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Rationale: Electronic noses are successfully used in commercial appli-
cations, including detection and analysis of volatile organic com-
pounds in the food industry. Objectives: We hypothesized that the
electronic nose could identify and discriminate between lung dis-
eases, especially bronchogenic carcinoma. Methods: In a discovery
and training phase, exhaled breath of 14 individuals with broncho-
genic carcinoma and 45 healthy control subjects or control subjects
without cancer was analyzed. Principal components and canonic dis-
criminant analysis of the sensor data was used to determine whether
exhaled gases could discriminate between cancer and noncancer. Dis-
crimination between classes was performed using Mahalanobis dis-
tance. Support vector machine analysis was used to create and apply
a cancer prediction model prospectively in a separate group of 76
individuals, 14 with and 62 without cancer. Main Results: Principal
components and canonic discriminant analysis demonstrated discrimi-
nation between samples from patients with lung cancer and those
from other groups. In the validation study, the electronic nose had
71.4% sensitivity and 91.9% specificity for detecting lung cancer; posi-
tive and negative predictive values were 66.6 and 93.4%, respectively.
In this population with a lung cancer prevalence of 18%, positive
and negative predictive values were 66.6 and 94.5%, respectively.
Conclusion: The exhaled breath of patients with lung cancer has
distinct characteristics that can be identified with an electronic
nose. The results provide feasibility to the concept of using the
electronic nose for managing and detecting lung cancer.
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Smelling to establish diagnoses is a time-honored practice in
medicine. For example, detecting fetor hepaticus and the putrid
smell of anaerobic infections represent but two examples of
olfactory diagnosis, which has largely been abandoned in the
face of new diagnostic technologies. However, recent advances
in odor-sensing technology, signal processing, and diagnostic
algorithms have created chemical sensing and identification de-
vices called “electronic noses,” which promise to resurrect olfac-
tion as an important diagnostic option. Electronic noses rely
on arrays of chemical vapor sensors that respond to specific
stereochemical characteristics of an odorant molecule, particu-
larly volatile organic compounds (VOCs) (1). Multidimensional
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data obtained from the sensor array can be analyzed by statistical
algorithms (e.g., principal components analysis, discriminant
function analysis, factor analysis) or by structural algorithms (neu-
ral networks) to discriminate and identify odorant samples (2–4).
Like the human nose, its electronic counterpart responds in con-
cert to a given odor to generate a pattern, or “smellprint,” which
is analyzed, compared with stored patterns, and recognized.

Human breath contains a mixture of hundreds of VOCs (5),
which offers the possibility that this new electronic nose technol-
ogy may have many medical applications (6–8). There may be
potential utility for electronic nose technology in medical appli-
cations, including identification of bacterial pathogens (6, 7, 9,
10) and pneumonia (8), and monitoring of glucose control in
patients with diabetes (11). In this context, many VOCs, in partic-
ular alkanes and benzene derivatives, measured by mass spec-
trometry of the exhaled breath have been used to predict the
presence of lung cancer in patients (12, 13). However, the method
of mass spectrometry to separate and identify 20 or more VOCs
in a complex mixture is cumbersome and requires expensive
equipment and highly skilled analysts, which limits its wide-
spread application in screening and diagnosis (14).

Because the electronic nose is highly sensitive for detecting
VOCs, and based on a previous study involving patients with
lung neoplasms (15), we hypothesized that an electronic nose
would detect lung cancer on the basis of the complex smellprints
of numerous VOCs in exhaled breath from individuals with lung
cancer as compared with individuals with other, noncancer lung
diseases, or healthy control subjects. Here, we applied support
vector machine (SVM) analysis of smellprints of exhaled gases
to create a cancer prediction model using a training set of exhaled
breath from individuals with cancer or other noncancer lung
diseases, or healthy control subjects. To validate the potential
utility of smellprint signatures for identifying lung cancer, the
discrimination power of the model was tested in an independent
sample of 76 individuals. Some of the results of these studies
have been previously reported in the form of an abstract (16).

