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Abstract

Monitoring and forecasting of air quality parameters are popular and important topics of atmospheric and environ-

mental research today due to the health impact caused by exposing to air pollutants existing in urban air. The accurate

models for air pollutant prediction are needed because such models would allow forecasting and diagnosing potential

compliance or non-compliance in both short- and long-term aspects. Artificial neural networks (ANN) are regarded as

reliable and cost-effective method to achieve such tasks and have produced some promising results to date. Although

ANN has addressed more attentions to environmental researchers, its inherent drawbacks, e.g., local minima, over-fit-

ting training, poor generalization performance, determination of the appropriate network architecture, etc., impede the

practical application of ANN. Support vector machine (SVM), a novel type of learning machine based on statistical

learning theory, can be used for regression and time series prediction and have been reported to perform well by some

promising results. The work presented in this paper aims to examine the feasibility of applying SVM to predict air pol-

lutant levels in advancing time series based on the monitored air pollutant database in Hong Kong downtown area. At

the same time, the functional characteristics of SVM are investigated in the study. The experimental comparisons

between the SVM model and the classical radial basis function (RBF) network demonstrate that the SVM is superior

to the conventional RBF network in predicting air quality parameters with different time series and of better general-

ization performance than the RBF model.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With continuous economy development and popula-

tion increase in Hong Kong, severe problems relating to

environmental pollution have attracted much attention
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than ever before, e.g., air pollution, noise pollution,

shortage of land resources, waste and sewage disposal,

etc. Among these, air pollution has direct impact on hu-

mans by exposure to high pollutant levels existing in the

atmosphere. Air pollution monitoring and prediction

are needed for preventing the situation from worsening

in the long run. Besides, short-term forecasting of air

quality is also required in order to take preventive

and evasive action during the episodes of airborne

pollution.
ed.
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Monitoring and forecasting of air pollutant trends in

ambient air involve using a variety of approaches, e.g.,

on-site measurement, computational fluid dynamics

(CFD) simulation, computational intelligence, etc. Arti-

ficial neural network (ANN) methods are regarded as

cost-effective method to achieve the prediction of air pol-

lutants in time series and became popular in recent

years. The ANN model, in particular, the multi-layer

feed-forward neural network perceptron, can be trained

to approximate virtually any smooth, measurable func-

tion, and has produced certain promising results to date

(Boznar et al., 1993; Song and Hopke, 1996; Yi and Pry-

butok, 1996; Comrie, 1997; Roadknight et al., 1997;

Gardner and Dorling, 1998; Lee et al., 1999; Reich

et al., 1999; Fan et al., 2000, 2003; Perez et al., 2000;

Lu et al., 2002a,b,c, 2003). These studies have shown

that the ANN approach is effective in simulating and

describing the dynamics of non-stationary time series

due to its unique non-parametric, non-assumable,

noise-tolerant and high-adaptive properties. ANN

models are universal function approximators and can

be used to map any non-linear function without prior

assumptions on the original data.

Although some recognised ANN models were devel-

oped, e.g., Back-propagation (BP) algorithm, radial ba-

sis function (RBF) network, principal component

analysis/radial basis function (PCA/RBF) network,

etc., the inherent drawbacks, i.e., over-fitting training,

local minima, difficult determination of network archi-

tecture, and poor generalizing performance, remain un-

solved and impede the application of the ANN

approach into practice. The support vector machine

(SVM) method, developed by Vapnik (1995), can pro-

vide an effective novel approach to improve generaliza-

tion performance of neural networks and achieve

global solutions simultaneously. Originally, the SVM

model was developed for pattern recognition problems.

Recently, with the introduction of e-insensitive loss func-
tion, SVM has been extended to solve non-linear regres-

sion estimation and time series prediction (Mukherjee

et al., 1997; Müller et al., 1997; Vapnik et al., 1997;

Broomhead and Lowe, 1998). Unlike traditional learn-

ing machines, which normally adopt the Empirical Risk

Minimization Principle (ERMP) like feed-forward neural

networks, SVM implements Structural Risk Minimiza-

tion Principle (SRMP), which seeks to minimize an

upper bound of generalization error rather than mini-

mize training error. This process leads to better general-

ization than conventional methods. This paper presents

a pioneer study of using the SVM model to investigate

potential variations of air pollutants, which were mea-

sured at Causeway Bay Roadside Monitoring Station

during 1999, one of fourteen air pollutant monitoring

stations in Hong Kong territory established by Hong

Kong Environment Protection Department (HKEPD).

