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We introduce a family of positive definite kernels specifically optimized for the manipulation of 3D structures

of molecules with kernel methods. The kernels are based on the comparison of the three-point pharmacophores
present in the 3D structures of molecules, a set of molecular features known to be particularly relevant for
virtual screening applications. We present a computationally demanding exact implementation of these kernels,
as well as fast approximations related to the classical fingerprint-based approaches. Experimental results
suggest that this new approach is competitive with state-of-the-art algorithms based on the 2D structure of
molecules for the detection of inhibitors of several drug targets.

1. INTRODUCTION affinity to the target; this approach is usually referred to as

. : . . . . theligand-basedapproach to virtual screening.

Virtual screening refers to the process of inferring biologi- ) . ) )
cal properties of molecules in silico and plays an increasingly = Most approaches to ligand-based virtual screening require
important role at the early stages of the drug discovery the representation and comparison of 3D structures of
process to select candidate molecules with promising drug-molecules. The comparison of 3D structures can, for
likeness, including good toxicity and pharmacokinetics €xample, rely on optimal alignments in the 3D spaoceon
properties, as well as the potential to bind and inhibit a target the comparison of features extracted from the structtres.
protein of interest. In this context, structureactivity Features of particular importance in this context are subsets
relationship (SAR) analysis is commonly used to build Of two to four atoms together with their relative spatial
predictive models for the property of interest from a Organization, also callepharmacophoresDiscovering phar-
description of the molecules, using statistical procedures to Macophores common to a set of known inhibitors to a drug
build these models from the analysis of molecules with target can be a powerful approach to the screening of other
known propertieg. candidate molecules containing the pharmacophores, as well

It is widely accepted that several druglike properties can 8S & first step toward the undgrstandlng of the biological
be efficiently deduced from the 2D structure of the molecule, Phe€nomenon involveti:® Alternatively, the use of pharma-
that is, the description of a molecule as a set of atoms andcophore fingerprints, that is, bitstrings representing a mol-
their covalent bonds. For example, Lipinski’s “rule of five” €cule by the pharmacophores it contains, has emerged as a
remains a widely used standard for the prediction of intestinal Potential approach to apply statistical learning methods for
absorptior?, and the prediction of mutagenicity from 2D SARs, although sometimes with mixed resets?
molecular fragments is an accurate state-of-the-art appfoach. We focus in this paper on an extension of the fingerprint
In the case of target binding prediction, however, the representation of molecules for building SAR models with
molecular mechanisms responsible for the binding are known support vector machines (SVMs). SVM is an algorithm for
to depend on a precise 3D complementarity between the drugearning a classification or regression rule from labeled
and the target, from both the steric and electrostatic perspecexamples#!® which has recently been subject to much
tivesS For this reason, there has been a long history of investigation for SAR applications in chemoinformatiés'®
research on the prediction of these interactions from the 3D Although SVMs can be trained from a vector or bitstring
representation of molecules, that is, their spatial conformationrepresentation of molecules, they can also take advantage
in the 3D space. If the 3D structure of the target is known, of a mathematical trick to only rely on a measure of similarity
the strength of the interaction can be directly evaluated by between molecules, known agkernel This trick, common
docking techniques, which quantify the complementarity of to other algorithms called kernel methcdswas, for
the molecule to the target in terms of enefdg.the general example, used in refs 18 and 21 to build SAR models from
case where the 3D structure of the target is unknown, a 2D fingerprint of molecules of virtually infinite length.
however, the docking approach is not possible anymore, andHere, we investigate the possibility of using this trick in the
the modeler must resort to creating a predictive model from context of 3D SAR modeling. We propose a measure of
available data, typically a pool of molecules with a known similarity between 3D structures, which we call thkar-
macophore kerngbased on the comparison of pharmacoph-
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Figure 1. The kernel trick. Instead of looking for, e.g., a separating hyperplane directly in the input.8p&eéning patterns (white and
black disks) are mapped intof@ature space’through a functiory in which a hyperplane is computed; this hyperplane might correspond
to a complex surface in the input space. Using a proper positive definite kenredn carrying out the computation to derive the separating
hyperplane is equivalent to directly working with the images of the training samples by some mafpng.4 to some feature space;

the existence of: & — 9 is guaranteed by eq 3.

some similarity with pharmacophore fingerprint approaches, the points and being as far as possible from each point. The
although it produces more general models. In fact, we show linear classifierf can consequently be rewritten as

that a fast approximation of this kernel, based on pharma-

cophore fingerprints, leads to significantly lower performance ‘

on a benchmark data set. The overall good performance of f(x) = Sign(Zainiv X[H-b) 1)

the approach on this benchmark supports its relevance as a 1=

potentially effective tool for 3D SAR modeling.

This paper is organized as follows. A light introduction
to SVM and kernel methods is provided in section 2,
followed by the definition of the pharmacophore kernel
_(sectio_n 3). The exact compu_tation _of this kernel is presen_ted parametersv € 2 andb e R are. The purpose of tHeernel
in section 4, followed by a discussion about the C(_)nnectlon trick14.24is precisely to overcome this limitation by applying
between the pharmapophore kernel and recen_tly mtroduceda linear approach to the transformed data), ..., $(x) rather
graph _kern_els (sec_t|on 5) and _the presentation of a faStthan the original data, wherg is an embedding from the
approximation (section 6). Experimental results on a bench-

S L . input spaceX to the feature space%, usually, but not
marl_< data set for inhibitor predlptlon are then presented in necessarily, a high-dimensional space, equipped with dot
section 7, followed by a short discussion.

product [4,-[J» Thus, according to eq 1, the separating
function f writes as

However, when dealing with nonlinearly separable prob-
lems, such as the one depicted in Figure 1 (left), the set of
linear classifiers may not be rich enough to provide a good
classification function, no matter what the values of the

