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Summary There has been a growing research interest in brain tumor classification
based on proton magnetic resonance spectroscopy (1H MRS) signals. Four research
centers within the EU funded INTERPRET project have acquired a significant number of
long echo 1H MRS signals for brain tumor classification. In this paper, we present an
objective comparison of several classification techniques applied to the discrimination
of four types of brain tumors: meningiomas, glioblastomas, astrocytomas grade II and
metastases. Linear and non-linear classifiers are compared: linear discriminant ana-
lysis (LDA), support vector machines (SVM) and least squares SVM (LS-SVM) with a linear
kernel as linear techniques and LS-SVM with a radial basis function (RBF) kernel as a
non-linear technique. Kernel-based methods can perform well in processing high
dimensional data. This motivates the inclusion of SVM and LS-SVM in this study. The
analysis includes optimal input variable selection, (hyper-) parameter estimation,
followed by performance evaluation. The classification performance is evaluated over
200 stratified random samplings of the dataset into training and test sets. Receiver
operating characteristic (ROC) curve analysis measures the performance of binary
classification, while for multiclass classification, we consider the accuracy as perfor-
mance measure. Based on the complete magnitude spectra, automated binary classi-
fiers are able to reach an area under the ROC curve (AUC) of more than 0.9 except for
the hard case glioblastomas versus metastases. Although, based on the available long
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1. Introduction

Brain tumors are the second leading cause of can-
cer death in children under 15 years and young
adults up to the age of 34. These tumors are also
the second fastest growing cause of cancer death
among humans older than 65 years [1]. Early detec-
tion and correct treatment based on accurate
diagnosis are important steps to improve disease
outcome.

Currently, magnetic resonance spectroscopy
(MRS) in combination with magnetic resonance ima-
ging (MRI) are important tools to identify the loca-
tion, size and type of brain tumors. So far, MRS has
been proven to be an accurate non-invasive tech-
nique which can give detailed chemical information
of metabolites present in the suspected brain
tumors [2,3]. Under physiological conditions,
several important metabolites are observed: NAA
(N-acetyl aspartate) as a neuronal marker; Cho
(choline-containing compounds) as membrane pre-
cursors and degradation products; Cr (total crea-
tine) as a measure of the energy status; glucose; and
mI (myo-inositol). Under pathological conditions,
the presence of some resonances can be indicative:
a doublet of Lac (lactate); lipids and/or some low
molecular weight proteins which might occur even
under normal conditions; Ace (acetate) and certain
amino acids, such as Ala (alanine), Gln (glutamine),
Glu (glutamate) and Gly (glycine).

In comparison to in vitro spectroscopy, in vivo
spectroscopy signals are more difficult to analyze
because of their broader resonances, strongly over-
lapping peaks, lower signal-to-noise ratio and
higher number of artifacts. Cousins [4] discusses
the influence of the echo time TE on the spectral
pattern of an MRS signal. The above-mentioned
metabolites can be detected in short echo 1H MRS
signals. However, short echo 1H MRS signals are
more difficult to analyze than long echo 1H MRS
signals due to a higher number of overlapping
peaks, a stronger baseline and a higher sensitivity
to artifacts. In comparison, long echo 1H MRS sig-
nals are poorer in information but they allow a
more reliable analysis and testing of classification
methods.

Many studies have been performed to classify
MRS signals. Lindon et al. [5] overviewed pattern
recognition methods and their applications in

biomedical magnetic resonance. Several studies
[6—11] also show some progress in automated pat-
tern recognition for brain tumor classification based
on MR data. These studies are either based on MRI
(e.g. [11]), MRI combined with MR spectroscopic
imaging (MRSI) (e.g. [7]), long echo (e.g. [6,8,9]) or
short echo 1H MRS (e.g. [10]), but most of the papers
investigate only one classification method and
restrict data collection to one center only. As per-
formance measure either the training performance
is considered or test performance on a specifically
selected set. In our study we measure the binary
classification performance based on the receiver
operating characteristic (ROC) curve analysis over
200 stratified random samplings of training and test
set. ROC analysis is commonly used in medicine [12]
to objectively judge the discrimination ability of
various statistical methods for predictive purposes,
which can be measured by the area under the ROC
curve (AUC). The AUC gives a global measure of the
clinical efficiency over a range of test cut-off points
on the ROC curve. This is in contrast to performance
measures like the accuracy, e.g. used in [11], which
is only based on a single cut-off point (e.g. for one
specific value of the false-positive rate). Various
clinical studies focus on the prediction of the malig-
nancy of tumors, more specifically for brain gliomas
(e.g. [6,11]). Thereby, they consider only two
classes: low-grade and high-grade gliomas. In our
study, astrocytomas of grade II and glioblastomas
(also called astrocytomas of grade IV) are included,
which are large subtypes of, respectively, low-
grade and high-grade gliomas. Additionally, we con-
sider two other common brain tumor types, namely
metastases and meningiomas.

Moreover, this paper reports the results of a
comparative study on a multicenter dataset of
MRS signals. This dataset was developed in the
framework of the EU funded INTERPRET project
[13]. Several INTERPRET partners [7,9,10,14—19]
have already published results for classification of
brain tumors based on MR data available within the
project. The papers [7,15,18] focus on the use of 1H
MRSI data, while others consider the use of short or
long echo 1H MRS. Nevertheless, most of these
studies are based on a previous version of the
dataset or focus on a specific technique. For exam-
ple, in [10], 144 short echo 1H MRS spectra from
three contributing centers were used, originating

echo 1H MRS data, we did not find any statistically significant difference between
the performances of LDA and the kernel-based methods, the latter have the
strength that no dimensionality reduction is required to obtain such a high per-
formance.
� 2004 Elsevier B.V. All rights reserved.
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from three groups of brain tumors; meningiomas,
low-grade astrocytomas and aggressive tumors. The
latter group includes glioblastomas and metastases.
Note that these groups correspond to the same four
tumor groups as considered in this paper. But Tate
et al. selects a specific training and test set; the
data from two centers formed the training set
(94 spectra) and the data from the third center
were used for testing (50 spectra). Based on this
specific test set an accuracy of 96% was obtained
using LDA.

