1 over H0; otherwise, the reverse is

true. The rules of thumb for interpreting 2log B10 include: the evidence for H1 is very

weak if 0 � 2log B10 � 2:2, and the evidence for H1 is decisive if 2log B10 > 10, etc

[9].

In the context of the Bayesian evidence framework, the evidence of the model pðDjHjÞ
is computed with (20) on level 3 inference. A higher pðDjH1Þ compared to pðDjH0Þ
means the data favor H1 to H0. Therefore, given a certain type of kernel for the model, we

propose to select the input variables according to the model evidence pðDjHjÞ.
The procedure performs a forward selection (greedy search), starting from zero

variables, and choosing each time the variable which gives the greatest increase in the

current model evidence. The selection is stopped when the addition of any remaining

variable no longer increases the model evidence.

3.2.3. Sparse approximation

Due to the choice of the two-norm in the cost function, the sparseness is lost compared

with the standard QP type SVMs. However, as has been shown in [21], the sparseness can

be imposed to LS-SVMs by a pruning procedure based upon the sorted support value

spectrum jaij. Inspired by the SVM solution whose support vectors are near the decision

boundary, we propose here to prune the data points which have negative support values.

This is quite intuitive, since in LS-SVMs, ai ¼ gei. Negative support value ai indicate that

the data ðxi; yiÞ are easy cases. The pruning of easy examples will focus the model more on

the harder cases which lie around the decision boundary.

1. Dcur ¼ D ¼ fðxi; yiÞgN
i¼1.

2. Based on Dcur, select the regularization parameter g and possibly a kernel parameter s
within the Bayesian evidence framework. Train the LS-SVM (compute a) on the data

Dcur, using current g and s.

3. If all the support values are positive, then go to 6.

4. Repeat pruning all the data points with non-positive support values,

Dcur ( Dcur´ fðxd; ydÞjad � 0g. Based on the reduced data set Dcur, recompute a
using the same g and s, until all a values on the reduced data set Dcur are positive.

5. Go to 2.

6. Stop pruning, return the current a value and set the support values for the pruned data

to zero.
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3.2.4. Probabilistic interpretation of the output

The designed LS-SVM classifier Hj can be used to calculate class probabilities in the

following steps:

1. Given the parameters a; bMP; mMP; zMP; gMP; geff and the eigenvalues and eigenvectors

in (15) available from the designed model Hj, calculate meþ;me�; s2
eþ and s2

e� from

(7) and (10), respectively. Compute zþ and z� from (17).

2. Calculate pðxjy ¼ �1;D; log m; log z; log z�;HjÞ from (11).

3. Calculate pðyjx;D;HjÞ from (12) by using the prior class probabilities or adjusted

priors P0ðy ¼ þ1Þ and P0ðy ¼ �1Þ, respectively.

4. Application of LS-SVMs to the prediction of malignancy of ovarian tumors

Now we apply the LS-SVMs within the evidence framework to predict malignancy of

ovarian tumors. The performance is assessed by receiver operator characteristic curve

analysis. The area under the ROC curve (AUC) is computed. Furthermore, by setting various

cutoff levels to the output probability, we will derive the sensitivity (true positive rate) and

specificity (true negative rate) on the test set. All the experiments are conducted in Matlab.

4.1. Training and test set

First, we try to evaluate the generalization ability of the model, independently of the

training data and model fitting process. The data set is split according to the time scale. The

data from the first treated 265 patients (collected from 1994 to 1997) are taken as training

set. The remaining 160 patient data (collected from 1997 to 1999) are used as test set. The

proportion of malignant tumors in the training set and test set are both about 1=3. Thanks to

the Bayesian methods implemented here, no validation set is needed during training;

otherwise, the validation during training would make inefficient use of the data set which is

already moderately small in the case at hand [13]. The following procedures including

input variable selection and model fitting, are independent from the test set.

However, the estimate from such a single hold-out cross-validation, in which the data set

is partitioned into just two mutually exclusive subsets, is somehow biased, and depends on

the division of the training set and test set. In order to get an estimate with lower bias, and

also with potentially better predictive power of our method, we conduct another experiment.

