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We introduce a family of positive definite kernels specifically optimized for the manipulation of 3D structures
of molecules with kernel methods. The kernels are based on the comparison of the three-point pharmacophores
present in the 3D structures of molecules, a set of molecular features known to be particularly relevant for
virtual screening applications. We present a computationally demanding exact implementation of these kernels,
as well as fast approximations related to the classical fingerprint-based approaches. Experimental results
suggest that this new approach is competitive with state-of-the-art algorithms based on the 2D structure of
molecules for the detection of inhibitors of several drug targets.

1. INTRODUCTION

Virtual screening refers to the process of inferring biologi-
cal properties of molecules in silico and plays an increasingly
important role at the early stages of the drug discovery
process to select candidate molecules with promising drug-
likeness, including good toxicity and pharmacokinetics
properties, as well as the potential to bind and inhibit a target
protein of interest.1 In this context, structure-activity
relationship (SAR) analysis is commonly used to build
predictive models for the property of interest from a
description of the molecules, using statistical procedures to
build these models from the analysis of molecules with
known properties.2

It is widely accepted that several druglike properties can
be efficiently deduced from the 2D structure of the molecule,
that is, the description of a molecule as a set of atoms and
their covalent bonds. For example, Lipinski’s “rule of five”
remains a widely used standard for the prediction of intestinal
absorption,3 and the prediction of mutagenicity from 2D
molecular fragments is an accurate state-of-the-art approach.4

In the case of target binding prediction, however, the
molecular mechanisms responsible for the binding are known
to depend on a precise 3D complementarity between the drug
and the target, from both the steric and electrostatic perspec-
tives.5 For this reason, there has been a long history of
research on the prediction of these interactions from the 3D
representation of molecules, that is, their spatial conformation
in the 3D space. If the 3D structure of the target is known,
the strength of the interaction can be directly evaluated by
docking techniques, which quantify the complementarity of
the molecule to the target in terms of energy.6 In the general
case where the 3D structure of the target is unknown,
however, the docking approach is not possible anymore, and
the modeler must resort to creating a predictive model from
available data, typically a pool of molecules with a known

affinity to the target; this approach is usually referred to as
the ligand-basedapproach to virtual screening.

Most approaches to ligand-based virtual screening require
the representation and comparison of 3D structures of
molecules. The comparison of 3D structures can, for
example, rely on optimal alignments in the 3D space,7 or on
the comparison of features extracted from the structures.8

Features of particular importance in this context are subsets
of two to four atoms together with their relative spatial
organization, also calledpharmacophores. Discovering phar-
macophores common to a set of known inhibitors to a drug
target can be a powerful approach to the screening of other
candidate molecules containing the pharmacophores, as well
as a first step toward the understanding of the biological
phenomenon involved.9,10 Alternatively, the use of pharma-
cophore fingerprints, that is, bitstrings representing a mol-
ecule by the pharmacophores it contains, has emerged as a
potential approach to apply statistical learning methods for
SARs, although sometimes with mixed results.11-13

We focus in this paper on an extension of the fingerprint
representation of molecules for building SAR models with
support vector machines (SVMs). SVM is an algorithm for
learning a classification or regression rule from labeled
examples,14,15 which has recently been subject to much
investigation for SAR applications in chemoinformatics.16-19

Although SVMs can be trained from a vector or bitstring
representation of molecules, they can also take advantage
of a mathematical trick to only rely on a measure of similarity
between molecules, known as akernel. This trick, common
to other algorithms called kernel methods,20 was, for
example, used in refs 18 and 21 to build SAR models from
a 2D fingerprint of molecules of virtually infinite length.
Here, we investigate the possibility of using this trick in the
context of 3D SAR modeling. We propose a measure of
similarity between 3D structures, which we call thephar-
macophore kernel, based on the comparison of pharmacoph-
ores present in the structures. It satisfies the mathematical
properties required to be a valid kernel, and it therefore
allows the use of SVM for model building. This kernel bears
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some similarity with pharmacophore fingerprint approaches,
although it produces more general models. In fact, we show
that a fast approximation of this kernel, based on pharma-
cophore fingerprints, leads to significantly lower performance
on a benchmark data set. The overall good performance of
the approach on this benchmark supports its relevance as a
potentially effective tool for 3D SAR modeling.