In this study several methods are applied on all
histopathologically validated long echo 1H MRS data
from four common brain tumor types as available in
the final status of the database development. We
mention three additional points differing with pre-
vious classification studies within the framework of
the INTERPRET project. First of all, we investigate
what can be obtained as typical performance on a
representative test set. Therefore, we construct
200 different combinations of training and indepen-
dent test set. Second of all, the discrimination
ability was judged by the AUC, which is, in contra-
diction to the accuracy, a global measure. Only in
one other INTERPRET study [15] ROC analysis was
also applied to compare two diagnostic methods
for classification based on 1H MRSI. Third of all,
four different techniques are applied for classifica-
tion; linear as well as non-linear techniques. We
investigate binary as well as multiclass classifica-
tion. Moreover, this analysis includes optimal
input variable selection and (hyper-) parameter
estimation.

Several classification techniques are compared
in this paper. We evaluate the performance of
linear discriminant analysis (LDA), support vector
machines (SVMs) and the least squares version of
support vector machines (LS-SVMs) in classifying
brain tumors based on long echo 1H MRS spectra.
The support vector machine [20,21] is a training
algorithm for learning classification and regression
rules from data. It applies the idea of kernel repre-
sentation from mathematical analysis, for example,
using either linear, polynomial, radial basis func-
tions (RBF) or multi-layer perceptrons (MLP) as its
learning kernel. SVMs were first introduced by Vap-
nik in the 1960s for classification and have recently
become an area of intense research owing to devel-
opments in the techniques and theory coupled with
extensions to density estimation and regression.
SVMs arose from statistical learning theory; the
aim being to solve only the problem of interest
without solving a more difficult problem as an inter-
mediate step. SVMs are based on the structural risk
minimization principle, closely related to regular-
ization theory. This principle incorporates capacity

control to prevent overfitting and is thus a partial
solution to the bias-variance trade-off dilemma.

Least squares SVM [22] uses equality constraints
and solves a set of linear equations in the dual space
instead of solving a quadratic programming problem
as for the standard SVM. This simplifies the compu-
tations and enhances the speed considerably. There
exists a link between the LS-SVM classifier formula-
tion with the well-known Fisher discriminant ana-
lysis, namely by extending it to a high-dimensional
feature space. Some parameters have to be tuned
to achieve a high level performance of the (LS-)SVM,
including the regularization parameter and the ker-
nel parameter corresponding to the kernel type.

The paper is organized as follows. Section 2
explains the material and methods used for classi-
fication; description of the data and short explana-
tion of the kernel based methods SVM and LS-SVM.
Section 3 summarizes the results of binary classifi-
cation using complete spectra, selected frequency
regions and peak integrated values, consecutively.
Afterwards, results of the multiclass classification
approach are also mentioned. In Section 4, we
discuss the classification performance of the clas-
sifiers, the limitations of the dataset and the influ-
ence of dimensionality reduction. Finally, Section 5
presents the conclusions.

2. Material and methods

2.1. Material

The data were provided by CDP (Centre Diagnòstic
Pedralbes, Barcelona, Spain), IDI (Institut de Diag-
nòstic per la Imatge, Barcelona, Spain), SGHMS (St.
George’s Hospital Medical School, London, UK) and
UMCN (University Medical Center Nijmegen, Nijme-
gen, The Netherlands) in the framework of the
INTERPRET project. It concerns long echo 1H MRS
data, acquired both with and without water sup-
pression using a PRESS sequence (the repetition
time TR is between 1500 and 2020 ms, the echo
time TE ¼ 135 or 136 ms, the spectral width
SW ¼ 1000 or 2500 Hz, the number of datapoints
is 512 or 2048) (Table 1).

Four main classes are considered, corresponding
to four brain tumor types, i.e. glioblastomas,
meningiomas, metastases and astrocytomas (grade
II). They are labeled as class 1 (glio), class 2 (meni),
class 3 (meta) and class 4 (astroII), respectively. All
data have passed a quality control and validation
process, which was regulated by strict rules agreed
on by all INTERPRET partners. After thorough exam-
inations, the brain tumors were histopathologi-
cally classified by three pathologists. These class
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assignments were based on the histological classi-
fication of tumors of the central nervous system
(CNS) set up by the World Health Organization
(WHO).

The raw data are acquired in the time domain at
the aforementioned centers. A few preprocessing
steps are carried out: frequency alignment and
phase correction with Klose’s method [23] and fil-
tering of the dominating residual water peak using
HSVD [24]. The initial point of the time domain
signal was removed, because it was often affected
by artifacts. The resulting signal is transformed to
the frequency domain by a FFT. For each signal the

L2-normalized magnitude spectrum (of unit length)
is considered only in the frequency region of inter-
est (4.17—0.94 ppm), corresponding to 108 input
variables. Fig. 1 depicts the mean magnitude fre-
quency spectra of the four considered classes.

2.2. Methods

Several classification techniques can be applied to
separate the given MR spectra. The techniques we
apply in this paper are chosen so that we consider
linear as well as non-linear methods: LDA, SVM and
LS-SVM.

Table 1 Number of long echo 1H MRS data of glioblastomas (class 1), meningiomas (2), metastases (3) and
astrocytomas grade II (4)

Center (acquisition scheme) 1 2 3 4 Total

CDP (PRESS, TE ¼ 135 ms) 38 16 5 6 65
IDI (PRESS, TE ¼ 136 ms) 28 27 16 6 77
SGHMS (PRESS, TE ¼ 136 ms) 10 9 11 7 37
UMCN (PRESS, TE ¼ 136 ms) 1 1 0 2 4

Total 77 53 32 21 183

The rows correspond to the acquisition center, while the columns mention the type of brain tumor. The acquisition
scheme is a PRESS sequence and TE denotes the echo time.
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Figure 1 Mean L2-normalized magnitude frequency spectra of the four considered classes: class 1 (top-left), class 2
(top-right), class 3 (bottom-left) and class 4 (bottom-right) correspond to the glioblastomas, meningiomas, metastases
and astrocytomas (grade II), respectively. The solid lines are the means, while the dotted lines are the means plus the
standard deviations of each class.