The data set is split randomly into two sets, the training set still containing 265 data, and test

set 160 data. The sets are stratified, which means that the proportion of the malignant cases

in each data set are kept around one third in all the training and test sets. We repeat this hold-

out cross-validation 30 times, and the performance of the method is estimated by averaging.

The training and test set splitting issue related to the clinical practice will be further

discussed in Section 5.

4.2. Input variable selection

The data set originally contains 27 input variables, some of which are rather relevant,

others are only weakly relevant. Selecting the most predictive input variables is critical
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to effective model development. A good subset selection of explanatory variables can

substantially improve the performance of a classifier. The challenge is finding ways to pick

the best subsets of variables.

A variety of techniques have been suggested for variable selection. One of the common

approaches is stepwise logistic regression. This approach, with similarities to other

correlation-based techniques, encounters problems if the input variables are not independent.

Moreover, it is based on linear regression.

Here within this evidence framework, we will adapt the forward selection procedure as

introduced in Section 3.2. We select a subset of variables that maximizes the evidence of

the LS-SVM classifiers with either linear or RBF kernels. In order to stabilize the selection

and computation of the evidence itself, we first compute the evidence of all univariate

models each of which contains one single variable, and remove the three input variables

which have the smallest evidence. A too small evidence points out that the corresponding

variable contributes little to the prediction of malignancy of the ovarian tumors. This has

also been verified by their negligible association with the class labels. Then we start the

forward selection based on the remaining 24 candidate variables. The 10 selected variables

based on an RBF kernel are listed in order of selection: L_CA125, Pap, Sol, Colsc3, Bilat,

Meno, Asc, Shadows, Colsc4, Irreg, and will be denoted as MODEL1. The 11 selected

variables based on a linear kernel, denoted as MODEL0, are also listed in order of

selection: L_CA125, Pap, Sol, Colsc4, Unsol, Colsc3, Bilat, Shadows, Asc, Smooth,

Meno. Though the two subsets of variables have nine variables in common, the evidence of

the model selected based on the RBF kernel is higher than the one based on the linear

kernel. The Bayes factor for MODEL1 (with the RBF kernel) against MODEL0 (with the

linear kernel) B10 is greater than 1, and 2log B10 ¼ 74 is greater than 10, indicating a strong

evidence against MODEL0 in favor of MODEL1. Therefore, MODEL1 is used here for

model building instead of the other.

In previous work [11], stepwise logistic regression was used to select the input variables.

Eight variables were selected, which is just a reduced set of MODEL1 by removing variables

‘Bilat’ and ‘Shadows’. However, this smaller subset was chosen based on the whole data set,

and therefore validation on the test set might be over optimized. Here, for comparison

reasons, we will also show the experimental results using this subset of variables, which is

denoted by MODEL2: L_CA125, Asc, Pap, Meno, Colsc3, Colsc4, Sol, Irreg.

4.3. Model fitting and prediction

The model fitting procedure has two stages, the first is the construction of an LS-SVM

classifier using the sparse approximation procedure explained in Section 3.2. The output of

the LS-SVM classifier at this stage is a continuous number, which could be positive or

negative and is located around þ1 or �1. Remember that our training set ðNtrain ¼ 265Þ is

only moderately sized, thus the main goal of sparse approximation here is not to reduce

computation time for training or prediction, but to improve the generalization ability. At the

second stage, we will compute the output probability, indicating the posterior probability

for a tumor to be malignant. Although some training data might be pruned during the first

stage, the class mean and the posterior probabilities for the new data will be computed

using all the training data.
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In risk minimization decision making, different error costs are considered in order

to reduce the expected loss. In this classification problem, misclassification of a

malignant tumor is very serious, thus we aim at selecting a model with a high sensitivity

while maintaining a high specificity (a low false positive rate). As the classifier will

tend to predict the cases to the prevalent class, we need to correct for this tendency in

order to increase the sensitivity of the classification by providing a higher adjusted prior

for the malignant class. In the following experiments, the adjusted prior for the malignant

class is intuitively set to 2=3 and the benign class to 1=3. When making a decision,

one can take a certain probability cutoff value for the target environment. For

example, setting a decision level at 0.5, means that all cases with a probability of

malignancy greater than 0.5 are considered to be malignant, otherwise, they are classified

as benign.