METHODS

Study Population

We used two independent sets of volunteers for our studies: one for
the discovery/training set to create the cancer prediction model and a
second group for validating the model. The study population included
individuals with bronchogenic carcinoma, healthy control subjects, and
well-characterized patients with lung parenchymal, airway, or pulmonary
vascular disease from subspecialty pulmonary clinics at the Cleveland
Clinic Foundation, including emphysema caused by �1-antitrypsin (AT)
deficiency, chronic granulomatous disease caused by beryllium exposure,
asthma, pulmonary hypertension, and smoking-related chronic obstruc-
tive pulmonary disease (COPD). Diagnosis of lung cancer was based
on histologic confirmation. All individuals with �1-AT deficiency were
homozygous for the Z �1-AT allele (PI*ZZ phenotype) and had serum
�1-AT levels below the protective threshold value of 11 �mol/L. Diagno-
sis of chronic pulmonary beryllium disease (CBD) was based on a
positive lymphocyte proliferation test for beryllium and the presence
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of nonnecrotizing granulomata in transbronchial biopsy specimens.
Asthma was defined according to the National Asthma Education and
Prevention Program Expert Panel Report II guidelines (17). Pulmonary
hypertension was defined as a mean resting pulmonary arterial pressure
of greater than 25 mm Hg by right heart catheterization and classified
according to the World Health Organization classification of pulmonary
hypertension (18). COPD was defined according to the Global Initiative
for Chronic Obstructive Pulmonary Disease (19). Healthy control indi-
viduals were identified by absence of pulmonary symptoms, history of
pulmonary disease, and normal lung function. Patients with any acute
disease exacerbation, history of cancer, and any active medical condi-
tion, such as diabetes, immunosuppression, or coronary artery disease,
were excluded from the study. The study was approved by Institutional
Review Board of the Cleveland Clinic Foundation, and informed con-
sent was obtained from volunteers.

Study Design

The study was designed in two phases. The discovery and training
phase included an initial sample of patients with lung cancer, healthy
volunteers, and volunteers with lung disease. In this first phase, a non-
blinded analysis of the exhaled breath of individuals was performed to
explore possible differences between the study groups. When it was
determined that the individuals with lung cancer had a distinct exhaled
breath profile, the training set was used to create a model to be validated
in the second, validation, phase of the study in which patients with lung
cancer, healthy control subjects, and control subjects with other lung
disease were evaluated in a cross-sectional blinded manner. All individ-
uals evaluated during the discovery phase were included in the predic-
tion model used in the second phase of the study. In the model, patients
with chronic nonneoplastic lung disease were combined with healthy
volunteers as “noncancer” control subjects.

Collection of Exhaled Breath

After exhalation to residual volume, the subject inhaled to total lung
capacity through a mouthpiece that contained a cartridge on the inspira-
tory port (Cartridge N7500-2; North Safety Products, Cranston, RI),
which removed more than 99.99% of VOCs from the air during inspira-
tion, thus clearing the inhaled air of any ambient contaminants. Individ-
uals exhaled against 10 cm H2O pressure to ensure closure of the vellum
to exclude nasal entrainment of gas. The exhaled gas was collected
through a separate exhalation port of the mouthpiece in a nonreactive
Mylar gas-sampling bag (20). A minimum of five analyses was per-
formed on the exhaled breath of each volunteer.

Sensor Characteristics

Exhaled breath samples were analyzed by a handheld electronic nose,
containing 32 polymer composite sensors, a sampling system, a data
acquisition system, and a processor (Cyranose 320, Smiths Detection,
Pasadena, CA). The sampling system delivers ambient air and the sample
vapor to the sensors in sequence. The processor and embedded pattern-
recognition software collect and analyze the differential responses of the
sensors to the sample vapor. Each sensor of the array undergoes a
reversible change in electrical resistance when exposed to a vapor or
analyte. Furthermore, resistance change of each sensor is unique be-
cause of chemical diversity of the sensor materials. Consequently, a
pattern of resistance changes is obtained from the sensor array to a
given vapor, which is termed a smellprint.

Data Processing and Analysis for Discovery and Training Phase

Sensor response data were processed using Savitzky-Golay filtering
and baseline correction (21). Different processing methods, such as
normalization and scaling, were applied to determine the best discrimi-
nation among samples. In the discovery phase, sensor response data
were analyzed using principal components analysis to reduce the data
from 32 individual responses to vectors or principal components (22).
The vectors were calculated to capture the maximum amount of vari-
ance in the dataset. The results were plotted in two dimensions using the
first two vectors calculated. Statistical analysis using standard measures,
such as p values, is not applicable to this multivariate data analysis.
Rather, results from principal components analysis were used in canonic
discriminant analysis to create a model that maximizes the distance
among the two sample classes (i.e., cancer versus noncancer) (23).

Quantification of the discrimination between two sample classes was
performed using the Mahalanobis distance, a measure of class separa-
tion between different data clusters (23). A Mahalanobis distance of 3
or greater indicates that the classes are discrete from each other, and
that the sensor array may be able to classify unknown samples belonging
to different groups.