76 L. Lukas et al.



Linear discriminant analysis [25,26] basically
projects the data xk 2 Rn from the original input
space into a one-dimensional variable zk 2 R and
makes a discrimination using this projected variable.
This approach tries to maximize between-class var-
iances and minimize the within-class variances for
two given classes.

Linear principal component analysis (PCA) is
applied to select the input variables. It reduces
the 108 given spectral variables to a minimal set
of variables which cover 75% variance of the data.

Quite often, different classes do not have equally
distributed datapoints and their distributions are
also overlapping among classes, which causes the
problem to be linearly non-separable. Here, two
kernel-based classifiers SVM and LS-SVM (briefly
explained below) are assessed. SVM and LS-SVM with
linear kernel can be regarded as regularized linear
classifiers, while LS-SVM with RBF kernel is regarded
as a regularized non-linear classifier.

A support vector machine [20,21] is a universal
learning machine, which has become more estab-
lished and performs well in many classification
problems. The principles of SVM are as follows:

(1) Consider the training samples fxk; ykgN
k¼1,

xk 2 Rn, yk 2 f�1;þ1g. The classifier in the
primal space is defined by: yðxÞ ¼ sign½wTjðxÞþ
b
; k ¼ 1; . . . ;N, in which w is a weighting
function.

(2) The SVM performs a non-linear mapping j of
the input vectors xk 2 Rn from the input space
into a high dimensional feature space. Some
kernel functions can be used for this mapping,
e.g. linear, polynomial, RBF kernels.

(3) In the feature space, an optimal linear decision
rule is constructed by calculating a separating
hyperplane which has the largest margin:

minw;ek
Jðw;ekÞ ¼

1

2
wTw þC

XN

k¼1

ek

s:t:yk½wTjðxÞþ b
 � 1� ek; ek � 0; k ¼ 1; . . . ;N

in which C is a regularization constant.
(4) This hyperplane is the solution of the following

quadratic programming (QP) problem:

max
a

JðaÞ ¼
XN

k¼1

ak �
1

2

XN

k¼1

XN

l¼1

akalykylKðxk; xlÞ

satisfying the constraints
PN

k¼1 akyk ¼ 0 and
0 � ak � C for k ¼ 1; . . . ;N where fxk 2 Rnjk ¼
1; . . . ;Ng is the training sample set, and
fyk 2 f�1;þ1gjk ¼ 1; . . . ;Ng the corresponding
class labels. Kðx; xkÞ is a symmetric kernel
function in the input space which satisfies
Mercer’s theorem: Kðx; xkÞ ¼ jðxÞTjðxkÞ.

(5) Those input vectors xk 2 Rn with corresponding
non-zero ak are called support vectors. They
are located in the boundary margin and
contribute to the construction of the separat-
ing hyperplane.

(6) Classification in the input space is calculated
by mapping the separating hyperplane back
into the input space (SV, set of support
vectors):

yðxÞ ¼ sign
X

xk2SV

akykKðx; xkÞ þ b

" #
:

Recently, a least squares version (LS-SVM) has been
proposed [22,27], incorporating equality instead of
inequality constraints as in the SVM case. This sim-
plifies the computation of the solution, namely by
solving a set of linear equations. The modifications
are:

(1) The constrained optimization problem in the
primal space is reformulated as

minw;b;eJðw;b; eÞ ¼ 1

2
wTw þ g

1

2

XN

k¼1

e2
k

s:t: yk½wTjðxkÞ þ b
 ¼ 1 � ek; k ¼ 1; . . . ;N

The conditions for optimality are yk½wTjðxkÞþ
b
 � 1 þ ek ¼ 0; ak ¼ gek;

PN
k¼1 akyk ¼ 0 and w ¼PN

k¼1 akykjðxkÞ; k ¼ 1; . . . ;N.
(2) Here, non-zero support values ak are spread

over all datapoints. Each ak value is propor-
tional to the error of the corresponding
datapoint. No sparseness property raises as in
the standard SVM case. But, interestingly, in
the LS-SVM case one can relate a high support
value to a high contribution of the datapoint on
the decision line.

(3) Elimination of w and e from the previous
equations gives

(1)

with Y ¼ ½y1 � � � yN
T, 1v ¼ ½1 � � � 1
T, e ¼ ½e1 � � �
eN
T, a ¼ ½a1 � � � aN
T, ðOÞkl ¼ ykylKðxk; xlÞ. This
set of linear equations is easier to solve rather
than the QP problem as in the standard SVM.

In certain problems, non-linear techniques could
improve classification performance, especially
when data are linearly non-separable. Therefore,
in addition to the use of linear kernels in SVM and
LS-SVM classifiers, we also apply LS-SVM classifiers
with RBF kernels.
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The MRS spectra were classified using Steve
Gunn’s MATLAB Support Vector Machines toolbox
[28,29] and KULeuven’s MATLAB/C LS-SVMlab tool-
box [27,30,31] for LS-SVM classification with both
linear and RBF kernels.

2.3. Selected frequency regions

It is well known that characteristic peaks at cer-
tain frequencies correspond to important metabo-
lites in the brain [2,3,32—35]. These peaks might
be used as discriminatory features to distinguish
tumor types. In particular, when their appearance
clearly differ in size and shape in between spectra
of different tumor types. Instead of using com-
plete spectra as input variables to the classifier,
selection of the most explanatory input features
can be used. One approach is based on selected
frequency regions: therefore, the input variables
within certain regions of the magnitude spectrum
which are assumed to contain most of the infor-
mation as input features are selected. Hence, the
redundancy produced by spectral noise and arte-
facts in the spectrum is reduced. Characteristic
metabolites can be observed in the following
regions of the magnitude MRS spectrum: Cho
and Cr (2.95—3.3 ppm); NAc (1.95—2.1 ppm);
Lac, Ala and lipid1 (1.15—1.55 ppm); lipid2
(0.9—1.0 ppm). Note that these selected regions
are based on the metabolites that are assumed to
be most characteristic according to prior knowl-
edge available from field experts participating in
this study. Nevertheless, this selection is still
subjective as the size of the regions could be
altered or some other resonances (e.g. from meta-
bolites with a typically lower intensity at a long
echo time; mI, Gln, Gly, etc.) could also have been
included.