4.4. Model evaluation

The most commonly used performance measure of a classifier or a model is the

classification accuracy, or the rate of correct classification, within the assumptions of

equal misclassification costs and constant class distribution in the target environment. Both

assumptions are not satisfied in real world problems [18]. Unlike classification accuracy,

ROC is independent of class distributions or error costs and has been widely used in the

biomedical field. Let us give a brief description about the ROC curves.

Assume a dichotomic classifier yðxÞ, which is the output value of the classifier given

input x. Then the ultimate decision is taken by comparing the output yðxÞ with a certain

cutoff value. The sensitivity of a classifier is then defined as the proportion of malignant

cases that are predicted to be malignant, and specificity as the proportion of benign cases

that are predicted to be benign. The false positive rate is 1-specificity. When varying the

cutoff value, i.e. the decision level, the sensitivity and specificity will change. An ROC

curve is constructed by plotting the sensitivity versus 1-specificity, for varying cutoff

values. The area under the ROC curve can be statistically interpreted as the probability of

the classifier to correctly classify malignant cases and benign cases. The higher the AUC,

the better the test. In this study, the AUC is obtained by a nonparametric method based on

the Wilcoxon statistic, using the trapezoidal rule, to approximate the area [8]. The method

proposed by DeLong et al. [7] will be used to compute the variance and covariance of the

nonparametric AUC estimates derived from the same set of cases. AUC can be used for

comparing two different ROC curves.

In contrast to the other measures such as the sensitivity and specificity, which require the

setting of appropriate cutoff values for classification, the AUC is a one-value measure of

the accuracy of a test. Hence here the statistical tests for comparing the performance of

different models will be based on the AUC (see Sections 4.5 and 4.6).

4.5. Results from temporal validation

In the first experiment, the data set is split according to the time scale, and the

performance of the model will be evaluated in the subsequent patients within the same

center. Hence, we call this validation of our models temporal validation [1].
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Here we build LS-SVM classifiers with linear and RBF kernels. The input variables used

for model building are MODEL1 and MODEL2, respectively. The corresponding LS-SVM

models will be denoted as LS-SVM1 and LS-SVM2. Subscripts ‘RBF’ and ‘Lin’ indicate

the kernel type that is used.

All the training data are normalized in order to have zero mean and unit variance. The

same normalization is applied to the test set using the mean and variance estimates from the

training set. The model performance measure is estimated based on the output probability

of the model. The AUC and its computed standard error (S.E.) [7], which are independent

of the cutoff value, are reported in the second column of Table 2. Also listed in Table 2 are

the performance measures calculated at different decision levels (for LS-SVMs and LRs,

those levels are probability cutoff levels). They include: the accuracy, sensitivity, speci-

ficity, positive predictive value (PPV) and negative predictive value (NPV). Predictive

value helps in interpreting the test result for an individual. The PPV is the proportion of all

positive tests that are true positive; the NPV is the proportion of all negative tests that are

true negative. The numbers between the parentheses in the first column indicate the number

of support vectors (NSV) in the LS-SVM classifier in the first stage of model building.

Table 2

Comparison of the temporal validation performance on the test set (Ntrain ¼ 265;Ntest ¼ 160)

Model type

(NSV)

AUC

(�S:E:)