2. SUPPORT VECTOR MACHINES

/
In this section, we briefly review the basics of support f(x) = sian A Y ()4 b 2
vector machine$*'>The interested reader is invited to refer ) g (I;Q,Eb(x,),q&( )i+ b) @

to refs 20, 22, and 23 for further details. In its simplest form,

SVM is an algorithm to learn a binary classification rule The key ingredient in the kernel approach is to replace the

from a set of labeled examples. More formally, suppose one dot product in.% with a kernel, using the definition of

is given a set of examples with a binary label attached to positive definite kernels.

each example, that is, a sét= {(xy, y1), ..., & Y)} where Definition 1 (Positive Definite Kernel). Let .2 be a

(i, y) € & x {=1,+1} fori =1, ../ Here,lisan  nonempty space. Lek: 4 x 2 — R be a symmetric

innerproduct space (e.g&’), equipped with inner product  function. K is said to be a positive definite kernel if and

U,-L) which represents the space of data to be analyzed,only if, for all positive integers, for all x,, ..., x € .4, the

typically molecules represented ltdimensional finger-  square/x /matrixK = [K (%, %)]1<i;</iS positive semidefi-

prints, and the labels-1 and—1 are meant to represent two  nite, that is, all of its eigenvalues are non-negative.

classes of objects, such as inhibitors or noninhibitors of a  For a given set/;, = {x, ..., x}, K is theGram matrixof

target of interest. The purpose of SVM is to learn frof K with respect to ;. A fundamental property of positive

a classification functiofi: 2 — {—1, +1} that can be used  definite kernels that underlies the kernel trick is the fact that

to predict the class of new unlabeled exampless f(X). each such kernel can be represented as an inner product in
In the case of SVM, the classification function is simply some space. More precisely, it can be sh$hat, for any

of the formf(x) = sign(W, xdJ+ b), where signy) is the positive definite kernel functioiK, there exists a spac#,

function returning the signs+1 or —1, of its argument.  equipped with the inner produt,-[J; and a mapping: .2~

Geometrically speaking, this means thatitputs a prediction ~ — 9 'such that

for a patternx depending upon which side of the hyperplane

o, X0+ b = 0 it falls in. More precisely, SVM learns a Ou,w € & K(u,) = p(u),¢(v)L, 3)
separating hyperplane from defined by a vectow that is
a linear combination of the training vectons= Z{Zl X, The kernel trick consists of replacing all occurrences of

for somea; € R, i = 1, ...,4 obtained by solving a linearly  [,-[J, in eq 2 by a positive definite kernél such that the
constrained quadratic problem meant to optimize a tradeoff corresponding decision functidpfor an input patterix, is
between finding a hyperplane that correctly separates all of given by
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/ Definition 2. For any positive definite kernel for phar-
f(x) = sign() o; K(x,x) + b) 4) macophoreK »: # x ##— R, we define a corresponding
i= pharmacophore kernel for any pair of molecutesgand m'

For SVM as well as for other kernel methods, the knowledge by
of the Gram matrix suffices to obtain the coefficienis — ,
For any given positive definite kernel, applying the kernel K(m,) Ko (P.p) 6)

. . . . 7 'e °(m
trick turns out to be equivalent to transforming the input pe(m prem)

patternsx, ..., X/ into the corresponding vectogg(x), ..., with the convention thakK(m, m') = 0 if either %°(m) or
#(x) e and looking for hyperplanes it¢; as illustrated in () is empty.

Figure 1 (middle). The decision surface in input spate The fact that the pharmacophore kernel defined in eq 6 is
corresponding to the selected separating hyperplan&in  a valid positive definite kernel on the set of molecules, as
might be quite complex (see Figure 1, right). soon asK . is itself a valid positive definite kernel on the

A noteworthy feature of support vector machines and more set of pharmacophores, is a classical result (see, e.g., ref 27,
generally of kernel methoéis that, because ready-to-use Lemma 1). The problem of constructing a pharmacophore
libraries to derive separating hyperplanes are available, thekernel for molecules therefore boils down to the simpler
only requirement for them to be applied to a specific problem of defining a kernel between pharmacophores. A
classification problem is to have at hand a proper kernel chemically relevant measure of similarity between pharma-
function to assess the similarity between patterns of the inputcophores should obviously quantify at least two features:
space considered. As a result, they can be used in classificafirst, similar pharmacophores should be made of similar
tion problems involving structured data such as chemical atoms [where the notion of similarity can for instance be
compounds, provided some kernel function has been derivedbased on atom types or property(ies) and, more generally,
The rest of the paper is devoted to the construction and on pharmacophoric types], and second, the atoms should have
analysis of such a kernel for 3D structures of molecules. similar relative positions in the 3D space. It is therefore

natural to study kernels for pharmacophores that decompose
3. THE PHARMACOPHORE KERNEL as follows:

A pharmacophords usually defined as a three-dimen- , "N . .
sional arrangement of atomsr groups of atomsresponsible Ko (PP) = Ki(p.p) x Ks(pp) (7)

for the biological activity of a drug molecuké.The present \harei is a kernel function assessing the similarity between
work focuses onhree-pointpharmacophores, composec_i of the triplets of basis atoms of the pharmacophores (their so-
three atoms whose arrangement, therefore, forms a triangle.1ed intrinsic similarity) and Ks is a kernel function
in the 3D space (Figure 2). With a slight_ abusg, we refer to +roduced to quantify theispatial similarity.
pharmacophore below asiy possible configuration of three We can furthermore investigate intrinsic and spatial kernels
f’:ltoms or classes of atoms arranged as a trlang'le a”‘?' Presenfat factorize themselves as products of more basic kernels
ina molgcule, representing thereforptaatlug configuration between atoms and pairwise distances, respectively. Triplets
responsible for the biological property of interest. of atoms are indeed globally similar if the three correspond-
Throughout this paper, we represent the 3D structure of @i hairs of atoms are simultaneously similar, and triangles
molecule as a set of points it’. These points correspond 40 gimilar if the lengths of their edges are pairwise similar.
to the 3D. coordma.tes of the atoms_of the molecule (for a £, any pair of pharmacophorgs= [(x.,11),(x,l2),(Xa,12)]
given arbltrar.y basis qf the 3[_) Euclidean space), and they 44 P = [(X10),06,15),(¢,1)], this suggests the definition
are labeled with some information related to the atoms. More ¢ | arnels as follows:
formally, we define a moleculen as