2.4. Peak integration

Another approach to select the most explanatory
input is based on peak integration. The ampli-
tude of a resonance is proportional to the integral
of the corresponding peak in the spectrum. How-
ever, precise estimation of the peak integrals
is difficult due to several factors, including non-
zero baseline, peak overlap, noise and also the
discrete nature of the spectrum. Peak integra-
tion is performed here by using the trapezoidal
rule. For each selected metabolite the area
under the frequency peak in the magnitude spec-
trum is calculated. These regions cover: Cho
(3.1—3.3 ppm); Cr (2.95—3.05 ppm); NAc (1.95—
2.1 ppm); Lac and Ala (1.25—1.55.ppm); and lipid1
(1.1—1.25 ppm).

2.5. Training and test data

2.5.1.Binary classification
Binary classification can be used to distinguish
two different tumor types. Instead of using a one-
against-all scheme, the classes are pairwise com-
pared by means of a binary classifier. Consider four
types of brain tumors, then six binary classifiers can
be constructed to separate the following pairs:

� glioblastomas versus meningiomas,
� glioblastomas versus metastases,
� glioblastomas versus astrocytomas grade II,
� meningiomas versus metastases,
� meningiomas versus astrocytomas grade II, and
� metastases versus astrocytomas grade II.

By classifying in pairs, we obtain more information
about:

(1) the distribution of two classes and their over-
lap,

(2) the balance of the data distribution of the
classes, and

(3) the performance of the classifier which can be
measured using ROC analysis.

The dimension of the input features to LDA is
reduced by PCA. The number of principal compo-
nents is determined by the number of components
that account for 75% of the total variance of the
given data. Note that PCA is not used when peak
integrated values are taken as input features, as
peak integration already significantly reduces the
dimension.

To achieve a high level of performance in SVMs,
some hyperparameters must be tuned. These adjus-
table hyperparameters include: a regularization
parameter, which determines the tradeoff between
minimizing the training errors and minimizing the
model complexity. In case of a RBF kernel, also a
kernel parameter (the width s) must be selected.
We choose the value of hyperparameters C for SVM,
g for LS-SVM with a linear kernel and ðs; gÞ for LS-
SVM with a RBF kernel through leave-one-out (LOO)
cross-validation, while bounding the search to avoid
overfitting.

The experiment consists of the following steps:

(1) the data are divided in a training set (2/3 of the
data) and a test set (remainder) using stratified
random sampling,

(2) train the classifiers and use the test set to
evaluate the performance,

(3) the index of the misclassified spectra is noted.

This randomization is repeated 200 times to avoid
bias possibly introduced by selection of a specific
training and test set. In this way we try to obtain a
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representative performance on the test set. ROC
[12] analysis is used to evaluate the binary classi-
fiers. The performance is then measured by the
mean AUC and its pooled standard error calculated
from 200 randomizations.

2.5.2. Multiclass classification
In the framework of binary classification we assume
that a new MRS spectrum belongs to one of the two
considered classes. Nevertheless, in medical prac-
tice, thenumberofpossible tumor types ismostlynot
restricted to two types. This motivates the develop-
ment of multiclass classifiers, that handle all classes
in one construction, which extends the classifiers
mentioned in the previous section. With this setup,
the classifier is expected to classify a certain spec-
trum as one of the four tumor types.

Various pattern recognition techniques have
been tried to distinguish MRS spectra of class 1
(glio) and class 3 (meta), but none gives satisfactory
results [9,36]. Alternatively, as was suggested by
Tate et al. in [10], we can merge these two classes,
obtaining a new group called class 5, containing only
aggressive (aggr) tumors. This scheme is depicted as
step 1 shown on the left part of Fig. 2. A voting
scheme is applied to decide which class is chosen
based on the three outputs of the contributing
binary classes. With a minimum two-out-of-three
vote, a certain class is taken if two or three of the
binary classifiers give the same output, otherwise
the classifier considers the output as undecided.
Step 2 is carried out, as illustrated in the right part:
if the output of step 1 is class 5, then further classify
the spectrum either into class 1 (glio) or 3 (meta)
using the binary classifier 13. If the output is class 2
or 4, then the output of step 2 is the same as
the output of step 1. Four binary classifiers are
the building blocks of this multiclass classifier:
binary classifiers 24 and 13 are available from the

previous section, additionally two binary classifiers
are required:

� meningiomas versus aggressive tumors (class 2
versus class 5),

� astrocytomas grade II versus aggressive tumors
(class 4 versus class 5).

2.6. Statistical analysis

From 200 runs, the mean AUCs (AUC) is listed in the
tables, as well as the standard error (SE) on the AUC.
For each binary classifier C, the mean and standard
error of the AUC is calculated.

Consider two classifiers C1 and C2 that handle
the same input data; e.g. C1 is PCA/LDA and C2 is
LS-SVM with a linear kernel applied to the complete
spectra of classes 1 and 2. Let the AUC of each
classifier Ci; i ¼ 1; 2 be Ai;l with standard error
SEi;l; i ¼ 1; 2; l ¼ 1; . . . ;M, with M the number of
stratified randomizations (M ¼ 200). The pooled
statistics are then given by (i ¼ 1; 2), where nl is
the amount of samples for the stratified randomiza-
tion l ¼ 1; . . . ;M:

�Ai ¼
1

n

XM

l¼1

Ai;l; (2)

SEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � M

XM

l¼1

ðnl � 1ÞSE2
i;l

vuut ; (3)

SEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

l¼1

SE2
i;l

vuut : (4)

The last line is satisfied, since the test set contains
an equal amount of samples for each stratified
randomization, i.e. 8lnl ¼ n;N ¼

PM
l¼1 nl.

