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The support vector machine (SVM), as a novel type of learning machine, was used to develop
a classification model of carcinogenic properties of 148 N-nitroso compounds. The seven
descriptors calculated solely from the molecular structures of compounds selected by forward
stepwise linear discriminant analysis (LDA) were used as inputs of the SVM model. The
obtained results confirmed the discriminative capacity of the calculated descriptors. The result
of SVM (total accuracy of 95.2%) is better than that of LDA (total accuracy of 89.8%).

Introduction

N-Nitroso compounds (NOCs)1 have been known for
more than 100 years since dimethylnitroamine was
prepared. The carcinogenic property of this kind of
compounds was not described until 1956 by Magee and
Barnes (1). Since then, extensive studies have been
carried out in various countries on the occurrence and
influence of NOCs. There seems to be two main reasons
for this worldwide interest on this topic permanently.
First, the NOCs, including nitrosamines and nitrosa-
mides, are a class of potent and widespread environmen-
tal carcinogens, which are potentially important in the
etiology of human cancer. They induce tumors in various
vital organs causing pancreatic cancer (2), gastrointes-
tinal cancer (3), and renal and childhood brain tumors,
etc. (4, 5). They also influence a wide range of animals.
For this reason, the presence of NOCs is a matter of
concern. Second, they have been easily found in many
substances such as the betel nut, in bacteria, and in
smoke and foodstuffs. These substances are commonly
in contact with us. Additionally, NOCs can be formed
easily from the reaction of amines and nitrites. The
amine precursors are normal constituents of food, drugs,
pesticides, and food additives. Nitrite is abundantly
present in the environment, in cured meat, and in human
saliva and could be the reduction of nitrate. Therefore,
it is highly likely that man is susceptible to its carcino-
genic effect everyday and anywhere.

Relationships between the molecular structure of
NOCs and their metabolism and/or their carcinogenic
potential have been studied extensively. Many biochemi-
cal and physicochemical investigations have been di-
rected toward establishing their structure-activity re-

lationships (SARs). Because the molecular geometry and
conformational behavior critically influence the biological
activity, quantitative SARs (QSARs) of N-nitrosamines
have been extensively studied by different computational
methods. Wishnok et al. reported, with some degree of
confidence, an estimate of carcinogenic activity for 51
nitrosamines through SARs by correlating the number
of carbon atoms with the carcinogenic activity (6). Later,
they reported a quantitative Hansch-Taft SAR for
nitrosamine carcinogenicity, which demonstrated that
variation in carcinogenicity could be correlated with a
number of molecular properties (7). Then, the same
authors predicted organ specificity using physicochemical
properties of N-nitrosodialkylamines. Partition coef-
ficients, electronic factors, and a measure of steric
hindrance gave a near perfect prediction of 19 compounds
(8). Singer et al. linked liposolubility with nitrosamine
carcinogenicity through QSAR (9). Chou et al. expanded
the approach to SARs by applying computer-assisted
mathematical and statistical methods to a large set of
144 NOCs (10). Dunn et al. used a pattern recognition
technique called SIMCA to perform the classification of
61 NOCs (11, 12). They reported an 88% correct clas-
sification of the carcinogens. Peter et al. reported a
pattern recognition method of 150 nitrosamines, and they
reported a 97% correct classification using 22 descriptors
(13). Dai et al. also reported a pattern recognition method
of 153 nitrosamines, and they reported a 97% correct
classification using 10 descriptors (14).

Because of computational bottlenecks in descriptor
generation and statistical algorithms, most of the previ-
ous approaches are not satisfactory. Some models have
been developed for a relatively small data set of com-
pounds. Some models, however, include a large number
of descriptors, leading to the difficulty of the explanation
of the physical meaning of the descriptors. Usually, they
only used the linear statistical method, which solved the
highly nonlinear QSAR problems with difficulty.