3
m={(x.l) € R® x LYietm Ki(p,p) = D Kreallisl)) (8)

where|m| is the number of atoms that composes the molecule
and_ denotes the set of atom labels. The label is meant to
contain the relevant information to characterize a pharma- Ks(pP) = [ | KoisdI1% = Xial LI = Xial)  (9)
cophore based on atoms. It might for instance be defined by =

the type of atom (C, N, O, ...) or various physicochemical
atomic properties (e.g., partial charge). The three-point
pharmacophores considered in this work correspond to
triplets of distinct atoms of the molecules. The set
pharmacophores of the molecutecan therefore be formally
defined as

3

where||+|| denotes the Euclidean distance, the index 1

is taken modulo 3, an#re,; and Kpis; are kernel functions

introduced to compare pairs of labels froffand pairs of

of distances, respectively. It suffices now to define the kernels
KreatON¢"x andKpist ONR x R in order to obtain, by eqs
6—9, a pharmacophore kernel for molecules. The first one
) . 3 compares the atom labels, while the second compares the

L) = {(PP2Pg) € M, Py 7 Po. Py 7 Pg P p3}(5) dista%ces between atoms in the pharmacophores. Irl?tuitively,
they define the basic notions of similarity involved in the

More generally, the set of all possible pharmacophores is pharmacophore comparison, which in turn defines the overall

naturally defined as®” = (R® x /)3 to ensure the inclusion  similarity between molecules.

2°(m) C # We can now define a general family of kernels Note from the definition in eq 5 that, because of permuta-

for molecules on the basis of their pharmacophore content.tions, every distinct triplet of atoms of the molecutegives
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Figure 2. Left: A three-point pharmacophore made of one hydrogen-bond acceptor (top-most sphere) and two aromatic rings, with distances
d;, d;, andd; between the features. Middle: The molecule of flavone. Right: Match between flavone and the pharmacophore.

rise to six pharmacophores i*(m). In the general case, matrix M of sizen = |m| x |m|, whose dimensions are
these six pharmacophores are considered as different in théndexed by the Cartesian productrofandmi. In other words,
pharmacophore kernel. However, because of the definition to each index € [1,n] corresponds a unique couple of indices
of the notion of similarity between pharmacophores, some (i, i) ¢ [1,jm[] x [1,/m]], and to each dimension of the
of these six pharmacophores will be seen as identical if the
triplet of atoms is made of atoms of the same type. This
phenomenon is even emphasized if the triplet of atoms
exhibits some kind of spatial symmetry. For example, the
six pharmacophores associated with a triplet of identical
atoms arranged as an equilateral triangle are identical.
The kernel we use foKpis; is the Gaussian radial basis  M[j j] = M [(i i), (1,02)]
function (RBF) kernel, known to be a safe default choice
for SVM working on real numbers or vectots: = Keeafli,» 1) % KpisI1X, = % IL11X, = X, [1) x

K ) = ex;{_| x = y||2) 10 1y =) x 1, =) (12)
ist \"* 202

matrix M corresponds a distinct pair of points taken from
the moleculean and m'. Denoting by1(-), the indicator
function equal to one if its argument is true, and zero
otherwise, the entries & are defined by

The value of the pharmacophore kernel betweeand m’
can now be deduced from the matiik by the following
result:

where ¢ > 0 is the bandwidth parameter that will be
optimized as part of the training of the classifier (see section
7.2).

Various kernelsKreo: between labels can be chosen  proposition 1. The pharmacophore kernel (eq 6) between
depending on the atom labels definition. With these labels 5 pair of moleculesn andm is equal to
belonging, in principle, to a finite set of possible labels, for
example, the set of atom types with their charges (C, C
C~, N, ...), the followingDirac kernelis a natural default K(mm') = traceM®)
choice to compare a pair of atom labgld' € /-

i 1ifl=1I where M is the square matrix of dimensionsy| x |n|
KDlrac(I II) — (11)
Feat\l» 0 otherwise constructed fromm andm' by eq 12.

Alternatively, it might be relevant for the pharmacophore  Proof. Developing the matrix products involved in the

definition to compare atoms not only on the basis of their expression o3, we get

types and partial charges but also in terms of other physi-

cochemical parameters such as their size, polarity, and

electronegativity. Formally, a physicochemical parameter for . . .

an atom with label is a real numbef(l). In that case, the traceM 3) - Z MIij] M{jK Mki]

Gaussian RBF kernel (eq 10) could be applied directly to WL

the parameter values to compare labels. We discuss this issue

in section 8. wheren = |m| x |m| is the size oM. Using the fact that
Note finally that the Gaussian (eq 10) and Dirac (eq 11) the indices oM range over the Cartesian product of the set

kernels are known to bg definite pos_iti%and it follows of indices [1jmi] and [1]m|], we can rewrite this expression
from the closure properties of the family of kernel functions

that the kernel between pharmacophdfess valid for these
choices of the kernelKgearand Kpist.

n

Im] |
4. KERNEL COMPUTATION trace(Vl 3) = Z Z M[(il’i2)1(jl,j2)]
injpki=1 izja, k=1

We are now left with the task of computing the pharma- - -
cophore kernel (eq 6) for a particular choice of feature and MIG2i2). (ko koll Mk ko), (11,12)]
distance kernelKrearandKpis:. In this section, we provide a
simple analytical formula for this computation. Substituting with the definition oM given in eq 12, we