This paper is organized as follows. A light introduction
to SVM and kernel methods is provided in section 2,
followed by the definition of the pharmacophore kernel
(section 3). The exact computation of this kernel is presented
in section 4, followed by a discussion about the connection
between the pharmacophore kernel and recently introduced
graph kernels (section 5) and the presentation of a fast
approximation (section 6). Experimental results on a bench-
mark data set for inhibitor prediction are then presented in
section 7, followed by a short discussion.

2. SUPPORT VECTOR MACHINES

In this section, we briefly review the basics of support
vector machines.14,15The interested reader is invited to refer
to refs 20, 22, and 23 for further details. In its simplest form,
SVM is an algorithm to learn a binary classification rule
from a set of labeled examples. More formally, suppose one
is given a set of examples with a binary label attached to
each example, that is, a setS ) {(x1, y1), ..., (xl, yl)} where
(xi, yi) ∈ X × {-1, +1} for i ) 1, ..., l. Here, X is an
innerproduct space (e.g.,Rd), equipped with inner product
〈‚,‚〉, which represents the space of data to be analyzed,
typically molecules represented byd-dimensional finger-
prints, and the labels+1 and-1 are meant to represent two
classes of objects, such as inhibitors or noninhibitors of a
target of interest. The purpose of SVM is to learn fromS
a classification functionf : X f {-1, +1} that can be used
to predict the class of new unlabeled examplesx as f(x).

In the case of SVM, the classification function is simply
of the form f(x) ) sign(〈w, x〉 + b), where sign(‚) is the
function returning the sign,+1 or -1, of its argument.
Geometrically speaking, this means thatf outputs a prediction
for a patternx depending upon which side of the hyperplane
〈w, x〉 + b ) 0 it falls in. More precisely, SVM learns a
separating hyperplane fromS defined by a vectorw that is
a linear combination of the training vectorsw ) Σi)1

l Rixi,
for someRi ∈ R, i ) 1, ..., l, obtained by solving a linearly
constrained quadratic problem meant to optimize a tradeoff
between finding a hyperplane that correctly separates all of

the points and being as far as possible from each point. The
linear classifierf can consequently be rewritten as

However, when dealing with nonlinearly separable prob-
lems, such as the one depicted in Figure 1 (left), the set of
linear classifiers may not be rich enough to provide a good
classification function, no matter what the values of the
parametersw ∈ X andb ∈ R are. The purpose of thekernel
trick14,24is precisely to overcome this limitation by applying
a linear approach to the transformed dataφ(x1), ...,φ(xl) rather
than the original data, whereφ is an embedding from the
input spaceX to the feature spaceH, usually, but not
necessarily, a high-dimensional space, equipped with dot
product 〈‚,‚〉H. Thus, according to eq 1, the separating
function f writes as

The key ingredient in the kernel approach is to replace the
dot product inH with a kernel, using the definition of
positive definite kernels.

Definition 1 (Positive Definite Kernel). Let X be a
nonempty space. LetK: X × X f R be a symmetric
function. K is said to be a positive definite kernel if and
only if, for all positive integersl, for all x1, ..., xl ∈ X, the
squarel × l matrix K ) [K(xi, xj)]1ei,jel is positive semidefi-
nite, that is, all of its eigenvalues are non-negative.