Decision

level

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

RMI 0.8733 (�0:0298) 100 78.13 74.07 80.19 65.57 85.86

75 76.88 81.48 74.53 61.97 88.76

LR1 0.9111 (�0:0246) 0.5 81.25 74.07 84.91 71.43 86.54

0.4 80.63 75.96 83.02 69.49 87.13

0.3 80.63 77.78 82.08 68.85 87.88

0.2 80.63 81.48 80.19 67.69 89.47

LS-SVM1Lin (118) 0.9141 (�0:0236) 0.5 82.50 77.78 84.91 72.41 88.24

0.4 81.25 77.78 83.02 70.00 88.00

0.3 81.88 83.33 81.13 69.23 90.53

LS-SVM1RBF (97) 0.9184 (�0:0225) 0.5 84.38 77.78 87.74 76.36 88.57

0.4 83.13 81.48 83.96 72.13 89.90

0.3 84:38 85:19 83:96 73:02 91:75

LR2 0.9161 (�0:0218) 0.5 79.37 75.93 81.13 67.21 86.87

0.4 77.50 75.93 78.30 64.06 86.46

0.3 78.75 81.48 77.36 64.71 89.13

0.2 78.13 85.19 74.53 63.01 90.80

LS-SVM2Lin (115) 0.9195 (�0:0215) 0.5 81.25 77.78 83.02 70.00 88.00

0.4 80.63 79.63 81.13 68.25 88.66

0.3 80.00 85:19 77.36 65.71 91.11

LS-SVM2RBF (99) 0.9223 (�0:0213) 0.5 83.75 81.48 83.96 73.33 90.00

0.4 82.5 83.33 82.08 70.31 90.63

0.3 80.00 85:19 77.36 65.71 91.11

Note: The ‘best’ results of each model obtained at a certain decision level are indicated in bold; and the highest

value among the bold results per column is underlined.
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The performance of the Risk of Malignancy Index (the RMI is calculated as the product

of the CA 125 level, an ultrasound morphologic score, and a score for the patient’s

menopausal status) and two logistic regression (LR) models LR1 and LR2, using

respectively MODEL1 and MODEL2 as inputs, are also reported for comparison.

Note that, the decision levels we used in the experiments are considered ‘good’

according to our model selection goal. They lead to a high sensitivity and low false

positive rate on the training set; those decision levels, which result into a high accuracy

but a too low sensitivity or specificity, are considered unacceptable in this context. The

‘good’ decision levels for LRs here are approximately the same as those for LS-SVMs,

since we incorporate the same adjusted class prior, the 2 : 1 ratio of the adjusted prior class

probability between the malignant and benign cases, into the computation of the final

outcome ð0 � 1Þ. That is, by correcting the bias term b0 in the LR model as follows:

b ¼ b0 � logðNþ=N�Þ þ logð2=1Þ, where Nþ and N� denote the number of malignant and

benign cases in the training set, respectively. LS-SVM models within the evidence

framework also shift the good decision level towards the 0.5 probability level after taking

the adjusted class priors into account.

Let us have a look at Table 2. First, we can see that RMI has the worst performance on the

test set, all the other models have obviously higher AUCs than RMI, and its accuracy and

sensitivity are also lower compared with those of the other models. However the difference

in AUC for linear LS-SVMs and LRs versus RMI is not significant according to the

comparison measure in [7] (see the P-values in Table 3 obtained from two-tailed z-tests),

though the AUCs of LS-SVMs and LRs on the training set are all significantly better than

that of RMI (P-values< 0:001). Comparing LS-SVM2RBF with RMI, a significant P-value

of 0.048 is obtained, while the difference between LS-SVM1RBF and RMI is close to

significant, having a P-value of 0.066. Note that the comparison measure is considered to

be conservative (AUC underestimated and the variance overestimated). Moreover, the

variance of the estimated AUC will further decreases as more patients are included in

the data set.

Now move to the comparison between linear LS-SVMs and LRs. The LS-SVMs with

linear kernels have similar performance as LRs. However, the sensitivity for LRs is a little

bit lower than that of linear LS-SVMs, at the same specificity level. For example, at a

decision level of 0.5, both LR1 and linear LS-SVM1 have the same specificity 85%, but the

sensitivity of LR1 is 74% which is lower compared with 78% for the linear LS-SVM1.