Multiclass Classifier

Input data

traindata24

traindata25

traindata45

binary class 24

binary class 25

binary class 45

2 or 5

2 or 4

4 or 5

Voting scheme

1 or 3

2 or 4

if 5 then
binary class 13

if 2 or 4

2

4

5

Classifier Output

Figure 2 Two-steps classification. The left part shows step 1, classification of three tumor classes: (2) meni, (4)
astroII, and (5) aggressive tumors. The right part, or step 2, further refines the classification if the output is class 5 and
assigns the spectra of this class either to class 1 (glio) or 3 (meta).
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A general approach to statistically test whether
the areas under two ROC curves derived from the
same samples differ significantly from each other is
then given by the critical ratio z, defined as [37]:

z ¼
�A1 � �A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
1 þ SE2

2 � 2rSE1SE2

q
in which r is a quantity representing the correlation
introduced between the two areas by studying the
same samples. In our study we calculate the z-value
based on the pooled statistics �Ai; SEi; i ¼ 1; 2 from
200 runs as calculated in Eqs. (2)—(4). If the result-
ing z-value satisfies z � 1:96, then �A1 and �A2 are
statistically different. The cut-off value 1.96 is
taken as the quantity for which, under the hypoth-
esis of equal AUCs (�A1 ¼ �A2), z � 1:96 occurs with a
probability of a ¼ 0:05 under a normal distribution.

This ROC analysis is performed for binary classi-
fication. Although ROC analysis has been extended
to multiclass classification [38], the result is gen-
erally non-intuitive and computationally expensive.
This motivates the use of the correct classification
rate as performance measure for multiclass classi-
fication.

3. Results

3.1. Classification using complete spectra

In the following the classification performance of
LDA, SVM, and LS-SVM (using linear and RBF kernels)
are reported. The result using the complete spectra
are summarized in Table 2, while Fig. 3 shows the
boxplots corresponding to the same cases. Note
that the boxplots display the median of the AUC
values and the Interquartile Range (IQR), while the
tables display the mean and standard error of the
AUC values. The latter can be used to calculate the
z-value (Section 2.6).

3.2. Classification using selected frequency
regions

By selecting the values within specific frequency
ranges in the spectra, the number of datapoints is
reduced from 108 to 30. For the LDA classifier, PCA
is applied to further reduce this input dimension,
covering at least 75% of the variance. These input
variables are different from those obtained for the
complete spectrum, due to the higher degree of
freedom in the latter case. The results of 200 runs of
stratified random samplings of the L2-normalized
magnitude MRS spectra are shown in Table 3 and
Fig. 4.

3.3. Classification using peak integration

Table 4 and Fig. 5 show the results of the ROC
analysis for classification using peak integration.
Five peak integrated values are used as input of
the classifiers. The linear classifier LDA is used
without applying PCA.

3.4. Multiclass approach

As mentioned above, two additional binary classi-
fiers are constructed by merging glioblastomas and
metastases into one class of aggressive tumors.
Table 5 shows the performance of these classifiers
using the complete spectra as input.

3.4.1. Training performance
One way to train the multiclass classifier is by feed-
ing all the spectra to the classifier and train each
binary classifier with the corresponding classes. For
example, use the spectra of class 2 and class 4 to
train the binary classifier 24, and similarly for the
others.

Table 6 shows a comparison of the multiclass
classifier performance. The first row shows the
percentage of correctly classified spectra in the

Table 2 Classification using complete spectra

Classes PCA/LDA SVM lin LS-SVM lin LS-SVM RBF

glio-meni 0:9528 � 0:0306ð8Þ 0:9519 � 0:0335 0:9506 � 0:0338 0:9560 � 0:0304
glio-meta 0:5926 � 0:1036ð6Þ 0:6323 � 0:0942 0:6431 � 0:0983 0:5851 � 0:1037
glio-astroII 0:9180 � 0:0627ð7Þ 0:9159 � 0:0565 0:9351 � 0:0524 0:9385 � 0:0486
meni-meta 0:9605 � 0:0375ð5Þ 0:9642 � 0:0337 0:9711 � 0:0307 0:9701 � 0:0306
meni-astroII 0:9313 � 0:0725ð10Þ 0:9661 � 0:0390 0:9581 � 0:0482 0:9595 � 0:0456
meta-astroII 0:9612 � 0:0533ð4Þ 0:9695 � 0:0418 0:9740 � 0:0393 0:9721 � 0:0377

Average performance on the test set from 200 runs of stratified random samplings of the L2-normalized magnitude
MRS spectra. As performance measure we use the mean AUC and its pooled standard error (SE). The number
between the brackets mentions the number of principal components used.
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Figure 3 Boxplots of the area under ROC curves (AUC) on 200 stratified randomly sampled test sets of the four
models: (1) PCA-LDA, (2) SVM with linear kernel, (3) LS-SVM with linear kernel, (4) LS-SVM with RBF kernel. Six figures
correspond to the binary classifiers using complete spectra: (a) glio vs. meni, (b) glio vs. meta, (c) glio vs. astroII, (d)
meni vs. meta, (e) meni vs. astroII and (f) meta vs. astroII.