Several nonlinear QSAR techniques have been pro-
posed in recent years. One of them is support vector
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machine (SVM), which is a new method increasingly
being used in pattern recognition studies. In the present
study, for the first time, a novel modeling approach based
on SVMs to classify NOCs is presented. A large number
of descriptors were calculated by CODESSA software.
The LDA method was also utilized to establish a linear
classification model to compare the results with those
obtained by SVM. The aim of this study is to establish
an accurate classification model for the prediction of the
carcinogenic property of NOCs and to seek the important
structural features related to the carcinogenic property
of NOCs.

Data Set and Molecular Descriptor
Generation

Data Set. The data set of this investigation consisted
of 148 NOCs, which were taken from the paper published
by Dai (14). Of these compounds, 116 are carcinogenic
compounds, and 32 are not carcinogenic ones. It is
asymmetric with fewer inactive than active compounds.
The general structure of the NOCs is shown in Figure 1.
A complete list of the compounds’ structures and their
corresponding classification is in Table 1. In Table 1, “+”
represents carcinogenic compounds and “-” represents
noncarcinogenic compounds. The entire set of compounds
was divided into two subsets: a training set, whose
information was used to build the models, and a test set,
consisting of molecules not found in the training set,
which was used to validate the models once they were
built. Members of each set were assigned randomly. The
training set consisted of 118 compounds (79.7%), and the
test set contained 30 compounds (20.3%). As an added
precaution, it was verified that each set contained
roughly the same percentage of noncarcinogenic com-
pounds (training set ) 22.0%, test set ) 18.75%).

Molecular Descriptor Generation. The structures
of the compounds were drawn with the ISIS DRAW 2.3
program (15). The final geometries were obtained with
the semiempirical PM3 method in the HYPERCHEM 4.0
program (16). All calculations were carried out at a
restricted Hartree-Fock level with no configuration
interaction. The molecular structures were optimized
using the Polak-Ribiere algorithm until the root-mean-
square gradient was 0.001. Then, the resulting geometry
was transferred into CODESSA software, developed by
the Katritzky group (17, 18), which can calculate consti-
tutional, topological, geometrical, electrostatic, and quan-
tum chemical descriptors and has been successfully used
in various QSPR and QSAR researches. Constitutional
descriptors are related to the number of atoms and bonds
in each molecule. Topological descriptors include valence
and nonvalence molecular connectivity indices calculated
from the hydrogen-suppressed formula of the molecule,
encoding information about the size, composition, and the
degree of branching of a molecule. The topological
descriptors describe the atomic connectivity in the mol-
ecule. The geometrical descriptors describe the size of the
molecule and require three-dimensional coordinates of
the atoms in the given molecule. The electrostatic de-
scriptors reflect characteristics of the charge distribution
of the molecule. The quantum chemical descriptors offer

information about binding and formation energies, par-
tial atom charge, dipole moment, and molecular orbital
energy levels.

Methodology

LDA Model Development. The basic theory of linear
discriminant analysis (LDA) is to classify the dependent
by dividing an n-dimensional descriptor space into two
regions that are separated by a hyperplane defined by a
linear discriminant function (19, 20) as follows:

where Y is a discriminat score, that is, the dependent
variable; X1 - Xn represents the specific descriptor; and
b corresponds to weights associated with the respective
descriptor. The two regions formed by the hyperplane
correspond to the two classes to which individual com-
pounds are predicted to belong.

LDA was performed using the SPSS statistical soft-
ware. For the purposes of modeling, a value of 1 was
assigned to compounds with carcinogenic activity, and a
value of 2 was assigned to those with no carcinogenic.
The linear classifications were performed in a stepwise
manner: At each step, the variable that adds the most
to the separation of the groups is entered into (or the
variable that adds the least is removed from) the dis-
criminant function. The selection of the descriptors was
based on the F parameter. In this study, the minimum
partial F value to enter is set to 5.50 and the maximum
partial F to remove is 2.71. The prior probabilities were
computed from group size (0.784 and 0.216 for the
carcinogenic activity and noncarcinogenic compounds,
respectively).