For any pair of moleculem = {(x,li) € R® x /}i—1, m obtain
andm = {(x,l) € R® x /}i=1..m, let us define a square
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5 [m| ||
traceM”) = 1, =) 1(j, = k)
iLJLZ:l iz,jz,Zzl ' ' ' '
kg #= ip) x 1, # jp) 1), 7 k) Lk, = i)
x Keealli ) % KoigI1%, = %, 11,11, = % I1)
% Keealli ) % Ko, = X [LI1X, = X |1)
x Keeallilie) % Ko%= % [1L11X, = X, |1)
[m| [
= Z Z 1i; = j; = ky) x
i1j1LK1=1 izj2,k=1
1,7 7 k) % Koa[I061),06,0) (k)]
[(X_10).041 )04 1]
[m| [
PIIND IL (CRIDICRIPACHS)
injuki=1, izjoke=1 . - P
[(Xiz’liz)’(sz!ljz)f(xkzilkz)]
K (p.p)
pe (m) p'e Z(m)
= K(m,m)

717k 277k

If we let u be the cost of evaluating the basis kerr€ls,
and Kpist and consider that the cost of the addition and

J. Chem. Inf. Model., Vol. 46, No. 5, 2002007

the set of indices [hy] that corresponds to the non-null
(respectively null) lines oM. By definition, we have

_5 M i

traceM ,’)

Ny

M [i,j] M[j.K] M k]

i) k=1

(13)

Moreover, ifi € N, thenM4[i,j] = 0 0j € [1, ni]. As a
consequence, the terM[i,j] M4[j,K] M[k,i] in the sum-
mations ovel, j, andk in eq 13 is zero as soon as at least
one indexi, j, or kis in the setN. It follows that

traceM,”) = 5 My[i,jl My[j,K My[k]
i,],keP

Z Ml Mo[j.Kl M[kii]
L], =1

= traceM )

Proposition 2 implies that the Cartesian productrodind
m involved in the matrixM defined in eq 12 can be restricted
to the pairs of points for which the label kern€kes; is
nonzero. In the case of the Dirac kernel (eq 11) for discrete

product operations is a small constant, the complexity of the labels, this boils down to introducing a dimensiorMnfor

kernel between pharmacophor&s. is 6u. Because the
cardinality of the set of pharmacophoreg(m) of the
moleculemis |m|3, the complexity of the direct computation
of the pharmacophore kernel given in definition 2|im|(x
Im'|)® x 6u. On the other hand, the computation given in
proposition 1 is a two-step process: Firstis the initialization
of the matrixM; each of the|fn| x |M'|)? entries is initialized
by the product of a kerneKeea With a kernelKpis;, for a
complexity of (m] x | m|)? x 2u. Second is the computation
of the trace oM 3, which has a complexity ofiifn| x |m|)3.
The global complexity of the matrix-based computation of
the kernel is thereforg) x |m')3 + (Jm| x |M|)? x 2u

or, equivalently, |m] x |m)® x [1 + 2u/(jm| x |mM])]. In

any pair of atoms having the same label. This result can have
important consequences in practice. Consider for example
the case where the atoms of the molecutesnd m' are
uniformly distributed irk classes of atom labels. In this case,
the size of the matri is equal tok(m|/k x |m'|/k) = |m|

x |m|/k. The complexity of the kernel computation is
therefore O[(|m| x |m'|/k)%] = O[3 (Im| x |m|)3]. It is
therefore reduced by a factd® in comparison with the
original implementation. More generally, this shows that
important gains in memory and computation can be expected
when the set of labels is increased. Section 7.3 discusses
such a case in more detail when the partial charges of atoms
are included or not in the labels. Note finally that, in a similar

comparison with the direct approach, the matrix-based way, the kerneKpis; to compare distances can be set to a

implementation proposed in proposition 1 reduces the numbercompactly supported kernel instead of the Gaussian RBF

of basis kernel&pis: andKeeato be computed and is therefore  kernel (eq 10). This has the effect of introducing sparsity in

more efficient. the matrixM, allowing the kernel computation to benefit
In any case, the complexity of the pharmacophore kernel from sparse matrix algorithms. This possibility was not

computation is therefore [(jm| x |m|)?]. Even for relatively ~ further explored in this work.

small molecules (on the order of 50 atoms), this complexity

becomes in practice a serious issue when the size of the data 5. RELATION WITH GRAPH KERNELS

set increases to thousands or tens of thousands of molecules. |, this section, we show that the pharmacophore kernel

However, we can note from the definition given in g 12 51 pe seen as an extension of the walk-count graph k&mels
that the lines oM corresponding to pairs of points,{) to the 3D representation of molecules. The walk-count graph

mand I') € nf for which Keeo(l,I') = 0 are filled with a6 s based on the representation of a moleouts a
zeros. On the basis of this consideration, we observe thatj;peled grapim = (7.¢5), defined by a set of vertices! a

the cost of computing the kernel can be reduced by limiting ¢at of edges’ C 7’x ¢’connecting pairs of vertices, and a
the size of the matrixM, according to the following  |apeling function: 7/U & — ¢, assigning a labd(x) in an
proposition. alphabet ¢ to any vertex or edge In the case of molecules,
Proposition 2. If we let M be the reduced version of a  the set of vertices?’ corresponds to the atoms of the
square matriM 1, where the null lines and the corresponding molecule, and the edges of the graph are usually defined as
columns are removed, then trabef) = traceM ;). the covalent bonds between the atoms of the moleé#ifée
Proof. Let n; (respectivelyn,) be the size oM (respec- To extend this 2D representation to a graph structure
tively My), and defineP (respectivelyN) as the subset of  capturing 3D information, we propose to introduce an edge
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between any pair of vertices of the graph. Molecules are approach, and the graph corresponds to the 2D structure of
therefore seen as complete, atom-based graphs. If we nowthe molecule.

define a walk of lengtim as a succession of+ 1 connected

vertices, it is easy to see that there is a one-to-one 6. FAST APPROXIMATION

correspondence between the set of pharmacophai@s)

of a moleculem and its set of self-returning walks of length
three, which we call774(m). We can therefore write the
pharmacophore kernel (eq 6) as a walk-based graph kerne

As an alternative to the costly computation presented in
section 4, we introduce in this section a fast approximation
|fo the pharmacophore kernel based on a discretization of the

pharmacophore space.