SVM Analysis

SVM analysis is a learning algorithm that can perform binary classifica-
tion, or pattern recognition, by nonlinearly mapping n-dimensional in-
put space into a high-dimensional feature space. In this high-dimen-
sional feature space, a linear classifier, or nonlinear kernel classifier, is
constructed, and the model is used to discriminate samples belonging
to two different groups. Thus, an SVM learns to discriminate between
the members and the nonmembers of a class. After learning the features
of the class, the SVM recognizes unknown samples as a member of a
specific class. SVMs have been shown to perform especially well in
multiple areas of biological analyses, especially functional class predic-
tion from microarray gene expression data and chemometrics (24–28).
We constructed an SVM classifier with a nonlinear algorithm with
Matlab (version 6.5) (Mathworks, Natick, MA) using the training set
of sensor response data from subjects with lung cancer, subjects with
noncancer disease, and healthy control subjects. Model parameters
were optimized using the training set for maximum margin of class
separation and minimum training set error (C � 10, width of gaussian
� � 5; for review, see Reference 20). The model was applied to a group
of unknown samples from a different group of patients with lung cancer,
healthy control subjects, and control subjects with other lung disease
(i.e., noncancer volunteers). Each participant’s exhaled breath was ana-
lyzed five times, and the results of the five separate sensor response
data considered as the final determinant of lung cancer. In 92% of
cases, outcomes of the five samplings were concordant. In the few cases
with discordant responses, cancer or noncancer was predicted on the
basis of the predominant response for that particular patient (e.g., if
one individual had three responses as cancer and two as noncancer,
the final assignment was cancer). Sensitivity, specificity, and positive
and negative predictive values of the model for the diagnosis of lung
cancer were determined. Details of the electronic nose and glossary of
terms are provided in an online supplement.

Gas Chromatography and Mass Spectroscopy

Exhaled gas samples from individuals with lung cancer were collected
in Tedlar sample bags (SKC, Inc., Eighty Four, PA) and analyzed on
a Finnigan Trace gas chromatograph coupled to a Polaris Q Ion Trap
Mass Spectrometer (Thermo Electron Corp., Woburn, MA). The gas
chromatograph/mass spectrometer was optimized to target molecules
with 4 to 12 carbons. Between 500 and 1,000 cm3 of breath was concen-
trated on solid-phase thermal desorption tubes and delivered to gas
chromatograph/mass spectrometer using an Entech 7100 gas concentra-
tor (Entech Instruments, Simi Valley, CA).

Clinical Data Analysis

Quantitative data are summarized as mean � SE; categoric data are
summarized by frequencies. Two-tailed t-test statistics, �2, analysis of
variance, and analysis of variance on ranks were used where appro-
priate, with the Bonferroni correction being applied to the significance
criterion once pairwise comparisons were made among the study
groups.

RESULTS

Discovery and Training

Fourteen individuals with bronchogenic carcinoma (one with
small cell carcinoma and 13 with non–small cell carcinoma), 19
with �1-AT deficiency, six with CBD, and 20 healthy control
subjects were included in the discovery phase (Table 1). Patients
with lung cancer were older and had smoked longer than individ-
uals with �1-AT deficiency, CBD, and control subjects (p �
0.001). Patients with lung cancer had similar FEV1 (p � 0.05)
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TABLE 1. CLINICAL CHARACTERISTICS OF THE STUDY
POPULATION FOR TRAINING SET

Chronic Beryllium �1-AT
Lung Cancer Control Disease Deficiency

No. patients 14 20 6 19
Age, yr* 64 � 3 38 � 2 53 � 7 50 � 2
Sex, M/F 10/4 6/14 4/2 8/11
Tobacco use

Ever smoker 14 7 1 15
Current smoker 2 6 0 0
Pack-years* 64 � 13 12 � 4 20 19 � 3

Histologic type
Non–small cell 13
Small cell 1

Pathologic stage
IB 1
IIIA 3
IIIB 3
IV 7

FEV1, % predicted* 56 � 5 99 � 6 84 � 7 52 � 8
FVC, % predicted* 66 � 6 98 � 6 90 � 9 83 � 5

Definition of abbreviations: �1-AT � �1-antitrypsin; M/F � male/female.
All values are mean � SEM.
* p � 0.05 by analysis of variance.

and FVC (p � 0.05) to �1-AT deficiency patients, but lower
FEV1 (p � 0.007) than individuals with CBD.