We can also easily observe that LS-SVMs with RBF kernels have slightly better

performance than both linear LS-SVM and LR models; LS-SVMRBF models achieve

Table 3

Significance level when two AUCs on the test set from the temporal cross-validation are compared (P-value

from pairwise two-tailed z-test)

Model LR1 LR2 LS-SVM1Lin LS-SVM2Lin LS-SVM1RBF LS-SVM2RBF

RMI 0.183 0.121 0.120 0.077 0.066 0.048

LR1 1.000 0.635 0.553 0.408 0.443 0.324

LR2 0.635 1.000 0.825 0.429 0.809 0.431

Note: P-values that are significant or close to significant are indicated in bold.
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consistently the highest AUC, sensitivity and specificity on the test set. The consistently

higher positive predictive value and negative predictive value of LS-SVM models

compared to those of LRs also point out that LS-SVMs perform better than LRs. Moreover,

the LS-SVM1RBF achieves also higher performance on the training set, with AUC 0.990

versus 0.976 for LR1. Hence based on this result, we conclude that LS-SVM models with

RBF kernels are recommended in this case.

As to the effect of using different input variables, by pairwise comparison of the models

based on MODEL1 and MODEL2, we find that the models generated by MODEL2 (less

variables) have marginally higher AUCs on the test set (though the performance on the

training set is the opposite). However the difference is not statistically significant. On the

other hand, the models derived from MODEL1 have higher accuracy than those derived

from MODEL2given the same sensitivity at those ‘good’ decision levels. We thus conclude

that the input variables selected within the evidence framework, i.e. MODEL1, based on

the training data only, have comparable performance with MODEL2, which were selected

based on the whole data set using stepwise logistic regression. Actually, the input variables

selected by stepwise logistic regression based on only the training data have poorer

performance than both MODEL1 and MODEL2. This provides again evidence for the

appropriateness of our input selection procedure.

It is also interesting to see how the class probability reflects the uncertainty of the

decision making. The uncertainty is the largest, when the probability of one case to be

malignant is 0.5. So we could predefine an uncertainty region of the probability ½0:5 � t�,
where t is a small positive value between 0 and 0.5. To make the decision more reliable, the

classifier should reject the cases whose outcome falls in this uncertainty region. Clinically,

this means that those patients will be referred to further examination.

Now, we take the classifier LS-SVM1RBF as an example. When t is set to 0.2, the

uncertainty region becomes (0.3–0.7). Fixing the decision probability level at 0.5, when we

accept all the test cases, the accuracy is 84% with a sensitivity of 78% and a specificity of

88%. When rejecting the 14 ð9%Þ uncertain cases, we obtain a reasonably higher

performance based on the reduced test set with an AUC of 0.9325, accuracy 88%,

sensitivity 83% and specificity 90%.

4.6. Results from randomized cross-validation

We have already described a temporal validation above, where the splitting of training

set and test set is non-random. In this section, we will report the results based on 30 runs of

stratified cross-validation. In each run of cross-validation, the 265 training data and 160 test

data are randomly selected. The same two subsets of input variables MODEL1 and

MODEL2 are used. Same types of models as the previous ones are to be evaluated.

The average of AUC (AUC), the corresponding standard deviation (S.D., derived from

30 AUC values), accuracy, sensitivity and specificity are reported in Table 4. The number

between the parentheses indicates the mean of the number of support vectors (NSV).

Boxplots in Figs. 2 and 3 illustrate the distribution of the AUCs over the 30 validations on

test and training set, respectively.

From this experiment, an increase of the validation performance is observed, which is

mainly due to the randomization of the training set and test set. However, we still obtain

298 C. Lu et al. / Artificial Intelligence in Medicine 28 (2003) 281–306



Table 4

Averaged performance on the test set from 30 runs of randomized cross-validation (Ntrain ¼ 265;Ntest ¼ 160)

Model type (NSV) AUC ð�S:D:Þ Decision level Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