For a given setSx ) {x1, ..., xl}, K is theGram matrixof
K with respect toSx. A fundamental property of positive
definite kernels that underlies the kernel trick is the fact that
each such kernel can be represented as an inner product in
some space. More precisely, it can be shown25 that, for any
positive definite kernel functionK, there exists a spaceH,
equipped with the inner product〈‚,‚〉H, and a mappingφ: X
f H such that

The kernel trick consists of replacing all occurrences of
〈‚,‚〉H in eq 2 by a positive definite kernelK such that the
corresponding decision functionf, for an input patternx, is
given by

Figure 1. The kernel trick. Instead of looking for, e.g., a separating hyperplane directly in the input spaceX, training patterns (white and
black disks) are mapped into afeature spaceH through a functionφ in which a hyperplane is computed; this hyperplane might correspond
to a complex surface in the input space. Using a proper positive definite kernelk when carrying out the computation to derive the separating
hyperplane is equivalent to directly working with the images of the training samples by some mappingφ from X to some feature spaceH;
the existence ofφ: X f H is guaranteed by eq 3.

f(x) ) sign(∑
i)1

l

Ri〈xi, x〉 + b) (1)

f(x) ) sign(∑
i)1

l

Ri〈φ(xi),φ(x)〉H + b) (2)

∀u,V ∈ X K(u,V) ) 〈φ(u),φ(V)〉H (3)
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For SVM as well as for other kernel methods, the knowledge
of the Gram matrix suffices to obtain the coefficientsRi.

For any given positive definite kernel, applying the kernel
trick turns out to be equivalent to transforming the input
patternsx1, ..., xl into the corresponding vectorsφ(x1), ...,
φ(xl) ∈H and looking for hyperplanes inH, as illustrated in
Figure 1 (middle). The decision surface in input spaceX
corresponding to the selected separating hyperplane inH
might be quite complex (see Figure 1, right).

A noteworthy feature of support vector machines and more
generally of kernel methods23 is that, because ready-to-use
libraries to derive separating hyperplanes are available, the
only requirement for them to be applied to a specific
classification problem is to have at hand a proper kernel
function to assess the similarity between patterns of the input
space considered. As a result, they can be used in classifica-
tion problems involving structured data such as chemical
compounds, provided some kernel function has been derived.
The rest of the paper is devoted to the construction and
analysis of such a kernel for 3D structures of molecules.

3. THE PHARMACOPHORE KERNEL

A pharmacophoreis usually defined as a three-dimen-
sional arrangement of atomssor groups of atomssresponsible
for the biological activity of a drug molecule.26 The present
work focuses onthree-pointpharmacophores, composed of
three atoms whose arrangement, therefore, forms a triangle
in the 3D space (Figure 2). With a slight abuse, we refer to
pharmacophore below asanypossible configuration of three
atoms or classes of atoms arranged as a triangle and present
in a molecule, representing therefore aputatiVeconfiguration
responsible for the biological property of interest.

Throughout this paper, we represent the 3D structure of a
molecule as a set of points inR3. These points correspond
to the 3D coordinates of the atoms of the molecule (for a
given arbitrary basis of the 3D Euclidean space), and they
are labeled with some information related to the atoms. More
formally, we define a moleculem as

where|m| is the number of atoms that composes the molecule
andL denotes the set of atom labels. The label is meant to
contain the relevant information to characterize a pharma-
cophore based on atoms. It might for instance be defined by
the type of atom (C, N, O, ...) or various physicochemical
atomic properties (e.g., partial charge). The three-point
pharmacophores considered in this work correspond to
triplets of distinct atoms of the molecules. The set of
pharmacophores of the moleculemcan therefore be formally
defined as

More generally, the set of all possible pharmacophores is
naturally defined asP ) (R3 × L ),3 to ensure the inclusion
P (m) ⊂ P. We can now define a general family of kernels
for molecules on the basis of their pharmacophore content.

Definition 2. For any positive definite kernel for phar-
macophoresKP : P × P f R, we define a corresponding
pharmacophore kernel for any pair of moleculesm andm′
by

with the convention thatK(m, m′) ) 0 if either P (m) or
P (m′) is empty.