Theory of SVM. Because there are a number of
introductions into SVM (21-24), here, we only briefly
summarized the main ideas of SVM for classification. The
SVM method was proposed by the Vapnik group (25). The
main advantage of SVM is that it adopts the structure
risk minimization (SRM) principle, which has been shown
to be superior to the traditional empirical risk minimiza-
tion (ERM) principle (26), employed by conventional
neural networks. SRM minimizes an upper bound of the
generalization error on the Vapnik-Chernoverkis dimen-
sion, as opposed to ERM, which minimizes the training
error. This method has proven to be very effective for
addressing general purpose classification and regression
problems (27-33). In most of these cases, the perfor-
mance of SVM modeling either matches or is significantly
better than that of traditional machine learning ap-
proaches, including artificial neural networks. The SVM
method has a number of interesting properties, including
an effective avoidance of overfitting, which improves its
ability to build models using large numbers of molecular
property descriptors with relatively few experimental
results in the training set.

The objective of SVM for classification is to construct
an “optimal hyperplane” as the decision surface such that
the margin of separation between two different chemical
substances is maximized. In the simplest form, the SVM
is a linear classifier. However, if we cannot find a linear
separator, data points are projected into a (usually)
higher dimensional space where the data points ef-
fectively become linearly separable. In nonlinearly sepa-
rable cases, SVM maps the input variable into a high

Figure 1. General structure of NOCs.

Y ) b0 + b1X1 + b2X2 + ... + bnXn
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dimensional feature space (Φ : RN |f F) using a kernel
function K(xi, xj). As both the objective function and the

decision function are expressed in terms of dot products
of data vectors x, the potentially computation intensive

Table 1. Compounds’ Structure and Its Corresponding Classification

*Test set. **Misclassified one. a The compound is a cyclic compound.
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mapping Φ(‚) does not need to be explicitly evaluated.
SVM classifiers are generated by a two-step procedure:
First, the sample data vectors are mapped to a very high-
dimensional space. The dimension of this space is sig-
nificantly larger than that of the original data space.
Then, the SVM algorithm finds a hyperplane in this space
with the largest margin separating classes of data.

All calculation programs implementing SVM were
written in an R-file based on the R script for SVM. The
scripts were compiled using an R 1.7.1 compiler running
operating system on a Pentium IV PC with 256M RAM.

Results and Discussion

Results of LDA. After LDA, it can be seen that the
best linear model contains seven molecular descriptors.
The selected variables, their chemical meanings, their
unstandardized coefficients, and their F values are shown
in Table 2. The F value was the parameter for choosing
descriptors. As we know, a larger F value means there
are significant differences of each other. The larger an F
value is, the descriptor has priority to enter in the model,
indicating that the variable is better at discriminating
between groups. The correlation matrix of the seven
selected descriptors is shown in Table 3. From Table 3,
it can be seen that the linear correlation coefficient value
of each of the two descriptors is <0.85, which means that
the descriptors are independent in this LDA analysis. The
LOO results of LDA model are listed in Table 1. It gave
a total accuracy of 89.8%; see Table 4.

By interpreting the descriptors in the LDA model, it
is possible to gain some insight into factors that are likely
to relate to the carcinogenic property of the NOCs. NOCs
are known to react with DNA, which leads them to form
a DNA adduct (34-37). If the adducts persist, miscoding
can occur during DNA replication, leading to permanent
mutations and derangement of normal cellular growth,

ultimately, tumorigenesis. NOCs must be activated to
exert their carcinogenic effects. In the carcinogenic
process, hydroxylation of the carbons R- to the N-nitroso
group is a key step. Following R-hydroxylation, the
unstable R-hydroxy one decomposes to electrophilic in-
termediates that can react with nucleophilic DNA bases
to yield adducts. Because of the diversity of the molecules
studied in this work, the carcinogenic property of the
compounds is related to the molecular structure in a
complex way. Of the seven descriptors, one is constitu-
tional, four are topological, and two are electrostatic
descriptors. These descriptors encode different aspects
of the molecular structure.