RMI 0.8882 (�0:0284) 100 82.65 81.73 83.06 68.89 90.96

80 81.10 83.87 79.85 65.61 91.63

LR1 0.9397 (�0:0209) 0.5 83.29 89.33 80.55 67.81 94.43

0.4 81.94 91:60 77.55 65.16 95:38

LS-SVM1Lin (150.2) 0.9405 (�0:0199) 0.5 84.31 87.40 82.91 70.09 93.62

0.4 82.77 90.47 79.27 66.61 94.88

LS-SVM1RBF (137.1) 0.9424 (�0:0207) 0.5 84.85 86.53 84.09 71.46 93.31

0.4 83:52 90.00 80:58 67:98 94.71

LR2 0.9403 (�0:0211) 0.5 82.37 88.80 79.45 66.53 94.08

0.4 80.42 91:60 75.33 63.03 95.27

LS-SVM2Lin (145.9) 0.9404 (�0:0206) 0.5 84.10 87.13 82.73 69.96 93.50

0.4 81.71 90.07 77.91 65.20 94.60

LS-SVM2RBF (132.9) 0.9415 (�0:0201) 0.5 84.60 85.27 84.30 71.49 92.73

0.4 82.65 88.67 79.91 66.97 94.01

Note: The ‘best’ results of each model obtained at a certain decision level are indicated in bold; and the highest value among the bold results per column is underlined.
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Fig. 2. Boxplot of the AUCs over 30 runs of cross-validation based on the test set (the line in the middle of the

notched ‘box’ is the sample median, the lower and upper lines of the ‘box’ are the 25th and 75th percentiles of

the sample).

Fig. 3. Boxplot of the AUCs over 30 runs of cross-validation based on the training set (the line in the middle of

the notched ‘box’ is the sample median, the lower and upper lines of the ‘box’ are the 25th and 75th percentiles

of the sample).
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quite consistent results with the previous single hold-out cross-validation. Among the

seven models, RMI has the worst performance. LS-SVM1RBF obtained the best averaged

performance, with mean AUC ¼ 0:9424. This can be seen more clearly from Table 5 in

which the different models are ordered by the mean of AUCs.

To make a simultaneous comparison of all the models in mean of AUCs, we conduct a

one-way ANOVA followed by Tukey multiple comparison [16]. Results are reported

in Table 5. The subsets of adjacent means that are not significantly different at 95%

confidence level are shown, and are indicated by drawing a line under the subsets. From

this comparison, we observe that both LRs and LS-SVMs have significantly better

performance than RMI, though the differences among the LR models and LS-SVM

models with either linear or RBF kernel are not significant.

4.7. Comparison of the diagnostic performance with the human expert

One might be curious to know: can the computer model beat the expert? Trying to

answer this question, we would like to compare the diagnostic results of our models with

those of human investigators examining the same patients. The investigators were given

all the available information and measurements of the patients before operation [24].

Table 6 shows the diagnostic performance of both the LS-SVM1RBF and the three

human investigators. Assessor 1 (DT) is a very experienced expert, who had examined

Table 5

Rank ordered significant subgroups from multiple comparison on mean AUC from randomized cross-validation

Model RMI LR1 LR2 LS-SVM2Lin LS-SVM1Lin LS-SVM2RBF LS-SVM1RBF

AUC 0.8882 0:9397 0:9403 0:9404 0:9405 0:9415 0:9424

S.D. 0.0284 0.0209 0.0211 0.0206 0.0199 0.0201 0.0207

Note: Only the mean AUC of RMI is significantly different from the others.

Table 6

Comparison in diagnostic performance of the model and the human assessors

Accuracy Sensitivity Specificity PPV NPV

(a) On the 265 cases collected between 1994 and 1997

LS-SVM1RBF 0.8981 0.9750 0.8649 0.7573 0.9877

Assessor 1 0.9132 0.9750 0.8865 0.7879 0.9880

Assessor 2 0.8189 0.9000 0.7838 0.6429 0.9477

Assessor 3 0.8113 0.8750 0.7838 0.6364 0.9355

(b) On the 160 cases collected between 1997 and 1999

LS-SVM1RBF 0.8313 0.8148 0.8396 0.7213 0.8990

Assessor 1 0.8938 0.8148 0.9340 0.8627 0.9083

(c) Averaged on the test sets from the randomized cross-validation

LS-SVM1RBF 0.8352 0.9000 0.8058 0.6798 0.9471

Assessor 1 0.9058 0.9113 0.9033 0.8123 0.9574

Note: The results of LS-SVM1RBF are obtained at the decision level of 0.4 in (a–c), and in (a) are the

performances of recalling on the training set.
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ultrasonographically more than 5000 patients. Assessor 2 and 3 are less experienced, who

had performed about 200 and 300 ultrasonographical examinations, respectively. Unfor-

tunately, the assessment of the two less experienced assessors are not available on the cases

collected after 1997, hence we will mainly focus on the comparison with the expert.