The SVM was firstly trained by selected data sets from
the original database, and then used to predict the pol-

lutant levels in different time series by selected test sets.

The performances of SVM were evaluated by comparing

with the results produced by conventional RBF net-

work. The variability performance regarding to the free

parameters of SVM was also examined.
2. Mathematical background and original database

2.1. Theory of support vector machine

In support vector machine (SVM) analysis, the basic

idea is to map original data x into a feature space F with

higher dimensionality via a non-linear mapping function

/, which is usually unknown, and then carry on linear

regression in the feature space (Vapnik, 1995; Vapnik

et al., 1997). Hence, the regression approximation ad-

dresses a problem of estimating a function based on a gi-

ven data set G ¼ fðxi; diÞgli (xi is input vectors, di is

desired values), which is produced from /. SVM method

approximates the function in the following form:

y ¼
Xl

i¼1

wi/iðxÞ þ b ð1Þ

where f/iðxÞg
l
i¼1 represent the features of inputs, fwigli¼1

and b are coefficients. These are estimated by minimizing

the regularized risk function listed below:

RðCÞ ¼ C
1

N

XN
i¼1

Leðdi; yiÞ þ
1

2
kwk2 ð2Þ

where

Leðd; yÞ ¼
jd � yj � e jd � yj P e

0 others

�
ð3Þ

Here, e is a prescribed parameter. The Le(d,y) is e-insen-
sitive loss function, which does not penalize errors less

than e. The term 1
2
kwk2 is used as a measurement of

function flatness. C is a regularized constant determining

the trade-off between the training error and the model

flatness. Introducing slack variables f, f* would lead

equation (2) to the following constrained formation:

Minimize: Rðw; f�Þ ¼ 1

2
kwk2 þ C�

Xn

i¼1

ðfi þ f�i Þ ð4Þ

w/ðxiÞ þ b� di 6 eþ fi
Subjected to: di � w/ðxiÞ � bi 6 eþ fi ð5Þ

f; f� P 0

Thus, Eq. (1) becomes the following explicit form:

f ðx; a; a�Þ ¼
Xl

i¼1

ðai � a�i ÞKðx; xiÞ þ b ð6Þ

In Eq. (6), ai and a�i are Lagrange multipliers, which

satisfy the equality of ai � a�i ¼ 0, ai P 0, a�i P 0,
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i = 1, . . ., l, and can be obtained by maximizing the dual

form of Eq. (4):

/ða; a�Þ ¼
Xl

i¼1

diðai � a�i Þ � e
Xl

i¼1

ðai þ a�i Þ

� 1

2

Xl

i¼1

Xl

j¼1

ðai � a�i Þðaj � a�j ÞKðai; ajÞ ð7Þ

Xl

i¼1

ðai � a�i Þ ¼ 0

with constrains:

0 6 ai 6 C i ¼ 1; . . . ; l

0 6 a�i 6 C i ¼ 1; . . . ; l

ð8Þ

According to the nature of quadratic programming,

only those data corresponding to non-zero (ai; a�i ) pairs
can be referred to support vectors. Here, K(xi,xj) is

called kernel function and obtained by K(xi,xj) = /
(xi) * /(xj) in the feature space. Thus, all computations

related to / will be carried on by kernel function in input

space (Vapnik, 1995; Vapnik et al., 1997). The common

Gaussian kernel function K(xi,xj) = exp(�kxi � xjk2/
(2r2)) is used in the study (r = 1.0). Both C and e are

specified with 100 and 10�3 respectively.

2.2. Air quality in Hong Kong Urban Air

Hong Kong possesses the highest vehicle density in

the world, i.e., approximately 271 vehicles/km [Trans-

port Department, 2001]. Hence, vehicle exhaust is a ma-

jor air pollutant source in Hong Kong. Owing to the

diesel running on the majority of vehicles in Hong

Kong, large amount of pollutants, e.g., respirable sus-

pended particulate (RSP), nitrogen dioxides (NO2),

nitrogen oxides (NOx), etc., are emitted to urban atmo-

sphere from vehicle exhaust, particularly in congested

downtown areas (Chan and Kwok, 2000; Chan and

Liu, 2001; Wang et al., 2001). According to HKEPD an-

nual reports, RSP is reckoned as the most severe pollu-

tant (HKEPD Annual Report, 1998, 1999, 2000).