Principal components analysis was used as an exploratory
technique to investigate clustering of datasets within the
multisensor space. Figure 1 demonstrates discrimination be-
tween samples from lung cancer, healthy control, �1-AT defi-
ciency, and CBD groups. In contrast to patients with �1-AT
deficiency and CBD, patients with lung cancer clustered dis-
tinctly from control subjects. No changes in clustering of samples
were observed when patients were grouped by histologic type,
pathologic stage, or severity of lung dysfunction. No clustering
differences were demonstrated when current smokers and non-
smoking individuals were compared for healthy or disease states,
including lung cancer. Therefore, discrimination of subjects with
lung cancer is likely related to the disease process and not to
smoking.

Canonic discriminant analysis was performed on the data.
With the optimal number of vectors, the cross-validation results
were 71.6% correct, with a Mahalanobis distance of 3.25 between
individuals with lung cancer and normal individuals, as opposed
to a Mahalanobis distance of 0.96 for �1-AT deficiency and 1.5 for
patients with CBD. On the basis of these results, we hypothesized
that analysis of exhaled breath by the electronic nose could
identify cancer from noncancer.

Fourteen patients with cancer, 19 patients with �1-AT defi-
ciency, six patients with CBD, two patients with COPD, and 20
healthy control subjects were included in the training phase to
create the SVM algorithm.

Model Validation

Healthy control subjects and volunteers with lung cancer,
COPD, asthma, or pulmonary hypertension were prospectively
enrolled in the blinded validation study of the cancer prediction
model. Exhaled breath was collected from 14 patients with active,
nonresected, untreated lung cancer (Table 2), and from control
groups, including the following: 30 nonsmoking healthy volun-
teers (age, 37 � 3 years; 11 women), 12 patients with COPD
(age, 66 � 2 years; eight women; FEV1, 46 � 8% predicted;
FVC, 68 � 6% predicted; FEV1/FVC, 0.45 � 0.08), two patients
with resected lung cancer in remission (both non–small cell carci-
noma, stages IA and IIA), 11 patients with asthma (age, 42 �

Figure 1. Principal components analysis plot, shown as a two-dimensional
projection of the 32-dimensional vector analyses, demonstrates distinct
clustering of the samples from patients with lung cancer separate from
healthy control subjects (upper panel), whereas patients with interstitial
lung disease or emphysema are not separable from healthy control
subjects (lower panel). Inset: Example of a typical smellprint derived
from the 32 sensor responses, which are used in the multidimensional
analyses, from a healthy control subject (black bars) and a patient with
lung cancer (gray bars). �1-AT � �1-antitrypsin; CBD � chronic pulmo-
nary beryllium disease; R � postmeasurement sensor resistance; Ro �

baseline sensor resistance.

4 years; eight women; FEV1, 82 � 6% predicted; FVC, 90 �
6% predicted; FEV1/FVC, 0.73 � 0.03), and seven patients with
pulmonary hypertension (age, 48 � 7 years; four women; pri-
mary, three patients; scleroderma-related, one patient;, intracar-
diac shunt, one patient; chronic thromboembolic disease, one
patient; sarcoid vasculitis, one patient; mean resting pulmonary
arterial pressure, 40 � 7 mm Hg). The model correctly identified
330 of 388 independently analyzed exhaled breath samples, with
an overall accuracy of 85% (95% confidence interval [CI], 81.1–
88.2%; Figure 2).

The electronic nose had 71.4% sensitivity and 91.9% specific-
ity. In this population with an 18% prevalence of lung cancer,
the positive predictive value of the algorithm for lung cancer
was 66.6%, and negative predictive value for diagnosis of lung
cancer was 93.4% (Table 3). Twenty-eight control patients with
noncancer lung disease were correctly identified as noncancer
(93.3%; 95% CI, 66.7–99.2). Two of the four false-negative iden-
tifications occurred in patients with small cell cancer. Because
the original training set consisted primarily of patients with non–
small cell lung cancer, this could suggest that our cancer prediction
model is not optimal for evaluation of patients with suspected
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TABLE 2. CLINICAL CHARACTERISTICS OF PATIENTS WITH LUNG CANCER
IN THE CROSS-SECTIONAL VALIDATION STUDY