The expert’s diagnosis on the 160 newest patients (test set) results in a sensitivity of

81.48%, specificity 93.40% and PPV 86.27%. The LS-SVM1RBF model gives a diagnostic

performance at 0.4 decision level with a sensitivity of 81.48% (same as for the expert),

however, a lower specificity of 83.96%, and PPV 72.13%. When looking at the averaged

performance on the same randomized cross-validation, similar conclusions can be drawn.

The human expert has a sensitivity 91.13%, specificity 90.33% and PPV 81.23%, while the

LS-SVM1RBF has an averaged sensitivity of 90.00%, specificity 80.58% and PPV 67.98%.

In summary, the LS-SVM model can achieve the same sensitivity as the expert, however at

the cost of a higher false positive rate.

The comparison points out that the models we have till now have not yet been able to

beat the experienced human expert. However, from Table 6(a), we observe that the model

performs significantly better than the other less experienced assessors 2 and 3 on the old

patient group. If the model is assessed by the average performance from the randomized

cross-validation, it can also be inferred that the model can better discriminate preopera-

tively between benign and malignant tumors than the less experienced assessors.

5. Discussion

Next, we would like to discuss several issues related to the application of our diagnostic

model in clinical practice.

We first indicate some possible reasons why the expert is still outperforming the models

obtained from given amount of data in the positive predictive value. The most important

reason is that the expert here is very experienced. The mathematical models would need to

reach very high levels of test performance to be comparable in performance to such kind

of international top-experts. Comparing the performance of our model to that of less

experienced assessors, we can still see the potential value of the mathematical models in

helping those investigators with less experience to predict preoperatively the correct

outcome.

Another reason might be the absence of prior knowledge in the models, which is

abundantly owned by the experts. The quality of a purely data driven model also depends

on the quality and quantity of the training data. The representativeness of the training data

is critical for the learning and generalization performance. The incorporation of expert

knowledge into black-box models is a good idea to compensate for the shortcomings of

black-box models. A hybrid approach, which exploits the expert knowledge (represented in

a belief network) in the learning of MLPs, has been applied to this ovarian tumor

classification problem and has shown its potential to improve the performance of basic

MLPs [4]. However, further validation of the approach based on more data is still needed.

Future work includes applying a similar hybrid methodology to the LS-SVM models.

A third reason is probably due to the fact that the expert makes his diagnosis based on

more information of the patients than available in our black-box model design. Indeed,
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some clinical features, e.g. some medical history, family history, genetic factors, and the

whole image of transvaginal sonography, etc. are not accessed by the mathematical

models.

In addition, the application of the evidence framework here might also be partially

responsible for a degradation in performance whenever the given assumptions are not

satisfied, though it has several advantages as mentioned before. These Gaussian assumptions

still need to be verified. The more training data, the better the assumption will be satisfied.

Another important issue is how to split the data for validating the diagnostic models.

The splitting of the data set in a training and test set according to the time scale is more

natural in clinical practice. There is a danger for changes in the patient population over

time. The more experienced the expert, the more difficult cases are being referred to him

for diagnosis, implying that the test set includes a higher number of harder cases (e.g. with

borderline malignancy) to diagnose.

Moreover, a homogeneity analysis of the group difference reveals that significant

differences (at significance level of 0.05) exist in age between the old patient group (data

from 1994 to 1997) and the new patient data set (data from 1997 to 1999). The mean age of

the 160 new patients is 48.6 (16–78), which is lower than the mean age of the 265 old

patients given by 52.4 (21–93). The proportion of post-menopausal patients in the new data

set (41.9%) is also lower than the one in the old data set (48.3%). Moreover, it is well

known that the level of tumor marker CA 125 can better predict the presence of cancer

in post-menopausal patients, compared to that in pre-menopausal patients. This implies

that it is harder to predict correctly the malignancy of the tumors in the new patient group

compared to that in the old patient group.