Previous studies have shown that high RSP level may

cause chronic and acute effects on human health, partic-

ularly the pulmonary function and the respiratory prob-

lems (Harrison et al., 1997; Spurny, 1998; Perez et al.,

2000). Such effects are deteriorated if RSP pollution is

associated with high level of other pollutants, e.g.,

NO2, NOx, etc. (Burnett et al., 1999). The RSP contain-

ing small sizes (e.g., less than 5lm) may also influence

visibility and images of historical, cultural treasures via

surface deposition. The records of air quality monitoring

database show quite a number of times that RSP, NO2,

and NOx levels were reported exceeding the correspond-

ing Air Quality Objectives (AQOs), stipulated by

HKEPD, in certain congested downtown areas in Hong
Kong during the past five years. The situations are get-

ting worse as the road vehicles increase continuously.

Long-term exposures to RSP, NO2, and NOx can lower

human resistance to respiratory infections and aggravate

existing chronic respiratory diseases at the same time.

Therefore, these three pollutants, i.e., RSP, NOx and

NO2, are selected as outputs of the proposed SVM

model to be tested.

2.3. Original data set

The available air quality database measured at

Causeway Bay roadside monitoring station in 1999

was selected as the original data set. The database in-

cludes seven major air pollutants, i.e., carbon monoxide

(CO), nitric oxide (NO), NO2, sulphur dioxide (SO2),

NOx, ozone (O3), and RSP, and five meteorological

parameters, i.e., indoor and outdoor temperature (IT

and OT), solar radiation (SD), wind direction (WD)

and wind speed (WS), which were hourly measured at

the said location.

In prediction experiments, the recorded levels of

RSP, NOx and NO2 in June and December are selected

as original samples. The reason to choose the data in

these two months is because December and June repre-

sent two different seasons in Hong Kong, i.e., December

corresponds to dry, cold weather and is normally

accompanied by the prevailing north-eastern wind and

the highest pollutant levels (i.e., local vehicle exhausts

combining with migration of industrial pollutants from

Mainland China), while June corresponds to hot, wet

season and often undergoes the dominant south-eastern

wind and the lowest pollutant concentrations (i.e., local

vehicle pollution dominates) (HKEPD Annual Report,

1998). Hence, the robustness of the SVM model can be

verified by seasonal variation. In simulations, the data

of the first ten days (240 data points) in each month

are used as training sets. The trained SVM model is then

used to predict the pollutant levels in different time ser-

ies, i.e., one day and one week predictions for coming

periods. Thus the simulation results have either 24 test

points corresponding to the hourly measurements on

the 11th day of selected month, or 168 test points repre-

senting the hourly data for the week of the 11th–17th

day of each month.
3. Results and discussion

The simulation programs are constructed using

Matlab with sequential minimal optimization (SMO)

algorithm for solving time series prediction. A conven-

tional, adaptive RBF network is used as a benchmark.

The performance assessments of both models are carried

out by comparing the simulation results produced by

both models. In both models, the input variables include
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six pollutants: SO2, NOx, NO, NO2, CO and RSP, while

Outputs are RSP, NOx and NO2 in corresponding

simulations.

3.1. Recovery performances of SVM and RBF models

Taking the RSP levels as training examples, we com-

pare the recovery performance between the SVM and

the RBF models on the training set (i.e., 240 data of

1st–10th January 1999) and the testing set (i.e., 168 data

of 11th–17th January 1999). Fig. 1 illustrates the recov-

ery performances on the training data using both meth-

ods. For the SVM method, the computed results are

almost identical to the original data and the maximum

deviation is 65.7lg/m3. While, for the RBF network,

more deviating points are observed than the SVM model

does, and the maximum deviation is 69.2lg/m3. In gen-

eral, both models show good recovery performance on

the training data except some individual deviating points

observed, more in RBF model than that in SVM model.

The comparison of prediction errors on the testing

data between the SVM and the RBF models is shown
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Fig. 2. Predictions by SVM and RBF models on testing data: (a) c
in Fig. 2. It can be seen that the results of RBF network

fluctuate for the first 60 data, while the ones produced

by SVM method are very close to the original data

points (Fig. 2b). Both models present good performance

on simulating the data points between 60 and 150. How-

ever, the prediction errors of RBF network increase

sharply at the later testing stages with the maximum er-

ror at 2601.3lg/m3 (Fig. 2a). While, for SVM method,

the computing error keeps within a small range, the pre-

dictions still remain close to the original ones, and the

maximum error is only 92.0lg/m3 (Fig. 2b). From Fig.