_ ! Our definition of pharmacophores is based on the atoms’
Kmym) KAPP) 3D coordinates, but they can equivalently be characterized
by the pairwise distances between atoms. To define discrete
pharmacophores, we restrict ourselves to discrete sets of atom
labels (e.g., the set of atom types), and we discretize
uniformly the range of distances between atoms into a
predefined number of bins. For example, if the interatomic
distances lie in the-920 A range, and we consider 10 bins
to discretize the distances, the bins will correspond to the
intervals 0-2, 2—4, ..., and 1820 A. Each distance is then
mapped to the index of the bin into which it falls, and a
discrete pharmacophore is defined by a triplet of atom labels
together with a triplet of bin indices. More formally, if the
distance range is discretized inpdins, the set of discrete
pharmacophores is a finite set defined’as= /3 x [1,p]5,
where_/is the set of atom labels.

K., (pp) Consider the mapping® from the set of molecules to
; the set of discrete pharmacophores, defined for the

pe 22(m) p'e (M)
= z Z Kwai(W,w)

we 7/5(m) W e 7/5(m')

where Kwa(W,w') = K (p,p') for the pair of walks {,w")
corresponding to the pair of pharmacophorpg'f. More
precisely, consider a pair of pharmacophopes [(Xy,l4),-
(l2).0619)] and p' = [(X,1),06.15),(619] and a corre-
sponding pair of walksv = (wy,Wz,ws,Wq) andw' = (W, W,
w;,w,). There is a direct equivalence betweaén andKyai

if we choose to label the vertices of the graphs by the atom
labels involved in the pharmacophore characterization and
to label the edges by the Euclidian distance between the
atoms they connect. Indeed, in this case, we can write

3

_ ; _ ;o moleculem as ¢*P(m) = [¢«(M)]icsz, Where ¢(m) is the

N D Keealli ) Koisd 1% = XalL11X = X1l1) number of times the pharmacophoteis found in the

moleculem. This mapping leads to the following kernel

3 definition.

= Keeall(Wi).1(W)] Kpig (W5 Wi 1)) (W4 1))] Definition 3 (Three-Point Spectrum Kernel). For a pair
= of moleculesm andnt, we define the three-point spectrum

= Kpyar(W,w) kernelKE, as

A striking point of this kernel between walks is that it can K&\ (m) = [p*(m),¢*(m) = 2 B(m) g (M)
be factorized along the edges of the walks: €73

(15)
3
KwaiW.W) = | | Keeal (W)l (W] K[ (W5, W 1.1)), Note that, if we define the mappirdy > — 7, such that
= d(p) is the discretized version of the pharmacophore
[((w, W 1))] we can explicitly write the three-point spectrum kernel as a

particular pharmacophore kernel (eq 6):

= | Ksted (Wi Wi +1), (Wi W4 )] (14) K?é%te&mnm) _ Z Z 1[d(p) = d(p)] (16)

pe #(m) p'e (M)

The pharmacophore kernel therefore formulates as a walk- ) o
based graph kernel, with a walk kernel factorizing along the This equation shows that this is a crude pharmacophore
edges of the walks. It follows from ref 21 that it can be Kkernel, based on a kernel for pharmacophores that simply
computed by the formalism based on product graphs andc¢hecks if two given pharmacophores have identical dis-
powers of the adjacency matrix proposed in ref 28, if the cretized versions or not.
adjacency matrix of the product graph is weighted by the In addition, we consider a “two-point pharmacophore”
walk-step kernel&swep(eq 14). Consequently, the matik, version of the kernel (eq 15), based on pairs, instead of
defined in eq 12 and upon which is based the kernel triplets, of atoms? Letting ¢, be the set of all possible two-
computation of proposition 1, can be seen as a weightedpoint pharmacophores, that is, pairs of atom types together
adjacency matrix of a product graph defined on complete, with the bin index of the edge connecting them, and letting
atom-based, molecular factor graphs. #*P(m) = [¢(M)]c; be the mapping of the molecute to

Note moreover that, in its way to characterize the 72, corresponding t@**(m), we define the followingwo-
molecular structure, the pharmacophore kernel bears some0int spectrunkernel.
similarity with cyclic patterns kerneldwhere a molecule is Definition 4 (Two-Point Spectrum Kernel). For a pair
represented by graph cycles, even though general cyclesof moleculesm andnv, we define the two-point spectrum
instead of cycles of size three are considered in this latter kernelKé@Lcas
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Ké’ffe (mm) = @ZDt(m)’(ﬁZpl(mv)D: B(M) () res_pectively. This pseudocode relies on the abs_tract types
&, Pointer and Label, to represent the walk pointers involved

in the algorithm and the generic vertices and edges labels,
(17)  in the algorithm and th ' i d edges label

belonging toLy and Ly, respectively. Formally, &ointer

This kernel shows strong similarities with recently introduced object consists of two graph vertices:strt and acurrent
kernels for 3D structures of molecutesnd is introduced  vertex, representing the first and the current vertices of the
as a baseline to validate the three-point pharmacophorepointed walk being extended. To maintain walk pointers
characterization of molecules. within each molecule, we introduce a matrix of pointers