Primary
Patient No. Age (yr) Sex Histologic Type* Lesion Size (cm) Stage

1 75 Female NSCCA 3 IB
2 57 Male NSCCA 7 IIIB
3 42 Male SCCA 1.7 Extensive
4 57 Female NSCCA 2 IV
5 64 Male SCCA 0.2 Extensive
6 63 Female SCCA 2 Limited
7 55 Male SCCA 1.9 Limited
8 65 Male SCCA 3.5 Limited
9 56 Male NSCCA 4.0 IV

10 65 Male SCCA 3.5 Limited
11 61 Male NSCCA 4.0 IB
12 85 Female NSCCA 2.8 IA
13 76 Male NSCCA 2 IIIA
14 34 Male NSCCA 3 IIA

Definition of abbreviations: NSCCA � non–small cell lung cancer; SCCA � small cell lung cancer.

small cell cancer. The other false-negative results occurred in
two patients who underwent diagnostic mediastinoscopy before
exhaled breath assessment and had small primary and limited-
stage lesions without airway involvement, suggesting that the
model may not be ideally sensitive. False-positive results oc-
curred in one patient with asthma with severe airflow limitation
(FEV1, 0.88, 33% of predicted; FVC, 1.73, 52% of predicted)
and in one patient with primary pulmonary hypertension (resting
mean pulmonary artery pressure, 50 mm Hg).

The results of the model were reproducible. Five healthy
control subjects were repeatedly measured on two to six different
occasions, and one patient with lung cancer had measurements
done twice, and in all cases, class assignment was correct (data
not shown).

Figure 2. Support vector machine (SVM) classification for lung cancer. During classification, SVM calculates the distance of the unknown sample
from the decision boundary in the model it has learned. In this graph, the margin for each breath sample is shown, with a positive value indicating
classification of lung cancer (i.e., how far within the lung cancer boundary the sample falls). A minimum of five analyses performed on each
individual’s exhaled breath is shown. A negative value indicates a noncancer classification, with the value indicating how far outside of the lung
cancer boundary the sample falls. The incorrect classification of a sample is identified by the open circles at the end of the line, and correct
classification by closed circles. The majority of predictions were concordant (i.e., all five classifications of an individual the same in 92% of cases).
Discordance occurred in 8% of cases. Assignment as cancer was predicted based on the predominant response (three or more of five) for that
particular patient. Incorrect classification of lung cancer as noncancer is noted for two individuals with small cell carcinoma (f, g: all five analyses
for each predict noncancer) and two individuals with relatively small primary lesions (h: four of five analyses predict noncancer; i: all five analyses
for each predict noncancer). Incorrect classification of control subjects as cancer is noted for an individual with asthma with severe airflow limitation
(a: three of five analyses cancer prediction), an individual with primary pulmonary hypertension (PAH; b: all five analyses predict cancer), and
three healthy nonsmoking control subjects with no known lung disease (c, e: four analyses predict cancer; d: all five analyses predict cancer).
*Indicates breath samples from two different individuals with lung cancer after curative resection of cancer.

Gas Chromatography and Mass Spectroscopy

To characterize VOCs in samples detected by the electronic
nose, we performed gas chromatography and mass spectroscopy
on exhaled breath of eight individuals with lung cancer from
our prospective cohort. Table 4 lists selected VOCs measured
and average concentration in parts per billion volume. Of VOCs
present, many have been previously reported in different concen-
trations in patients with lung cancer compared with those without
lung cancer (12–14).

DISCUSSION

The current study shows that exhaled breath of patients with lung
cancer has distinct characteristics that can be identified with an
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TABLE 3. ACCURACY INDICES OF THE ELECTRONIC NOSE FOR DETECTION OF LUNG CANCER

Lung Cancer Lung Cancer Sensitivity Specificity Positive Predictive Negative Predictive
Subgroup Present (n ) Absent (n ) (95% CI) (95% CI) Value (95% CI) Value (95% CI)

Positive exhaled breath test 10 5
Negative exhaled breath test 4 57
Total 14 62 71.4% 91.9% 66.6% 93.4%

(41.9–91.6) (82.1–97.3) (38.3–88.1) (84–98.1)
n � 10/14 n � 57/62 n � 10/15 n � 57/61

Definition of abbreviation: CI � confidence interval.

electronic nose. Furthermore, a cancer prediction model based on
the signature smellprints of exhaled breath of patients with lung
cancer demonstrates an accuracy that suggests that the electronic
nose could be a clinically useful tool in noninvasive lung cancer
detection. As a part of routine medical health maintenance,
screening for early detection of cancers has favorably influenced
the survival of patients with cancer, including breast, colon, and
prostate cancer (29). Unfortunately, widely applicable and effec-
tive screening for lung cancer, the leading cause of cancer death
in the United States today, is not available (30).