2, it can be observed that the SVM model has better gen-

eralization performance than the RBF network on the

testing process, which is in consistency with statistical

learning theory.

3.2. Predictions of pollutant levels in different time

series

The robustness and tolerance of both SVM and RBF

models are inspected and discussed under the impact

of meteorological factors such as temperature, humid-
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Fig. 3. Prediction comparisons between SVM and RBF models for 24-h period.
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Fig. 4. Prediction comparisons between SVM and RBF models for one-week in December, 1999: (a) comparison in full scale and (b)

comparison in resolved scale.
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Fig. 5. Prediction comparisons between SVM and RBF models for one-week in June, 1999: (a) comparison in full scale and (b)

comparison in resolved scale.

W.-Z. Lu, W.-J. Wang / Chemosphere 59 (2005) 693–701 697



698 W.-Z. Lu, W.-J. Wang / Chemosphere 59 (2005) 693–701
ity, wind speed and direction, and solar condition in dif-

ferent seasons. Figs. 3–5 compare the RSP levels

predicted by both SVM and RBF networks with two

time periods, i.e., 24-h and one-month advancing, in

December and June of 1999. It can be seen that, for

the 24-h cases, both models produce generally good re-

sults for the selected months, but the results produced

by SVM method are slightly closer to the original data

than those by RBF network (shown in Fig. 3a and b).

While for one-week cases, the SVM method expresses

great advantages over the RBF network (Figs. 4

and 5). The predictions produced by SVM are generally

close to the original data in both months (Figs. 4a and

5a). The maximum absolute errors of the SVM model

for selected months are 77.87lg/m3 (Fig. 4b) and

74.67lg/m3 (Fig. 5b) respectively. The results created

by RBF fluctuate and, at certain points, deviate from

the measured points in great range. The maximum abso-

lute errors by RBF network for case of December is

nearly 327.44lg/m3 (Fig. 4a), and even reaches

1389.16lg/m3 for case in June (Fig. 5a). The SVM

method performs better than the conventional RBF
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Fig. 6. Prediction comparisons between SVM and RBF models for

comparison in resolved scale.
one does. Hence, it can be concluded that, although

the impact of meteorological variables exists, the SVM

method still possesses superior advantages to the con-

ventional RBF network and can produce good predic-

tion performance due to its features of noise-tolerance,

high stability, adaptive properties and better generaliza-

tion performance.

Considering the characteristics of each pollutant,

e.g., accumulation of RSP matter, physical and chemical

complexity of NOx and NO2, etc., the generalization

performance of the SVM model can be further verified

by predicting the other two pollutants, i.e., NOx and

NO2. Figs. 6 and 7 describe the predictions of hourly

NOx and NO2 levels in one week advancing time series

in June and December of 1999. It is noticed that the

RBF network demonstrates very poor performance to

predict one-week NOx levels both in June and December

(Fig. 6). At some points, the deviations (i.e., maximum

absolute errors) between original data and predictions

reach 80054.91lg/m3 in June (Fig. 6a) and 38758.5

lg/m3 in December (Fig. 6c) respectively; While the SVM

method presents satisfactory predicting performance
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NOx levels in 1999: (a,c) comparison in full scale and (b,d)
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Fig. 7. Prediction comparisons between SVM and RBF models for NO2 levels in 1999.
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with the maximum absolute errors at 530.6888lg/m3 in

June (Fig. 6b) and 415.99lg/m3 in December (Fig. 6d)

respectively. For predicting NO2 levels, although both

methods are close to original data (Fig. 7a and b), the

SVM method still possesses better generalization perfor-

mance than the RBF network does. Either the mean

absolute error (MAE) or the maximum absolute error

produced by SVM model is smaller than that obtained

by RBF one. Table 1 shows comparisons of predicting

errors of three pollutants for one-week time series be-

tween SVM and RBF models. From Table 1, it can be

seen that, for three pollutants, both the MAE and the

maximum absolute errors produced by the SVM method

are smaller than the ones created by the conventional

RBF network in both months. Additionally, the errors

in December are less than the ones in June by both

methods. Based on the above experiments, it can be con-

cluded that SVM method is superior to RBF model, and

possesses good, robust predicting performance.