The relative number of C atoms (RNC) is a constitu-
tional descriptor, which is calculated as the number of C
atoms divided by the number of atoms. The RNC par-
tially accounts for the steric hindrance effect. The size
and shape of compounds influence their transport prop-
erties through a biological system as well as their steric
hindrance at the reactive site. The larger the descriptor
value is, the larger the steric hindrance is. Thus, an
increase of the descriptor valve leads to a decrease of the
binding ability to DNA, indicating the noncarcinogenicity
of the compounds.

The Balaban index (BI) (38), a topological descriptor,
describes the atomic connectivity and branching informa-
tion in the molecule and has some correlation with the
hydrophobic interaction of the molecules. The other two
topological descriptors are the Randic index (order 2)
(RI2) and order 3 (RI3) (39), which encode the size, shape,
and degree of branching in the compound and also relate
to the dispersion interaction among molecules. Because
of their positive coefficients in the linear model, increas-
ing this descriptor also increases the discriminant score
values, indicating the disfavor of the binding to the
reactive site of DNA. Additionally, the large degree of
branching and dispersion for molecules also gave a
negative influence on the transport properties through
a biological system. The fourth topological descriptor,
structural information content (order 2), developed by
Basak and co-workers based on the Shannon information
theory (40, 41), takes into account all atoms in the
constitutional formula (hydrogens also being included),
and it considers the information content provided by
various classes of atoms based on their topological
neighborhood. It is not intercorrelated with other topo-
logical indexes. The negative coefficient in the model
implies that increasing the value of this descriptor can
lead to the carcinogenicity of the compounds.

Two electrostatic descriptors, relative positively charged
surface area (RPCS) and surface-weighted charged par-
tial surface area (WNSA-1), are both of the charged
partial surface area (CPSA) type (42), which are based
on the surface area of the whole molecule and on the
charge distribution in the molecule, so they combine

Table 2. Seven Descriptors, the F Value, and Unstandardized Coefficient for the LDA

chemical meaning
F to

remove
unstandardized

coefficient

constant constant -8.471
RI(3) Randic index (order 3) 12.386 1.313
SIC(2) structural information content (order 2) 62.521 -0.347
BI Balaban index 36.433 1.752
RPCS relative positively charged surface area 25.188 0.423
WNSA-1 surface-weighted charged partial surface area 12.076 -0.040
RNC relative no. of C atoms 8.401 8.767
RI(2) Randic index (order 2) 7.397 0.815

Table 3. Correlation Matrix of the Seven Descriptors

RI(3) SIC(2) BI RPCS WNSA-1 RNC RI(2)

RI(3) 1.000
SIC(2) 0.642 1.000
BI -0.241 0.240 1.000
RPCS 0.605 0.446 0.132 1.000
WNSA-1 -0.384 -0.279 -0.214 -0.229 1.000
RNC 0.842 0.728 0.017 0.642 -0.470 1.000
RI(2) 0.527 0.397 -0.267 0.390 0.212 0.455 1.000

Table 4. Results of Two Models

LDA SVM

+ - + -

+ 111 5 114 2
- 10 22 5 27
% + 95.7 4.3 98.2 1.8
- 31.3 68.6 15.6 84.4
total accuracy (%) 89.8 95.2
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shape and electronic information to characterize the
molecule; therefore, they encode features responsible for
polar interactions between molecules. RPCS (42, 43) is
the product of the solvent accessible surface area of the
most positive atom by the relative positive charge (RPCG).
The chemical charges in the molecule are calculated
using the approach proposed by Zefirov (44), based on
the Sanderson’s electronegativity scale. WNSA-1 (45)
indicates the effect of negative charge distribution in the
molecule, and it also encodes information about polar
interactions. The charge distribution of the molecule is
most likely an influence in the key step of R-hydroxyla-
tion. The larger the solvent accessible surface area
produced by the relative positive charge is, the less
chance for hydroxylation on the R carbon is. It implies
that the molecule trends to no carcinogenic property. On
the contrary, it gave a beneficial environment for the
R-hydroxylation process. As can been seen from the
coefficients in the linear model, the above two descriptors
have opposite effects really.