The fact that the pharmacophore kernel defined in eq 6 is
a valid positive definite kernel on the set of molecules, as
soon asKP is itself a valid positive definite kernel on the
set of pharmacophores, is a classical result (see, e.g., ref 27,
Lemma 1). The problem of constructing a pharmacophore
kernel for molecules therefore boils down to the simpler
problem of defining a kernel between pharmacophores. A
chemically relevant measure of similarity between pharma-
cophores should obviously quantify at least two features:
first, similar pharmacophores should be made of similar
atoms [where the notion of similarity can for instance be
based on atom types or property(ies) and, more generally,
on pharmacophoric types], and second, the atoms should have
similar relative positions in the 3D space. It is therefore
natural to study kernels for pharmacophores that decompose
as follows:

whereKI is a kernel function assessing the similarity between
the triplets of basis atoms of the pharmacophores (their so-
called intrinsic similarity) and KS is a kernel function
introduced to quantify theirspatial similarity.

We can furthermore investigate intrinsic and spatial kernels
that factorize themselves as products of more basic kernels
between atoms and pairwise distances, respectively. Triplets
of atoms are indeed globally similar if the three correspond-
ing pairs of atoms are simultaneously similar, and triangles
are similar if the lengths of their edges are pairwise similar.
For any pair of pharmacophoresp ) [(x1,l1),(x2,l2),(x3,l3)]
and p′ ) [(x′1,l′1),(x′2,l′2),(x′3,l′3)], this suggests the definition
of kernels as follows:

where||‚|| denotes the Euclidean distance, the indexi + 1
is taken modulo 3, andKFeat andKDist are kernel functions
introduced to compare pairs of labels fromL and pairs of
distances, respectively. It suffices now to define the kernels
KFeaton L × L andKDist on R × R in order to obtain, by eqs
6-9, a pharmacophore kernel for molecules. The first one
compares the atom labels, while the second compares the
distances between atoms in the pharmacophores. Intuitively,
they define the basic notions of similarity involved in the
pharmacophore comparison, which in turn defines the overall
similarity between molecules.

Note from the definition in eq 5 that, because of permuta-
tions, every distinct triplet of atoms of the moleculemgives

f(x) ) sign(∑
i)1

l

Ri K(xi,x) + b) (4)

m ) {(xi,li) ∈ R
3 × L }i)1,...,|m|

P (m) ) {(p1,p2,p3) ∈ m3, p1 * p2, p1 * p3, p2 * p3}
(5)

K(m,m′) ) ∑
p∈ P (m)

∑
p′∈ P (m′)

KP (p,p′) (6)

KP (p,p′) ) KI(p,p′) × KS(p,p′) (7)

KI(p,p′) ) ∏
i)1

3

KFeat(l i,l′i) (8)

KS(p,p′) ) ∏
i)1

3

KDist(||xi - xi+1||,||x′i - x′i+1||) (9)
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rise to six pharmacophores inP (m). In the general case,
these six pharmacophores are considered as different in the
pharmacophore kernel. However, because of the definition
of the notion of similarity between pharmacophores, some
of these six pharmacophores will be seen as identical if the
triplet of atoms is made of atoms of the same type. This
phenomenon is even emphasized if the triplet of atoms
exhibits some kind of spatial symmetry. For example, the
six pharmacophores associated with a triplet of identical
atoms arranged as an equilateral triangle are identical.

The kernel we use forKDist is the Gaussian radial basis
function (RBF) kernel, known to be a safe default choice
for SVM working on real numbers or vectors:20

where σ > 0 is the bandwidth parameter that will be
optimized as part of the training of the classifier (see section
7.2).

Various kernelsKFeat between labels can be chosen
depending on the atom labels definition. With these labels
belonging, in principle, to a finite set of possible labels, for
example, the set of atom types with their charges (C, C+,
C-, N, ...), the followingDirac kernel is a natural default
choice to compare a pair of atom labelsl, l′ ∈ L :

Alternatively, it might be relevant for the pharmacophore
definition to compare atoms not only on the basis of their
types and partial charges but also in terms of other physi-
cochemical parameters such as their size, polarity, and
electronegativity. Formally, a physicochemical parameter for
an atom with labell is a real numberf(l). In that case, the
Gaussian RBF kernel (eq 10) could be applied directly to
the parameter values to compare labels. We discuss this issue
in section 8.