The kernels in eqs 15 and 17 are directly expressed aswalkPointers= Pointer[][]: this matrix is initially empty, and
dot products and are consequently positive definite, which during the walk extension process, walkPointgfg[corre-
justifies their use with SVM. Moreover, these kernels can sponds to thgth pointer of the molecular grap@;. The
be computed efficiently using an algorithm derived from that stopping criterion of the recursion is controlled by an integer
used in the implementation of the spectrum string kethel. variabledepthcorresponding to the depth in the tree during
We describe this algorithm for the three-point version of the the transversal process. It is initialized to zero and incre-
kernel, its extension to the two-point kernel being straight- mented at each recursive call. When depth is three, a depth-
forward. Following the notation of section 5, we represent three node is reached in the tree, which corresponds to
molecules by complete, atom-based labeled graphs, with thepointers on length-two walks in the graphs. In the subsequent
difference that the set of atom labefslefining the vertices  recursive step, depth is four, and the pointers are updated to
labels is considered to be discrete (e.g., the atom types), anénsure that the extended walks correspond to self-returning
the edges are now labeled by the bin index of the corre- ones. A leaf node is then reached, and the recursion
sponding interatomic distance. We consider the problem of terminates, leading to an update of the Gram matrix. Note,
computing the Gram matriK associated with such a set of however, that the recursion is aborted whenever the set of
molecular graph$G; = (76,56)}i=1..n for the kernelineq  walk pointers becomes empty for all graphs, because we only
15. The alphabet, involved in the graph labeling function  need to reach the leaf nodes corresponding to the pharma-
| of section 5, is defined as¢ = Ly U Lg, whereLy is the cophores truly present in the set of graphs.
set of vertex labels, corresponding to the set of atom labels Computing the Gram matrik simply requires a call to
/7 andLe is the set of edges labels, corresponding to the setthe COMPUTEfunction of algorithm 1 with the following
of distance bins indices. arguments: Pointers the empty Pointer matrixdepth

The algorithm is based on the manipulation of sets of walk initialized to zero; and, then x n Gram matrix filled with
pointers within each graph, according to a tree transversalzeros,

process. If we len andp be the cardinalities dfy andLe, The cost of this algorithm depends on the number of leaf
respectively, we define a rooted, depth-four tree structuring noges visited and is therefore bounded by the total number
the space of pharmacophores as follows: of leaves of the tree, that ispig)? if the number of distinct
+The root node has sons, corresponding to timepossible  vertex labels isn and the number of distance bins fis
vertex labels. However, the maximum number of distinct pharmacophores
+The depth-one and depth-two nodes have p sons,  that can be found in the molecuteis |mf3, and we do not
corresponding to the x p possible pairs of edge and vertex need to exhaustively transverse the tree. This means that, to
labels. compute the kernel between the molecutesndmn, at most,

+The depth-three nodes hapeons, corresponding to the  min(imj3,|m|3) leaves, corresponding to the common phar-
p possible edge labels, a leaf node being implicitly associated macophores afn andm, need to be visited. The complexity
with the vertex label of its depth-one ancestor. A path from of the algorithm is therefore/[min[(np)3, min(imi3,/m|3)]].
the root to a leaf node therefore corresponds to a triplet of For small molecules, the cost of the kernel will therefore
distinct vertex labels, together with a triplet of distinct edge depend on their number of atoms, while it will depend on
labels. There is therefore a one-to-one correspondencethe size of the discrete pharmacophore space for large
between the leaf nodes and the pharmacophoreg.ofhe molecules.
principle of the algorithm is to recursively transverse this  Npote finally that, although we omit the details, the previous
tree until each leaf node (i.e., each potential pharmacophore)g|gorithm and complexity analysis hold for the two-point
is visited. During this process, a set of walk pointers is yersion of the kernel: the tree involved in the recursive
maintained within each molecule. The pointers are recur- yansversal process is smaller (a depth-two tree, witheaf

sively updated such that the pointed walks correspond to thepgges), and the complexity is reduced &min[n?p, min-
pharmacophores under construction in the tree-transversal|mz2 iny|2)1].

process. When reaching a leaf node, the pointed walks
correspond to the occurrences of a particular pharmacophore 7 EXPERIMENTS
t in the molecules. The mapping(G;) can therefore be

computed for the molecular grapfGi}i=1... n, and the kernel We now turn to the experimental section. The problem
matrix K can be updated by adding the produgt<s;) ¢- considered here consists of building predictive models to
(G) to its (i,j) entries. distinguishactive from inactive molecules on several protein

A pseudo code of the algorithm is given in algorithms targets. This problem is naturally formulated as a supervised
1—4 (Chart 1). Algorithm 1 is the main program in charge binary classification problem that can be solved by SVM.
of the tree-transversal process, and algorithms 2, 3, and 4 7.1. Data SetsWe tested the pharmacophore kernel on
are subroutines, introduced to initialize the walk pointers, several data sets used in a recent SAR s#dylore
extend the pointed walks, and update the Gram matrix, precisely, we considered the following four publicly available
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Chart 1. Algorithms 1-4

Algorithm 1 main program
COMPUTE(Pointer[][] walk Pointers,Integer depth, Float[][] &)
depth = depth + 1
if depth = 1 then
for label € Ly do
walk Pointers = initPointers(label)
compute(walk Pointers, depth, K)
end for
else
for labely € Ly do
for labely € L do
walk Pointers = extendPointers(walk Pointers, depth, labely , labels)
if walk Pointers # [|[] then
if depth = 4 then
updateGram(walk Pointers, K)
else
compute(walk Pointers, depth, K)
end if
end if
end for
end for
end if

Algorithm 2 Sub-routine 1 : initialize walks pointers
INITPOINTERS(Label label)
walk Pointers = Pointer[][]
fori=1,...,ndo
for v € Vg, do
if [{v) = label then
walk Pointers|i].addPointer(start = v, current = v)
end if
end for
end for
return walk Pointers

Algorithm 3 Sub-routine 2 : extend walks pointers
EXTENDPOINTERS(Pointer{|[] walk Pointers;,, Integer depth, Label label;, Label labels)

walk Pointersg,; = Pointer(][]
fori=1,...ndo
for ptr € walk Pointers;,[i] do
for (ptr.current,v) € £, do
if I(v) = label; A I((ptr.current,v)) = label; then
if depth # 4V v = ptr.start then
walk Pointers g, [i].addPointer(start = ptr.start, current = v)
end if
end if
end for
end for
end for
return walk Pointers,,;