From the above discussion, it can be seen that the
steric and electric descriptors are likely two major factors
in the process of carcinogenicity, and all of the descriptors
involved in the model, which have explicit physical
meanings, may account for the structural features re-
sponsible for carcinogenic properties of NOCs.

Results of SVM. After the establishment of the linear
model, SVM was used to develop a nonlinear model based
on the same subset of descriptors. Similar to other
multivariate statistical models, the performances of SVM
for classification depend on the combination of several
parameters. The kernel functions should be decided first.
There are a number of kernel functions, which have been
found to provide good generalization capabilities. One has
several possibilities for the choice of this function, includ-
ing linear, polynomial, splines, and basis function. How-
ever, for classification tasks, a commonly used kernel
function is the Gaussian radial basis function because
of its good general performance and a few number of
parameters (Bishop, 1997); the RBF is formulated as
below:

This function was used in the present work.
The other two parameters are capacity parameter C

and γ. C is a regularization parameter that controls the
tradeoff between maximizing the margin and minimizing
the training error. If C is too small, then insufficient
stress will be placed on fitting the training data. If C is
too large, then the algorithm will overfit the training
data. To make the learning process stable, a large value
should be set up for C. According to our experience (46),
in this study, C was set to 100 first. γ, the parameter of
the kernel, controls the amplitude of the Gaussian
function and, further, controls the generalization ability
of SVM. Therefore, the models were obtained researching
the effects of far going γ and C on the accuracy of LOO
cross-validation of all training compounds and the maxi-
mum accuracy was chosen as the optimal condition. The
accuracy of LOO cross-validation was plotted vs different
γ (Figure 2) and C (Figure 3). The optimal γ was found
as 0.037, and the final optimal value of C is 100.

Then, the test set data were tested with the built
model, and the result of the test set was listed in Table
1. The misclassified samples (marked by double asterisk)

by LDA and SVM were listed also. The same misclassified
ones of LDA and SVM were 117, 127, and 134. The
accuracy of each class is shown in Table 4. The accuracy
was 95.7% on the active group for LDA and 98.2% for
SVM, and on the inactive group, the overall accuracy was
68.6% for LDA and 84.4% for SVM. The accuracy of the
training set for SVM was 97.4%, and the test set was
86.6%. The total accuracy for SVM was 95.2%, which was
higher than that of LDA (89.8%). From comparison of
the two methods, it can be seen that performance of SVM
was better than that of LDA, which implies that using
the same descriptors, the SVM method is capable of
recognizing highly nonlinear SARs; in contrast, LDA
approaches can only capture linear relationships between
molecular characteristics. It also can be seen from Table
4 that the accuracy of the inactive group is lower than
the active group.

Conclusion
In this work, we applied LDA and support vectors

machine for the prediction of the carcinogenic property
of a set of 148 NOCs using descriptors calculated from
the molecular structure alone. Satisfactory results were
obtained with the proposed methods. The proposed LDA
model could provide some insight into what structural
features are related to the carcinogenic properties of
NOCs. Additionally, using Gaussian kernel SVM pro-
duced even better classification models with a better
predictive ability than LDA. The training procedure is
also simple when using SVM because fewer parameters

exp[-γ * (x - xi)
2]

Figure 2. Accuracy of LOO cross-validation of training set vs γ.

Figure 3. Accuracy of LOO cross-validation of training set
vs C.
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are optimized, and only support vectors are used in the
generalization process. Besides, the SVM exhibits the
better whole performance due to embodying the SRM
principle and some advantages over the other techniques.
Furthermore, the proposed approach can also be extended
in other QSPR/QSAR or classification investigations.
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