Note finally that the Gaussian (eq 10) and Dirac (eq 11)
kernels are known to be definite positive,20 and it follows
from the closure properties of the family of kernel functions
that the kernel between pharmacophoresKP is valid for these
choices of the kernelsKFeat andKDist.

4. KERNEL COMPUTATION

We are now left with the task of computing the pharma-
cophore kernel (eq 6) for a particular choice of feature and
distance kernelsKFeatandKDist. In this section, we provide a
simple analytical formula for this computation.

For any pair of moleculesm ) {(xi,l i) ∈ R3 × L }i)1,...,|m|
andm′ ) {(x′i,l′i) ∈ R3 × L }i)1,...,|m′|, let us define a square

matrix M of size n ) |m| × |m′|, whose dimensions are
indexed by the Cartesian product ofmandm′. In other words,
to each indexi ∈ [1,n] corresponds a unique couple of indices
(i1,i2) ∈ [1,|m|] × [1,|m′|], and to each dimension of the
matrix M corresponds a distinct pair of points taken from
the moleculesm and m′. Denoting by1(‚), the indicator
function equal to one if its argument is true, and zero
otherwise, the entries ofM are defined by

The value of the pharmacophore kernel betweenm andm′
can now be deduced from the matrixM by the following
result:

Proposition 1.The pharmacophore kernel (eq 6) between
a pair of moleculesm andm′ is equal to

where M is the square matrix of dimensions|m| × |m′|
constructed fromm andm′ by eq 12.

Proof. Developing the matrix products involved in the
expression ofM 3, we get

wheren ) |m| × |m′| is the size ofM . Using the fact that
the indices ofM range over the Cartesian product of the set
of indices [1,|m|] and [1,|m′|], we can rewrite this expression
as

Substituting with the definition ofM given in eq 12, we
obtain

Figure 2. Left: A three-point pharmacophore made of one hydrogen-bond acceptor (top-most sphere) and two aromatic rings, with distances
d1, d2, andd3 between the features. Middle: The molecule of flavone. Right: Match between flavone and the pharmacophore.

KDist
RBF(x,y) ) exp(-||x - y||2

2σ2 ) (10)

KFeat
Dirac(l,l′) ) [1 if l ) l′

0 otherwise
(11)

M [i,j] ) M [(i1,i2),(j1,j2)]

) KFeat(l i1, l′i2) × KDist(||xi1
- xj1

||,||x′i2 - x′j2||) ×
1(i1 * j1) × 1(i2 * j2) (12)

K(m,m′) ) trace(M3)

trace(M3) ) ∑
i,j,k)1

n

M [i,j] M [j,k] M [k,i]

trace(M3) ) ∑
i1,j1,k1)1

|m|
∑

i2,j2,k2)1

|m′|
M [(i1,i2),(j1,j2)]

M [(j1,j2),(k1,k2)] M [(k1,k2),(i1,i2)]
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If we let u be the cost of evaluating the basis kernelsKFeat

and KDist and consider that the cost of the addition and
product operations is a small constant, the complexity of the
kernel between pharmacophoresKP is 6u. Because the
cardinality of the set of pharmacophoresP (m) of the
moleculem is |m|3, the complexity of the direct computation
of the pharmacophore kernel given in definition 2 is (|m| ×
|m′|)3 × 6u. On the other hand, the computation given in
proposition 1 is a two-step process: First is the initialization
of the matrixM ; each of the (|m| × |m′|)2 entries is initialized
by the product of a kernelKFeat with a kernelKDist, for a
complexity of (|m| × | m′|)2 × 2u. Second is the computation
of the trace ofM 3, which has a complexity of (|m| × |m′|)3.
The global complexity of the matrix-based computation of
the kernel is therefore (|m| × |m′|)3 + (|m| × |m′|)2 × 2u
or, equivalently, (|m| × |m′|)3 × [1 + 2u/(|m| × |m′|)]. In
comparison with the direct approach, the matrix-based
implementation proposed in proposition 1 reduces the number
of basis kernelsKDist andKFeatto be computed and is therefore
more efficient.