Table 3 Classification using selected frequency regions

Classes PCA/LDA SVM lin LS-SVM lin LS-SVM RBF

glio-meni 0:7643 � 0:0722ð2Þ 0:8532 � 0:0575 0:8922 � 0:0494 0:9187 � 0:0413
glio-meta 0:6381 � 0:1004ð2Þ 0:5081 � 0:1044 0:6368 � 0:0998 0:5576 � 0:1030
glio-astroII 0:8319 � 0:0776ð2Þ 0:8692 � 0:0713 0:8849 � 0:0660 0:9012 � 0:0594
meni-meta 0:9212 � 0:0525ð2Þ 0:9098 � 0:0594 0:9339 � 0:0475 0:9534 � 0:0374
meni-astroII 0:9079 � 0:0645ð3Þ 0:9592 � 0:0410 0:9619 � 0:0422 0:9617 � 0:0411
meta-astroII 0:9173 � 0:0689ð2Þ 0:9459 � 0:0549 0:9698 � 0:0389 0:9642 � 0:0429

Average performance on the test set from 200 runs of stratified random samplings of the L2-normalized magnitude
MRS spectra. As performance measure we use the mean AUC and its pooled standard error (SE). The number
between the brackets mentions the number of principal components used.
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Figure 4 Boxplots of the area under ROC curves (AUC) on 200 stratified randomly sampled test sets of the four
models: (1) PCA-LDA, (2) SVM with linear kernel, (3) LS-SVM with linear kernel, (4) LS-SVM with RBF kernel. Six figures
correspond to the binary classifiers using selected frequency regions: (a) glio vs. meni, (b) glio vs. meta, (c) glio vs.
astroII, (d) meni vs. meta, (e) meni vs. astroII and (f) meta vs. astroII.

Table 4 Classification using peak integrated values

Classes LDA SVM lin LS-SVM lin LS-SVM RBF

glio-meni 0:8504 � 0:0586 0:8561 � 0:0577 0:8448 � 0:0593 0:8677 � 0:0550
glio-meta 0:6252 � 0:1007 0:6236 � 0:1005 0:6434 � 0:1006 0:6264 � 0:0988
glio-astroII 0:8773 � 0:0635 0:8916 � 0:0571 0:8787 � 0:0628 0:8818 � 0:0631
meni-meta 0:9103 � 0:0628 0:9113 � 0:0618 0:9191 � 0:0585 0:9357 � 0:0473
meni-astroII 0:8441 � 0:0858 0:8297 � 0:0926 0:8485 � 0:0851 0:8281 � 0:0921
meta-astroII 0:9592 � 0:0461 0:9727 � 0:0376 0:9597 � 0:0453 0:9521 � 0:0528

Average performance on the test set from 200 runs of stratified random samplings of the L2-normalized magnitude
MRS spectra. As performance measure we use the mean AUC and its pooled standard error (SE).
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class of meningiomas, astrocytomas grade II and
aggressive tumors. One undecided case arose when
using PCA/LDA with complete spectra classifica-
tion, 15 when using PCA/LDA and one when using

LS-SVM classification both with the selected fre-
quency regions as input variables.

In the second step, we use classifier 13 to further
subclassify the aggressive class. Using this subclas-
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Figure 5 Boxplots of the area under ROC curves (AUC) on 200 stratified randomly sampled test sets of the four
models: (1) LDA, (2) SVM with linear kernel, (3) LS-SVM with linear kernel, (4) LS-SVM with RBF kernel. Six figures
correspond to the binary classifiers using peak integration: (a) glio vs. meni, (b) glio vs. meta, (c) glio vs. astroII, (d)
meni vs. meta, (e) meni vs. astroII and (f) meta vs. astroII.

Table 5 Classification using complete spectra

Classes LDA SVM lin LS-SVM lin LS-SVM RBF

meni-aggr 0:9433 � 0:0306ð6Þ 0:9409 � 0:0343 0:9620 � 0:0279 0:9110 � 0:1121
astroII-aggr 0:9230 � 0:0674ð6Þ 0:9343 � 0:0458 0:9416 � 0:0502 0:9129 � 0:1137

Average performance on the test set from 200 runs of stratified random samplings of the L2-normalized magnitude
MRS spectra. As performance measure we use the mean AUC and its pooled standard error (SE). The number
between the brackets mentions the number of principal components used.
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sification, the multiclass classifier’s performance is
shown in Table 7.

3.4.2. Test performance
Besides using all the spectra to choose the hyper-
parameters and to train the classifiers, one can also
select 2/3 of the dataset as training set and use the
remainder as test set. This stratified random sam-
pling is repeated for 200 runs. The results are shown
in Table 8 for one-step classification, which assigns

the spectra to one of the three following classes: 2, 4
or 5. Table 9 shows the classifier performance after
two-steps classification, which assigns the spectra to
1 of the 4 following classes: 1, 2, 3 or 4. Each
spectrum of class 5 in step 1, is either assigned to
class 1 or class 3 in step 2. In Tables 8 and 9 we
mention the mean correct classification rate, the
mean misclassification rate and the mean percen-
tage of undecided cases and their standard devia-
tion. The correct classification rate is defined as the

Table 6 One-step classification using complete spectra

PCA/LDA (%) LS-SVM lin (%) LS-SVM RBF (%)

Compl. spec. 84.6995 93.9891 97.8142
Disc. feat. 65.0273 84.6995 90.1639
Peak integ. 75.9563 77.0492 80.8743

Percentage of correctly classified spectra using all L2-normalized magnitude MRS spectra to assess the training
performance.

Table 7 Two-steps classification using complete spectra

PCA/LDA (%) LS-SVM lin (%) LS-SVM RBF (%)

Compl. spec. 71.0383 78.1421 83.6066
Disc. feat. 50.2732 68.8525 74.8634
Peak integ. 61.7486 62.2951 67.7596

Percentage of correctly classified spectra using all L2-normalized magnitude MRS spectra to assess the training
performance.

Table 8 One-step classification using complete spectra

PCA/LDA (%) LS-SVM lin (%) LS-SVM RBF (%)

Correct 80:1855 � 4:2853 82:7823 � 3:3449 83:5726 � 3:5058
Misclass 14:0887 � 4:0665 13:6532 � 3:1140 12:5565 � 3:3290
Undecided 05:7258 � 2:6110 03:5645 � 2:0870 03:8710 � 2:1144

Average performance on the test set from 200 runs of stratified random samplings (2/3 of the data used for training,
1/3 for testing). The first, second and third rows give, respectively, the mean correct classification rate, the mean
misclassification rate and the mean percentage of undecided cases, each with their standard deviation.