One can observe this trend in time scale from the performance of our model. The

performance of the model decreases, from an AUC of 0.99, sensitivity 97.5%, specificity

86.50% when applied to the old patient group (training set), to an AUC of 0.92, sensitivity

81.48% and specificity 83.13% when applied to the new patient group (both obtained by

taking 0.4 as the probability decision level). Even for the expert, preoperative detection of

cancer in the new patient group is more difficult than in the old patient group, which can be

seen from the drop of the sensitivity from 97.5% (specificity 88.65%) in the old patient

group, to 81.48% (specificity 93.40%) in the new patient group.

A random splitting of test and training set leads to a more equilibrated distribution of the

patient data over both sets other than for a random variation, and is thus a weak procedure

and less stringent [1]. This splitting is not representative for the way the models are used in

clinical practice, where a prospective evaluation is normally needed.

The temporal validation performance of our LS-SVM model is quite encouraging

though not perfect. It has a consistent cancer detection rate comparable to that of the expert,

while maintaining an acceptable false positive rate. Furthermore, the output probability of

the LS-SVM model enables it to assist the clinicians in making rational management

decisions about their patients and to counsel them appropriately.

On the other hand, we must realize the gap between the modeling and the real world. One

can expect that this gap will become smaller given a larger amount of training examples;

this is also one motivation for the International Ovarian Tumor Analysis (IOTA) project.

IOTA is a multi-center study on the preoperative characterization of ovarian tumors based

on artificial intelligence models [25]. More than 1000 patient data from more than ten
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centers located in different countries, including Belgium, UK, Sweden, France and Italy

have been collected. Based on this sufficiently large data set, mathematical models can be

developed for preoperative classification of benign and malignant ovarian tumors, and

further subclassify the tumors (e.g. borderline malignant, endometrioma). The variation

between centers in outcomes of histology and the performance of the models will also be

assessed. Then another 1000 patient data will be collected for future prospective validations.

6. Conclusions

In this paper, we apply the LS-SVM models within the Bayesian evidence framework

in order to discriminate between benign and malignant ovarian tumors. Advantages of this

approach include the ones inherited from the SVM, e.g. a unique solution, and support of

statistical learning theory. Moreover, after integration with a Bayesian approach, the

determination of the model, regularization and kernel parameters, can be done in a unifying

way, without the need of selecting an additional validation set.

A forward selection procedure which aims to maximize the model evidence has been

proved to be able to identify the important variables for model building. A sparse

approximation procedure applied to the LS-SVM classifier also further improves the

generalization performance of the LS-SVM models.

The posterior class probability for malignancy of ovarian tumor for each individual

patient can be computed through Bayes’ rule, incorporating the prior class probability and

misclassification cost. This output probability enables the possible application of our

mathematical model in clinical practice.

Two types of LS-SVM models with linear and RBF kernels, and logistic regression

models have been built based on 265 training data, and evaluated on 160 newly collected

patient data from the same center. They all have much better performance than RMI. The

LS-SVM classifier with an RBF kernel achieves the best performance compared with the

others, evidenced by consistently achieving the highest rank in AUC, sensitivity, and

positive predicting value. Our randomized cross-validation does also confirm the good

generalization performance of LS-SVM models. Though the discrepancy between the

performance of the linear and nonlinear models is not statistically significant, this can only

be verified by using a larger amount of cases for training and testing.

We conclude that LS-SVM models have the potential to reliably predict malignancy of

the ovarian tumors, though the models by now have not yet been able to beat the very

experienced human expert. Furthermore, a hybrid approach, which combines the learning

ability of black-box models and the expert knowledge of white-box models (e.g. Bayesian

network) might further improve the model performance. This will be the subject of the

future research.
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