In any case, the complexity of the pharmacophore kernel
computation is thereforeO [(|m| × |m′|)3]. Even for relatively
small molecules (on the order of 50 atoms), this complexity
becomes in practice a serious issue when the size of the data
set increases to thousands or tens of thousands of molecules.
However, we can note from the definition given in eq 12
that the lines ofM corresponding to pairs of points (x,l) ∈
m and (x′,l′) ∈ m′ for which KFeat(l,l′) ) 0 are filled with
zeros. On the basis of this consideration, we observe that
the cost of computing the kernel can be reduced by limiting
the size of the matrixM , according to the following
proposition.

Proposition 2. If we let M 2 be the reduced version of a
square matrixM1, where the null lines and the corresponding
columns are removed, then trace(M 2

3) ) trace(M 1
3).

Proof. Let n1 (respectivelyn2) be the size ofM 1 (respec-
tively M 2), and defineP (respectivelyN) as the subset of

the set of indices [1,n1] that corresponds to the non-null
(respectively null) lines ofM 1. By definition, we have

Moreover, if i ∈ N, then M 1[i,j] ) 0 ∀j ∈ [1, n1]. As a
consequence, the termM 1[i,j] M 1[j,k] M 1[k,i] in the sum-
mations overi, j, andk in eq 13 is zero as soon as at least
one indexi, j, or k is in the setN. It follows that

Proposition 2 implies that the Cartesian product ofm and
m′ involved in the matrixM defined in eq 12 can be restricted
to the pairs of points for which the label kernelKFeat is
nonzero. In the case of the Dirac kernel (eq 11) for discrete
labels, this boils down to introducing a dimension inM for
any pair of atoms having the same label. This result can have
important consequences in practice. Consider for example
the case where the atoms of the moleculesm and m′ are
uniformly distributed ink classes of atom labels. In this case,
the size of the matrixM is equal tok(|m|/k × |m′|/k) ) |m|
× |m′|/k. The complexity of the kernel computation is
thereforeO[(|m| × |m′|/k)3] ) O[(1/k3)(|m| × |m′|)3]. It is
therefore reduced by a factork3 in comparison with the
original implementation. More generally, this shows that
important gains in memory and computation can be expected
when the set of labels is increased. Section 7.3 discusses
such a case in more detail when the partial charges of atoms
are included or not in the labels. Note finally that, in a similar
way, the kernelKDist to compare distances can be set to a
compactly supported kernel instead of the Gaussian RBF
kernel (eq 10). This has the effect of introducing sparsity in
the matrixM , allowing the kernel computation to benefit
from sparse matrix algorithms. This possibility was not
further explored in this work.

5. RELATION WITH GRAPH KERNELS

In this section, we show that the pharmacophore kernel
can be seen as an extension of the walk-count graph kernels28

to the 3D representation of molecules. The walk-count graph
kernel is based on the representation of a moleculem as a
labeled graphm ) (V,E ), defined by a set of verticesV, a
set of edgesE ⊂ V × V connecting pairs of vertices, and a
labeling functionl: V ∪ E f A, assigning a labell(x) in an
alphabetA to any vertex or edgex. In the case of molecules,
the set of verticesV corresponds to the atoms of the
molecule, and the edges of the graph are usually defined as
the covalent bonds between the atoms of the molecules.18,21,28

To extend this 2D representation to a graph structure
capturing 3D information, we propose to introduce an edge

trace(M3) ) ∑
i1,j1,k1)1

|m|
∑

i2,j2,k2)1

|m′|
1(i1 * j1) 1(j1 * k1)

1(k1 * i1) × 1(i2 * j2) 1(j2 * k2) 1(k2 * i2)