Table 9 Two-steps classification using complete spectra

PCA/LDA (%) LS-SVM lin (%) LS-SVM RBF (%)

Correct 63:1532 � 4:7255 65:7984 � 3:3449 66:8145 � 3:5058
Misclass 31:1210 � 4:6858 30:6371 � 3:1706 29:3145 � 3:5954
Undecided 05:7258 � 2:6110 03:5645 � 2:0870 03:8710 � 2:1144

Average performance on the test set from 200 runs of stratified random samplings (2/3 of the data used for training,
1/3 for testing). The first, second and third rows give, respectively, the mean correct classification rate, the mean
misclassification rate and the mean percentage of undecided cases, each with their standard deviation. Note that
the number of undecided cases is equal to that for the one-step classifier.
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percentage of correctly classified spectra, while the
misclassification rate is the percentage of misclassi-
fied cases.

4. Discussion

In this section we discuss various issues concerning
the results we obtained using the available long
echo 1H MRS data. We do not necessarily claim that
these remarks generally hold for similar analyses on
other data.

4.1. Limitations

MRS signals of brain tumors contain chemical infor-
mation about metabolites characteristic for the
type of tumor. Nevertheless, there are still some
factors making it hard to construct a classifier which
is able to discriminate between different brain
tumors using MRS signals:

(1) The limited number of available spectra per
type of tumor (see Table 1). Especially the
amount of available metastases and astrocyto-
mas grade II is low. This makes it difficult to
construct a classifier with a high generalization
capacity.

(2) The presence of noise and artefacts in the
spectra. Even after elimination of the dominat-
ing water peak, remaining artefacts might
affect important peaks in the spectra.

(3) The large variances within each class and the
overlap between spectra of different brain
tumor types (see Fig. 1). For example, the
mean spectra of glio and meta show a very
similar characteristic pattern, which makes the
discrimination between glio and meta a very
hard problem. This problem is also observed
in [9,36]. Further discussion about this is
addressed below.

4.2. Glioblastomas versus metastases

Although we obtained a low performance for
distinguishing glioblastomas (glio) and metastases
(meta), there are indications that these tumor
types might be separable based on MR. In [8] Szabo
De Edelenyi et al. introduced the so-called nosologic
images, which is an approach to analyze 1H MRSI data
of brain tumors. It is a tool that assigns the spectro-
scopic data of each voxel in the spectroscopic
image to a histopathological class. Classification
was carried out by LDA applied on six metabolite
values obtained from long echo 1H MRSI spectra
(TE ¼ 272 ms), together with the unsuppressed

water area. Their study included 77 images, of which
24 high-grade gliomas and 10 metastases, for which
they obtained a training performance of 87% follow-
ing a leave-one-out (LOO) procedure. For the high-
grade gliomas and metastases, respectively, 19 and
6 spectra were correctly assigned.

Researchers [39—41] have found a few metabo-
lite peaks or ratios which might contribute to the
discrimination of high-grade gliomas and metas-
tases. Law et al. concluded out of a study based
on MRSI that, despite the small size of their dataset
(11 high-grade gliomas, 6 metastases), the Cho/Cr
ratio was significantly higher in high-grade gliomas
than in metastases; this was the case for the
tumoral region as well as the peritumoral region.
Also based on perfusion-weighted MRI they have
found different characteristics. Opstad et al.
[41] have considered short echo 1H MRS spectra
(TE ¼ 30 ms) from 25 glioblastomas and 34 metas-
tases. Based on these data, they were able to find a
significant difference in the ratio of the 1.3 ppm and
the 0.9 ppm lipid/macromolecule peaks between
these two tumor groups. This lipid peak area
(LPA) ratio was 2:6 � 0:6 for glioblastomas and
3:8 � 1:4 for metastases (P � 0:0001). Based on 1H
MRS, Ishimaru et al. [39] have shown that the
absence of Cr might indicate a diagnosis of metas-
tasis, while in short echo the absence of lipids may
exclude metastasis. In Fig. 1 we do indeed notice a
large mean lipid peak in metastases, but also in
glioblastomas. This latter might be due to the
occurrence of necrotic tissue in part of the glio-
blastomas. This partially explains the large varia-
tion we especially observe within this class and the
similarity with the class of metastases.

4.3. Classification techniques

In general, LDA as linear classifier, preceded by PCA
(except for peak integration) performs quite well in
solving the brain tumor classification problem. This
is in correspondence with [10]. However, due to its
linear boundary, overlapping classes are very diffi-
cult to handle.

As stated above, the small dataset available also
forms a limitation for training. Therefore, the dis-
crimination boundary will strongly correlate with
the training set. Especially LDA requires a significant
amount of datapoints to be able to draw a linear
separating line between overlapping classes. In
addition, it is possible that the separating line is
very dependent on the selected training set.

Kernel-based classifiers are less sensitive to the
amount of datapoints; although the dimension is
larger than the number of datapoints, these classi-
fiers could draw an optimal separating boundary,
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without applying any dimensionality reduction
(such as PCA). Kernel-based classifiers, SVM and
LS-SVM, feature the advantage of detecting auto-
matically important characteristics independently
of the input pattern.

Based on the statistical analysis, described in
Section 2.6, no statistically significant difference
was found between the AUC values for any of the
classification techniques applied to the available
long echo 1H MRS data. The highest z-value (1.72)
was obtained, when comparing PCA/LDA with LS-
SVM with a linear kernel based on the frequency
selected regions; this is still lower than the cut-off
value (1.96).

Also from visual inspection, we cannot conclude
that there is a clear difference in between the
considered classification techniques. In particular,
the best performing technique depends on the con-
sidered classes and the type of input. To be more
specific, when comparing the classification techni-
ques we can group them in two ways (e.g. consider
only the results with the complete spectra as input):

� linear (LDA, SVM lin, LS-SVM lin) versus non-linear
techniques (LS-SVM RBF): in the cases glio-meni,
glio-astroII the mean AUC values are slightly
higher for the non-linear technique, while in
the other cases the AUC values are in the same
range or slightly lower.