Algorithm 4 Sub-routine 3 : update Gram matrix
UPDATEGRAM(Pointer{][] walk Pointers, Float [[] K')
fori =1,..,ndo
forj=1,...ndo
if walk Pointersi] # [| A walk Pointers[j] # || then
K[i][j] = K[i][j] + walkPointers[i].size() x walkPointers[j].size()
if i # j then
K[j][i] = K[j][i] + walk Pointers[i].size() x walk Pointers(j].size()
end if
end if
end for
end for

data sets (available as Supporting Information of the original the COX data set, a set of 467 cyclooxygenase-2 inhibitors;
study at http://pubs.acs.org/journals/jcisd8/): the BZR data the DHFR data set, a set of 756 inhibitors of dihydrofolate
set, a set of 405 ligands for the benzodiazepine receptor;reductase; and the ER data set, a set of 1009 estrogen receptor
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Table 1. Basic Information about the Data Sets Considered The different kernels were implemented in-€ within
train test the open-source ChemCpp toolbox (available at http://
nositive negative positive negative chemcpp.soqrceforge.net), and the SVM expgriment was
57R o e 03 v conducted with the open-source Python machine learning
COX 87 o1 61 64 package PyML (http://[pyml.sourceforge.net). The SVM
DHFR 84 149 42 118 prediction is obtained by taking the sign of a score function
ER 110 156 70 110 (eq 1). However, by varying this zero decision threshold, it

is possible to compute the evolution of the true-positive rate
ligands. These data sets contain the 3D structures of theversus the false-positive rate in a curve known as the receiver
molecules, together with a quantitative measure of their operating characteristic (ROC) curve. The area under the
ability to inhibit a biological mechanism. The reference ROC curve (AUC) is known to be a safer indicator of the
papef? presents a data preparation scheme sought to mimicquality of a classifier than its accuraé¥being 1 for an ideal

a real virtual screening application: data sets were first classifier and 0.5 for a random classifier. For each experi-
filtered to prevent structural redundancy in the compounds ment, all parameters of the kernel and the SVM were
considered and were further split into training and test sets optimized over a grid of possible choices on the training set
such that the compounds used for testing are as structurallyonly, to maximize the mean AUC over an internal 10-fold
different as possible from those used for training. To have a cross-validation.

reference result to which to compare, we kept this particular  The results on the test set correspond to the performance
data preparation scheme. Table 1 gathers basic informationof the SVM with the selected parameters only. The optimized
about the data sets involved in the study. parameters include the widthe {0.1, 1, 1Q (in angstroms)

7.2. Experimental Setup.We investigated in this study  of the Gaussian RBF kernel used to compare distances, the
a simple labeling scheme to describe each atom (hydrogensoft-margin parameter of the SVM over the gfid.1, 0.5,
atoms were systematically removed) and, therefore, thel, 1.5, ..., 29, and the number of bins used to discretize the
potential pharmacophores: the label of an atom is composeddistances for the fast approximations over the §ad6, 8,
of its type (e.g.C, O, N, ...) and the sign of its partial charge ..., 3G.

(+, —, or 0). Hence, the set of labels can be expanded as 7.3. Results Table 2 shows the results of classification
={C* C% C~,0" 0% O, ..}. The partial charges account for the different kernel variants. Each line corresponds to a
for the contribution of each atom to the total charge of the kernel and reports several statistics: the accuracy (fraction
molecule and were computed with the QuacPAC software of correctly classified compounds), sensitivity (fraction of
developed by OpenEye (http://www.eyesopen.com/products/positive compounds that were correctly classified), specificity
applications/quacpac.html). It is important to note that, (fraction of negative compounds that were correctly classi-
contrary to the physicochemical properties of atoms, partial fied), and AUC. The first line corresponds to the basic
charges depend on the molecule and describe the spatiatategorical kernel. The following three lines show the results
distribution of charges. Although the partial charges take of the variants of the categorical kernel: the reduction of
continuous values, we simply kept their signs for the labeling the atom labels to their types (i.e., categorical kernel without
as basic indicators of charges in the description of pharma- partial charges) and the fast approximation of the kernel (i.e.,
cophores. We caltategorical kernelthe kernel resulting  three-point spectrum kernel), together with its two-point

from this labeling, where the kernel between labi€ls, is counterpart. Finally, we added the performance obtained by
the Dirac kernel (eq 11) and the kernel between distancesthe state-of-the-art 2D Tanimoto kernel, based on the 2D
Koist is the Gaussian RBF kernel (eq 10). structure of the molecules, and the best results reported in

Alternatively, we tested several variants of this basic the reference publicatiolf. This latter method, labeled
categorical kernel. On one hand, we tested the effect of the“Sutherland” in Table 2, is based on descriptors inherited
partial charges by removing them from the labels and keepingfrom the 2D structure and the atomic composition of the
the same Dirac and Gaussian RBF kernels for the labels andmolecules, which are selected using a genetic algorithm.
distances, respectively. In this case, the label of an atom The results of parameter optimization on the training set
reduces to its type. On the other hand, we tested the fastoften led to similar choices for different kernels. For example,
approximation and its two-point counterpart mentioned in the width of the Gaussian RBF kernel to compare distances
section 6 with our original labeling scheme, that is, atoms was usually selected at 0.1 A, which corresponds to a very
labeled by their types and the sign of their partial charges. strong constraint on the pharmacophore matching. Finally,

In addition, we tested the state-of-the-art Tanimoto kernel the number of bins selected by the fast approximations to
based on the 2D structure of molecdfe® evaluate the  discretize the distances was usually between 20 and 30 bins.
potential gain obtained by including 3D information. This ~ We can first observe from Table 2 that removing the partial
kernel is defined as the Tanimoto coefficient between charges from atom labels decreases the accuracy-éya
fingerprints indicating the presence or absence of all possiblecorresponding to a relative variation of3%, on all data
molecular fragments of a length up to eight in the 2D sets except COX. This superiority in accuracy of the
structure of the molecule, where a fragment refers to a categorical kernel is significant at@value ofp = 0.125,
sequence of atoms connected by covalent bonds. We noteaccording to the one-sided Wilcoxon signed-rank test for
that this fingerprint is similar to classical 2D fingerprints paired daté based on the accuracy statistic, which suggests
such as the Daylight representation (http://www.daylight- that the partial charge information is important for the
.com/dayhtml/doc/theory/theory.toc.html), with the difference definition of pharmacophores.
that our implementation does not require the folding of the  Morevover, the fast pharmacophore kernel obtained by
fingerprint into a small-size vectdf. applying a Dirac kernel to check when pairs of candidate
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Table 2. Classification of the Test Sets, after Model Selection on the Training Set