× KFeat(l i1,l′i2) × KDist(||xj1
- xi1

||,||x′j2 - x′i2||)
× KFeat(lj1,l′j2) × KDist(||xk1

- xj1
||,||x′k2

- x′j2||)
× KFeat(lk1

,l′k2
) × KDist(||xi1

- xk1
||,||x′i2 - x′k2

||)

) ∑
i1,j1,k1)1

|m|
∑

i2,j2,k2)1

|m′|
1(i1 * j1 * k1) ×

1(i2 * j2 * k2) × KP [[(xi1
,li1),(xj1

,lj1),(xk1
,lk1

)],

[(x′i2,l′i2),(x′j2,l′j2),(x′k2
,l′k2

)]]

) ∑
i1,j1,k1)1,
i1*j1*k1

|m|
∑

i2,j2,k2)1
i2*j2*k2

|m′|
KP [[(xi1

,li1),(xj1
,lj1),(xk1

,lk1
)],

[(x′i2,l′i2),(x′j2,l′j2),(x′k2
,l′k2

)]

) ∑
p∈ P (m)

∑
p′∈ P (m′)

KP (p,p′)

) K(m,m′)

trace(M1
3) ) ∑

i)1

n1

M1
3[i,i]

) ∑
i,j,k)1

n1

M1[i,j] M1[j,k] M1[k,i] (13)

trace(M1
3) ) ∑

i,j,k∈P

M1[i,j] M1[j,k] M1[k,i]

) ∑
i,j,k)1

n2

M2[i,j] M2[j,k] M2[k,i]

) trace(M2
3)
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between any pair of vertices of the graph. Molecules are
therefore seen as complete, atom-based graphs. If we now
define a walk of lengthn as a succession ofn + 1 connected
vertices, it is easy to see that there is a one-to-one
correspondence between the set of pharmacophoresP (m)
of a moleculem and its set of self-returning walks of length
three, which we callW3(m). We can therefore write the
pharmacophore kernel (eq 6) as a walk-based graph kernel:

whereKWalk(w,w′) ) KP (p,p′) for the pair of walks (w,w′)
corresponding to the pair of pharmacophores (p,p′). More
precisely, consider a pair of pharmacophoresp ) [(x1,l1),-
(x2,l2),(x3,l3)] and p′ ) [(x′1,l′1),(x′2,l′2),(x′3,l′3)] and a corre-
sponding pair of walksw ) (w1,w2,w3,w1) andw′ ) (w′1,w′2,
w′3,w′1). There is a direct equivalence betweenKP andKWalk

if we choose to label the vertices of the graphs by the atom
labels involved in the pharmacophore characterization and
to label the edges by the Euclidian distance between the
atoms they connect. Indeed, in this case, we can write

A striking point of this kernel between walks is that it can
be factorized along the edges of the walks:

The pharmacophore kernel therefore formulates as a walk-
based graph kernel, with a walk kernel factorizing along the
edges of the walks. It follows from ref 21 that it can be
computed by the formalism based on product graphs and
powers of the adjacency matrix proposed in ref 28, if the
adjacency matrix of the product graph is weighted by the
walk-step kernelsKStep(eq 14). Consequently, the matrixM ,
defined in eq 12 and upon which is based the kernel
computation of proposition 1, can be seen as a weighted
adjacency matrix of a product graph defined on complete,
atom-based, molecular factor graphs.

Note moreover that, in its way to characterize the
molecular structure, the pharmacophore kernel bears some
similarity with cyclic patterns kernels29 where a molecule is
represented by graph cycles, even though general cycles
instead of cycles of size three are considered in this latter

approach, and the graph corresponds to the 2D structure of
the molecule.

6. FAST APPROXIMATION

As an alternative to the costly computation presented in
section 4, we introduce in this section a fast approximation
to the pharmacophore kernel based on a discretization of the
pharmacophore space.