� LDA versus kernel-based techniques (SVM lin,
LS-SVM lin, LS-SVM RBF): in the cases meni-meta,
meni-astroII and meta-astroII the kernel-based
techniques perform slightly better.

Additionally, we can still consider the comparison of
SVM versus LS-SVM. Out of this we can only conclude
that the best performing technique is also quite
dependent on the case.

4.4. Influence of dimensionality reduction

For classification using selected frequency regions
(Section 3.2) and peak integrated values (Section
3.3) the input dimension is reduced by selecting only
spectral regions which contain resonances of impor-
tant metabolites. The underlying idea for this
dimensionality reduction is to remove any redun-
dant input features and reduce the influence of
noise and artefacts. Hence, we try to enhance
the discriminatory chemical information present
in the spectra.

In contradiction to our expectations, we observe
that the results in Sections 3.2 and 3.3 on average
are worse than in Section 3.1. This seems to imply
that this approach to dimensionality reduction also
reduces part of the valuable information, that is
present in the excluded frequency regions, which

was important to explain the variance between the
brain tumor classes. More specifically, here we are
not considering resonances which typically have a
low intensity at long echo times (because of a small
T2-value or cancellation due to J-modulation)
[42,43]: mI (e.g. with triplets and multiplet at
3.26 and 3.57 ppm); Glu (e.g. multiplets at 2.33
and 3.74 ppm); Gln (e.g. multiplets at 2.43 and
3.75 ppm); Gly (singlet at 3.55 ppm). In Fig. 1 we
indeed notice a few small peaks around the speci-
fied resonances.

4.5. Multiclass classification

Multiclass classifiers handle all classes in one con-
struction. We reduce this problem to a set of four
binary classification problems, as explained
in Section 2.5.2. Hence, we obtain four separating
functions instead of one (one for each binary
problem). Multiclass classifiers with the proposed
scheme show a high learning capability. This is
illustrated by the correct classification rates for
the first step using the complete spectra as input:
84.7% (PCA/LDA), 93.9% (LS-SVM lin) and 97.8%
(LS-SVM RBF). Given an independent test set as
input, the classifiers on average give a quite good
generalization performance: 80.2% (PCA/LDA),
82.8% (LS-SVM lin) and 83.6% (LS-SVM RBF).

In the second step of the multiclass classifier we
combine the output of the first step with the binary
classifier that separates glio and meta. The test
performances reduce to 63.1% correct classification
(LDA/PCA), 65.8% (LS-SVM lin), 66.8% (LS-SVM RBF).
This can be explained by the hard binary problem
glio versus meta. As observed in the binary classi-
fication, these two classes are very similar. There-
fore, separating them from one single class 5 into
class 1 and class 3 deteriorates the total perfor-
mance of the classifier.

Although, no ROC analysis for multiclass classi-
fication was performed in order to test for signifi-
cant differences in between the classification
techniques, the following indications can be noted,
without drawing a general conclusion. The results,
after step 1 as well as step 2, yield a clearly higher
training performance for the kernel-based methods
than for LDA. Moreover, the kernel-based methods
on average perform slightly better on an indepen-
dent test set than LDA. This is clear from the mean
percentage of correctly classified spectra which is a
few percentages higher for LS-SVM (see Tables 8
and 9 and Fig. 6). Also the mean percentage of
undecided cases differs slightly in favor of LS-SVM.
This indicates that kernel-based methods can
generalize at least as well as LDA based on a small
dataset.
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5. Conclusions

This paper shows a comparative study of brain
tumor classification based on long echo 1H MRS
signals. Linear as well as non-linear classifiers are
compared. All techniques are applied automati-
cally, including (hyper-) parameter selection, train-
ing and testing. Also for use in clinical practice, all
techniques are easy to automate for analysis of
independent data.

Binary classification gives more insight on the
distributions of each class and their overlap. Except
for the hard case glioblastomas versus metastases,
all classifiers based on the complete magnitude
spectra are able to reach an AUC of more than
0.9. Based on the available data, we were not able
to statistically prove any difference in performances
between the classification techniques, for binary as
well as multiclass classification. This indicates that
kernel-based methods and LDA statistically perform
as well for classification of brain tumors based on a
small set of long echo 1H MRS data.

However, each of the applied techniques has its
characteristics. LDA requires a prior dimensionality
reduction of input variables (e.g. by applying PCA),
while dimensionality reduction is done automati-
cally in kernel-based methods.

We expected that dimensionality reduction, by
selecting frequency regions or peak integration,
would reduce the disturbing noise and artefacts
in the spectra. However, the described approach
for selecting resonance peaks of long echo 1H MRS
spectra resulted in a lower performance. It might be
necessary to include additional spectral information
to increase classification performance. This also
motivates further research in learning the peak
pattern of short echo 1H MRS, for which data are
also provided within the INTERPRET project.

By using magnitude spectra, phasing problems
are avoided. Nevertheless, with respect to real
spectra, in magnitude spectra there occurs more
peak overlap. Also, in real spectra at long echo time
TE (TE ¼ 135, 136 ms) the peaks of Ala and Lac are
inverted. This might reduce the ability to distin-
guish tumor types based on subtle differences in the
spectral pattern. In order to test for this effect, in a
future study also real spectra could be included as
input features.

Discriminating aggressive tumor types, glioblas-
tomas and metastases, using long echo 1H MRS
spectra clearly is a very hard problem due to the
highly similar pattern of the spectra from both
classes, possibly due to the presence of some necro-
tic tissue. In order to address this problem, the
discriminatory information present in the 1H MRS
spectrum should be enhanced, potentially by
improvements in the acquisition of 1H MRS signals.
In particular, improvements are expected when
processing short echo 1H MRS signals, since more
metabolites are visible in these spectra. Moreover,
this spectral information is spread out over a larger
amount of peaks, thereby enlarging the number of
possible discriminatory features. This is part of
future research.
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