Our results are comparable to previous studies evaluating
lung cancer detection using gas chromatography and mass spec-
troscopy of exhaled gases (12, 13) or an electronic nose (15).
The exhaled breath of humans contains a multitude of VOCs,
many of which are in ambient air as well as endogenously pro-
duced, the most abundant being acetone, methanol, ethanol,
propanol, and isoprene (5). Of these, pentane, isoprene, acetone,
and benzene have been shown to be present in altered patterns
in lung cancer exhaled gas samples analyzed by gas chromatogra-
phy and mass spectroscopy (12–14). The results of gas chroma-
tography and mass spectroscopy in our samples corroborate
these findings and suggest that the electronic nose is capable of
recognizing this distinct exhaled gas pattern. In comparison to
gas chromatography and mass spectroscopy, the use of an elec-
tronic nose for detection of lung cancer offers several potential
advantages, including ease of administration of the test and por-
tability. In addition, this study brings a new method of sensor
response analysis to the field of VOC-based exhaled breath
detection of lung cancer.

The mechanisms leading to altered production of multiple
VOCs in the exhaled breath of patients with lung cancer are
likely related to increased oxidative events associated with the
neoplastic process but are not related to cigarette smoking
(31–34). The identification of patients after resection of lung

TABLE 4. VOLATILE ORGANIC COMPOUNDS PRESENT IN THE EXHALED BREATH OF PATIENTS
WITH LUNG CANCER

Patient No.

VOC (ppbv) 1 2 3 4 5 6 7 8

Isobutane 11 n.d. 5.6 13 n.d. 12 3.3 5.9
Methanol 63 n.d. 81 110 n.d n.d. n.d. 82
Ethanol 350 220 270 350 2160 1100 310 64
Acetone 150 190 870 240 370 260 220 270
Pentane 1 2 3 1 2 2 2 2
Isoprene 140 99 100 190 120 160 120 3
Isopropanol 270 1000 680 230 370 290 390 280
Dimethylsulfide 1.8 0.4 n.d. 0.7 3 1.9 1.1 2.4
Carbon disulfide 1.4 n.d. 1.6 3 n.d. 1.6 n.d. n.d.
Benzene 3.45 n.d. 6.6 1.4 0.9 3.5 1.1 1.3
Toluene 6.4 4.6 3.2 1.9 4 6.4 4.5 3.2

Definition of abbreviations: n.d � not detected; ppbv � parts per billion volume.

cancer as noncancer provides further support that the source of
the distinct pattern detectable by the electronic nose is the can-
cer. The high sensitivity for detection of non–small cell cancer sug-
gests that our training set, which contained a preponderance of
non–small cell cancer, may have selected for components distinct
to this type of lung cancer. Finally, the distinct patterns observed
in patients with lung cancer as opposed to those with chronic
obstructive lung disease caused by �1-AT deficiency, interstitial
lung disease and patients evaluated in the validation set with
COPD, asthma, and pulmonary arterial hypertension suggest
that the findings could not be explained by the presence of airway
inflammation or lung dysfunction alone.

Although not directly comparable to the context of this study,
it is useful to compare the performance of the electronic nose
to that of other noninvasive techniques used in detecting lung
cancer. Contrast-enhanced spiral computed tomography has a
sensitivity of 95 to 100% and a specificity reported between 58
and 93% (35). On the basis of a recent meta-analysis, positron
emission tomography has 98.6% sensitivity and 77.8% specificity
for identifying a malignant process in patients with pulmonary
nodules or masses (36). In contrast to these tests, the analyses
of exhaled breath for smellprints characteristic of bronchogenic
cancer provide a potentially simple, noninvasive, and inexpen-
sive screening tool.

On the other hand, a recent study using a quartz microbalance–
based sensor evaluated 35 patients with active lung cancer, nine
with resected disease and 18 healthy control subjects (15). Using
partial least squares discriminant analysis as a supervised tech-
nique, the electronic nose had an overall accuracy of 90.3%.
Furthermore, all of the patients with active lung cancer were
correctly identified, five postsurgery patients were classified as
control subjects and one healthy individual was classified as
postsurgery. Our study results not only validate these previous
observations but also add data from patients with chronic non-
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neoplastic lung diseases. Collectively, these data suggest that
biosensor analysis of the exhaled breath may be useful in the
detection of lung cancer.