BZR COX DHFR ER

acc. sens. spec. AUC acc. sens. spec. AUC acc. sens. spec. AUC acc. sens. spec. AUC
categorical 764 740 789 821 698 69.8 69.8 751 819 633 888 848 798 720 847 86.8
categorical, no partial charges 74.3 736 750 815 70.0 685 709 746 781 652 827 822 776 717 814 872
three-point spectrum 754 744 763 813 670 644 695 759 769 709 790 819 786 783 788 874
two-point spectrum 714 613 816 803 689 702 67.7 747 67.7 674 679 723 787 759 804 845
2D-Tanimoto 712 719 705 808 63.0 675 586 698 769 738 780 830 771 693 821 836
Sutherland, ref 32 752 70.0 81.0 73.6 75.0 720 719 740 71.0 789 77.0 80.0

Table 3. Computation Times in Minutes Needed to Compute the to induce more matches between atoms and, therefore, as

Different Kernel Matrices on the BZR Training Set discussed in section 4, to drastically slow the computation
exact discrete by a factor of 12, consistent with the theoretical estimate
with charges 20 6 that dividing the size of the label classeslbincreases the
without charges 249 7 speed by a factor df2.

@ The first column refers to the computation of the exact kernel (eq
7) and the second one to the approximate kernel (eq 15). 8. DISCUSSION AND CONCLUSION

This paper presents an attempt to extend the application
pharmacophores fall in the same bin of the discretized spaceof recent machine learning algorithms for classification to
(three-point spectrum kernel) systematically degrades thethe manipulation of 3D structures of molecules. This attempt
accuracy by £5%, corresponding to a relative variation of is mainly motivated by applications in drug activity predic-
1-6%, over all four data sets compared to the categorical tion, for which 3D pharmacophores are known to play
kernel. This is significant at @ value ofp = 0.062 and important roles. Although previous attempts to define kernels
suggests that the gain in computation time obtained by for 3D structures (similar in fact to the two-point spectrum
discretizing the space and computing a 3D-fingerprint-like kernel we tested) led to mixed resulbswe obtained
representation of molecules has a cost in terms of accuracyperformance competitive with that of state-of-the-art algo-
of the final model. A particular limitation of the fingerprint-  rithms for the categorical kernel based on the comparison
based method is that two pharmacophores could remainof pharmacophores contained in the two molecules to be
unmatched if they fall into two different bins, although they compared. This kernel is not an inner product between
might be very similar but close to the bins’ boundaries. In fingerprints and, therefore, fully exploits the mathematical
the case of the pharmacophore kernel, such pairs of similartrick that allows SVM to manipulate measures of similarities
pharmacophores would always be matched. rather than explicit vector representations of molecules, as

We observe finally that, except for the COX data set, the 0Opposed to other methods such as neural networks. We even
discrete kernel based on two-point pharmacophores leads tg®bserved that, for the closest fingerprint-based approximation
worse accuracy results than its three-point counterpart. Thisobtained by discretizing the space of possible pharmacoph-
tends to highlight the benefits of the three-point pharma- ores (three-point spectrum kernel), the performance signifi-
cophore characterization of the molecular structure, but this cantly decreases. This highlights the benefits that can be
is only significant at g value ofp = 0.312. gained from the use of kernels, which provide a satisfactory

For each data set, the results obtained with the 2D- answer to the common issue of choosing a “good” discreti-
Tanimoto kernel are significantly worse than those of the Zation of the pharmacophore space to make fingerprints:
categorical kernel, with a decrease ranging from 3 to 7%, ONC€ d!scretlzed, pharmacophores falling on d!fferent sides
corresponding to a relative variation of-30%, on the  ©Of bins’ edges do not match, although they might be very
different data sets. This is significant atpavalue ofp = close. We notice that approaches based on fuzzy finger-
0.062 and confirms the relevance of 3D information for drug Prints:® for example, aim at correcting this effect by
activity prediction, which motivated this work. Finally, we Matching pharmacophores based on different distance bins.
note that, on all but the COX data set, the categorical kernel Concerning the practical use of our approach for the
outperforms the best results of ref 32. This tends to confirm screening of large data sets, Table 3 shows that, even for
the competitiveness of our method compared to state-of-the-the fastest variants, the approach based on kernel methods
art methods, but these latter results are only significant at acan be computationally demanding even for relatively small
p value ofp = 0.312. data sets. In practice, however, the time to train the SVM

Regarding the computational complexity of the different can be smaller than the times presented in Table 3 because
methods, Table 3 shows the time required to compute thenot all entries of the matrix are required. Speeding up SVM
kernel matrices on the BZR training set for different kernels, and kernel methods for large data sets is currently a topic of
on a desktop computer, equipped with a Pentium 4 3.6 GHz interest in the machine learning community, and applications
processor with 1 GB of RAM. In the discrete version, the i virtual screening on large databases of molecules will
distance range was split into 24 bins, and as expected, thecertainly benefit from the advances in this field.
kernels based on the discretization of the pharmacophore Among the possible extensions to our work, a promising
space are faster than their counterparts by a factor-854 direction that is likely to be relevant for many real-world
depending on the type of labels used (with or without the applications is to take into account different conformers of
partial charge information). In the exact kernel computation, each molecule. Indeed, it is well-known that the biological
the effect of removing the partial charges from the labels is activity to be predicted is often due to one out of several
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