3.3. Sensitivity on free parameters in the SVM method

In the study, the Gaussian kernel function of SVM

contains three free parameters: r, C and e. Since there

are no general rules to determine these free parameters,

it is necessary to investigate impacts of selecting these

parameters on the resultant generalization errors. Here,

the mean absolute error (MAE) is used as an assessment
Table 1

Prediction errors of three pollutants with one-week in advance (lg/m

Prediction errors RSP

December June

MAE SVM method 17.657 19

RBF network 46.157 70

Maximum absolute error SVM method 77.87 74

RBF network 327.44 1389
of deviation between original data and predictions. Gen-

erally, the smaller the values of MAE, the better results

one can achieve. The MAE is defined as

MAE ¼ 1

n

Xn

i¼1

jai � pij ð9Þ

Fig. 8 demonstrates the MAE variation via C-values.

The figure indicates that the prediction error is scarcely

influenced by C-values and is only sensitive if C is small

enough, e.g., C 6 0.001. As C increases, the MAE value
3)

NOx NO2

December June December June

.016 131.645 119.667 13.128 11.548

.745 2556.391 4058.23 18.707 17.604

.67 415.99 530.689 48.974 64.817

.16 38758.5 80054.91 61.010 65.456
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decreases rapidly, keeps at small value, and changes

slightly when CP 0.5. In general, to guarantee the

stable learning process,C should be set with a large value,

e.g.,C = 100 in this study. Fig. 9 illustrates the prediction

errors varying versus e-values. It is also found that e has
little impact on the predicting performance. The MAE

values remain almost constant once e < 10�2 and

e > 0.5. In SVM simulation, it is suggested that e takes
a small value. Hence, we set e = 0.001 in the simulation.

Theoretically, the spread parameter r greatly affects

the prediction performance. Both too large (e.g.,

r !1) and too small (e.g., r ! 0) values of r may lead

to poor predictions. If r ! 0, all training data points

would become support vectors. Then, for unseen data,

the SVM model cannot provide valuable computing

guidance and achieve good predicting performance.

Otherwise, if r ! 1, all training data points would be re-

garded as one point. Hence, the SVM model may pro-

duce same calculating results for any new data points.

Therefore, these two extreme situations should be

avoided. It should be noticed that both r ! 0 and

r !1 represent two approximating processes. In actual

cases, if r � kxi � xjk and r � kxi � xjk, the extreme sit-

uations mentioned above will appear. Fig. 10 presents the

varying trend of MAE profile with r-values. It can be

seen that MAE is large (i.e., around 24.7) when r is small

(e.g., r = 0.001), then decreases to small values with

increasing r, and reach the minimum point (i.e., 10.1)

at point of r = 1.00. Based on Fig. 10, the MAE curve

slightly fluctuates within a range of [10.1,10.8] when r
falls into [0.9,1.1], gradually increases with the increase

of r, and finally tends to maintain constant after

r P 30. Therefore, in practical applications, only the

spread parameter r of Gaussian kernel function needs

to be determined during the simulations, while the other

two parameters, i.e., C and e, can be set in advance by

experiences. In our study, the r-value is finally specified

as r = 1.0 after trial-and-error process.
4. Conclusion

The potential of applying SVM model in ambient air

pollutant prediction is studied and presented in this pa-

per. It can be concluded that SVM model provides a

promising alternative and advantage in time series

forecast. It offers several advantages over the conven-

tional feed-forward RBF neural networks. Firstly,

it contains fewer free parameters than the RBF model

does. In this study, the spread parameter r is the only

factor need to be considered in the SVM model once

the kernel function is determined. While for conven-

tional RBF model, the network size, the learning para-

meter estimation, and the network training greatly

affect prediction performance and need extra care dur-

ing the simulation. Secondly, due to the adoption of

the Structure Risk Minimization Principle, the SVM

model provides better predictions than the conventional

RBF model. As shown above, the SVM model produces

smaller MAE values either for the 24-h or for the one-

week time series predictions than that of RBF net-

work. Finally, the SVM model can eliminate the typi-

cal drawbacks of conventional neural network models,

e.g., ‘‘over-fitting’’ training and local minima, and

proves to be more expandable and robust than the

conventional RBF network. The application of the

SVM method in environmental aspect is a good, inter-

esting attempt; it may be worthy to test its value in more

areas.
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