Still, several limitations of our study warrant comment. First,
because many of the subjects in the current study had relatively
advanced disease, further work needs to be done in a larger, more
diverse population, which includes patients with less advanced
disease and those with suspected lung neoplasms. Second, in the
context that lung cancer was present in 18% of the validation
patient cohort, the predictive values must be interpreted cau-
tiously. Specifically, further study is needed to understand opti-
mal strategies for using the electronic nose in population-based
screening (where the negative predictive value would be ex-
pected to be higher because of much lower lung cancer preva-
lence) and in evaluating populations where the lung cancer fre-
quency differs from that in our validation cohort.

Overall, in the context of previous studies documenting alter-
ations in exhaled gases of patients with lung cancer (9–15), this
study demonstrates the feasibility of clinical monitoring of VOCs
in exhaled breath using a multisensor electronic nose as a rela-
tively convenient and noninvasive test in patients with suspected
lung cancer.

Conflict of Interest Statement : R.F.M. does not have a financial relationship with
a commercial entity that has an interest in the subject of this manuscript; D.L. is
the owner of Physiologic Measurement Systems LLC, which builds gas-sampling
systems; O.D. is employed by Smiths Detection, which sponsored the study
through the loan of the electronic nose detection device; T.B. is employed by
Smiths Detection, which sponsored the study through loan of the electronic nose
detection device; S.Z. does not have a financial relationship with a commercial
entity that has an interest in the subject of this manuscript; P.J.M. does not have
a financial relationship with a commercial entity that has an interest in the subject
of this manuscript; T.M. does not have a financial relationship with a commercial
entity that has an interest in the subject of this manuscript; C.J. does not have a
financial relationship with a commercial entity that has an interest in the subject
of this manuscript; J.K.S. does not have a financial relationship with a commercial
entity that has an interest in the subject of this manuscript; J.P. does not have a
financial relationship with a commercial entity that has an interest in the subject
of this manuscript; J.D. does not have a financial relationship with a commercial
entity that has an interest in the subject of this manuscript; R.A.D. does not have
a financial relationship with a commercial entity that has an interest in the subject
of this manuscript; S.C.E. does not have a financial relationship with a commercial
entity that has an interest in the subject of this manuscript.

References

1. Munoz BC, Steinthal G, Sunshine S. Conductive polymer-carbon black
composites-based sensor arrays for use in an electronic nose. Sensor
Rev 1999;19:300–305.

2. Kermany BG, Schiffman SS, Nagle HT. A novel method for reducing
the dimensionality in a sensor array. IEEE Trans Instr Meas 1998;47:
728–741.

3. Kermany BG, Schiffman SS, Nagle HT. Using neural networks and ge-
netic algorithms to enhance performance in an electronic nose. IEEE
Trans Biomed Eng 1999;46:429–439.

4. Gardner JW, Bartlett PN. Electronic noses: principles and applications.
Oxford, UK/New York: Oxford University Press; 1999.

5. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of
urine vapor and breath by gas-liquid partition chromatography. Proc
Natl Acad Sci USA 1971;68:2374–2376.

6. Parry AD, Chadwick PR, Simon D, Oppenheim B, McCollum CN. Leg
ulcer odour detection identifies beta-haemolytic streptococcal infec-
tion. J Wound Care 1995;4:404–406.

7. Lai SY, Deffenderfer OF, Hanson W, Phillips MP, Thaler ER. Identifica-
tion of upper respiratory bacterial pathogens with the electronic nose.
Laryngoscope 2002;112:975–979.

8. Hanson CW, Steinberger HA. The use of a novel electronic nose to
determine the etiology of intrapulmonary infection [abstract]. Anesthe-
siology 1997;87:A269.

9. Pavlou AK, Magan N, McNulty C, Jones J, Sharp D, Brown J, Turner
AP. Use of an electronic nose system for diagnoses of urinary tract
infections. Biosens Bioelectron 2002;17:893–899.

10. Pavlou AK, Magan N, Sharp D, Brown J, Barr H, Turner AP. An
intelligent rapid odour recognition model in discrimination of Helico-
bacter pylori and other gastroesophageal isolates in vitro. Biosens
Bioelectron 2000;15:333–342.

11. Dalton P, Gelperin A, Preti G. Volatile metabolic monitoring of glycemic
status in diabetes using electronic olfaction. Diabetes Technol Ther
2004;6:534–544.

12. Phillips M, Gleeson K, Hughes JM, Greenberg J, Cataneo RN, Baker
L, McVay WP. Volatile organic compounds in breath as markers of
lung cancer: a cross-sectional study. Lancet 1999;353:1930–1933.

13. Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K,
Greenberg J, Maxfield RA, Rom WN. Detection of lung cancer with
volatile markers in the breath. Chest 2003;123:2115–2123.

14. Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ.
Volatile organic compounds in exhaled air from patients with lung
cancer. Clin Chem 1985;31:1278–1282.

15. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G,
Roscioni C, Finazzi-Agro A, D’Amico A. Lung cancer identification
by the analysis of breath by means of an array of non-selective gas
sensors. Biosens Bioelectron 2003;18:1209–1218.

16. Machado R, Mazzone P, Laskowski D, Zheng S, Deffenderfer O, Burch
T, Mekkhail T, Stoller J, Dweik R, Erzurum S. An electronic nose
can diferentiate the exhaled breath of individuals with lung cancer
[abstract]. Am J Respir Crit Care Med 2003;167:A190.

17. Murphy S, Sheffer A, Pauwels R. National Asthma Education and Pre-
vention Program: highlights of the expert panel report II: guidelines
for the diagnosis and management of asthma. Bethesda, MD: National
Heart, Lung, and Blood Institute; 1997. NIH Publication No. 97-4051.

18. Rich S. Primary pulmonary hypertension: executive summary from the
World Symposium on Pulmonary Hypertension. In: Rich S, editor.
Geneva, Switzerland: World Health Organization; 1998.

19. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global
strategy for the diagnosis, management, and prevention of chronic
obstructive pulmonary disease: NHLBI/WHO Global Initiative for
Chronic Obstructive Lung Disease (GOLD) workshop summary. Am
J Respir Crit Care Med 2001;163:1256–1276.

20. Machado RF, Stoller JK, Laskowski D, Zheng S, Lupica JA, Dweik RA,
Erzurum SC. Low levels of nitric oxide and carbon monoxide in alpha
1-antitrypsin deficiency. J Appl Physiol 2002;93:2038–2043.

21. Savitsky A, Golay MJE. Smoothing and differentiation of data by simpli-
fied least square procedures. Anal Chem 1964;36:1627–1639.

22. Wold S, Ebensen K, Geladi P. Principal component analysis. Chemom
Intell Lab Syst 1987;2:37–52.

23. De Maesschalck R, Jouan-Rimbaud D, Massart DL. The Mahalanobis
distance. Chemom Intell Lab Syst 2000;50:1–18.

24. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler
D. Support vector machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics 2000;16:906–
914.

25. Peng S, Xu Q, Ling XB, Peng X, Du W, Chen L. Molecular classification
of cancer types from microarray data using the combination of genetic
algorithms and support vector machines. FEBS Lett 2003;555:358–362.

26. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS,
Ares M Jr, Haussler D. Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proc Natl Acad Sci
USA 2000;97:262–267.

27. Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern
W, Haferlach T. Pediatric acute lymphoblastic leukemia (ALL) gene
expression signatures classify an independent cohort of adult ALL
patients. Leukemia 2004;18:63–71.

28. Belusov AI, Verkazov SA, von Frese J. Applicational aspects of support
vector machines. J Chemometrics 2002;16(8–12):482–489.

29. Smith RA, Cokkinides V, Eyre HJ. American Cancer Society guidelines
for the early detection of cancer, 2003. CA Cancer J Clin 2003;53:27–43.

30. Bach PB, Niewoehner DE, Black WC. Screening for lung cancer: the
guidelines. Chest 2003;123:83S–88S.

31. Feig DI, Reid TM, Loeb LA. Reactive oxygen species in tumorigenesis.
Cancer Res 1994;54:1890s–1894s.

32. Dreher D, Junod AF. Role of oxygen free radicals in cancer development.
Eur J Cancer 1996;32A:30–38.

33. Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC. Differ-
ential expression of manganese superoxide dismutase and catalase in
lung cancer. Cancer Res 2001;61(23):8578–8585.

34. Kneepkens CM, Ferreira C, Lepage G, Roy CC. The hydrocarbon breath
test in the study of lipid peroxidation: principles and practice. Clin
Invest Med 1992;15:163–186.

35. Zhang M, Kono M. Solitary pulmonary nodules: evaluation of blood flow
patterns with dynamic CT. Radiology 1997;205:471–478.

36. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accu-
racy of positron emission tomography for diagnosis of pulmonary
nodules and mass lesions: a meta-analysis. JAMA 2001;285:914–924.