Our definition of pharmacophores is based on the atoms’
3D coordinates, but they can equivalently be characterized
by the pairwise distances between atoms. To define discrete
pharmacophores, we restrict ourselves to discrete sets of atom
labels (e.g., the set of atom types), and we discretize
uniformly the range of distances between atoms into a
predefined number of bins. For example, if the interatomic
distances lie in the 0-20 Å range, and we consider 10 bins
to discretize the distances, the bins will correspond to the
intervals 0-2, 2-4, ..., and 18-20 Å. Each distance is then
mapped to the index of the bin into which it falls, and a
discrete pharmacophore is defined by a triplet of atom labels
together with a triplet of bin indices. More formally, if the
distance range is discretized intop bins, the set of discrete
pharmacophores is a finite set defined asu3 ) L 3 × [1,p]3,
whereL is the set of atom labels.

Consider the mappingφ3pt from the set of molecules to
the set of discrete pharmacophoresu3, defined for the
molecule m as φ3pt(m) ) [φt(m)] t∈u3, where φt(m) is the
number of times the pharmacophoret is found in the
moleculem. This mapping leads to the following kernel
definition.

Definition 3 (Three-Point Spectrum Kernel). For a pair
of moleculesm andm′, we define the three-point spectrum
kernelKSpec

3pt as

Note that, if we define the mappingd: P f u3, such that
d(p) is the discretized version of the pharmacophorep ∈ P,
we can explicitly write the three-point spectrum kernel as a
particular pharmacophore kernel (eq 6):

This equation shows that this is a crude pharmacophore
kernel, based on a kernel for pharmacophores that simply
checks if two given pharmacophores have identical dis-
cretized versions or not.

In addition, we consider a “two-point pharmacophore”
version of the kernel (eq 15), based on pairs, instead of
triplets, of atoms.30 Letting u2 be the set of all possible two-
point pharmacophores, that is, pairs of atom types together
with the bin index of the edge connecting them, and letting
φ2pt(m) ) [φt(m)] t∈u2 be the mapping of the moleculem to
u2, corresponding toφ3pt(m), we define the followingtwo-
point spectrumkernel.

Definition 4 (Two-Point Spectrum Kernel). For a pair
of moleculesm and m′, we define the two-point spectrum
kernelKSpec

2pt as

K(m,m′) ) ∑
p∈ P (m)

∑
p′∈ P (m′)

KP(p,p′)

) ∑
w∈W3(m)

∑
w′∈W3(m′)

KWalk(w,w′)

KP (p,p′)

) ∏
i)1

3

KFeat(l i,l′i) KDist(||xi - xi+1||,||x′i - x′i+1||)

) ∏
i)1

3

KFeat[l(wi),l(w′i)] KDist[l((wi,wi+1)),l((w′i,w′i+1))]

) KWalk(w,w′)

KWalk(w,w′) ) ∏
i)1

3

KFeat[l(wi),l(w′i)] KDist[l((wi,wi+1)),

l((w′i,w′i+1))]

) ∏
i)1

3

KStep[(wi,wi+1),(w′i,w′i+1)] (14)

KSpec
3pt (m,m′) ) 〈φ3pt(m),φ3pt(m′)〉 ) ∑

t∈u3

φt(m) φt(m′)

(15)

KSpec
3pt (m,m′) ) ∑

p∈ P (m)
∑

p′∈ P (m′)
1[d(p) ) d(p′)] (16)
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This kernel shows strong similarities with recently introduced
kernels for 3D structures of molecules30 and is introduced
as a baseline to validate the three-point pharmacophore
characterization of molecules.

The kernels in eqs 15 and 17 are directly expressed as
dot products and are consequently positive definite, which
justifies their use with SVM. Moreover, these kernels can
be computed efficiently using an algorithm derived from that
used in the implementation of the spectrum string kernel.31

We describe this algorithm for the three-point version of the
kernel, its extension to the two-point kernel being straight-
forward. Following the notation of section 5, we represent
molecules by complete, atom-based labeled graphs, with the
difference that the set of atom labelsL defining the vertices
labels is considered to be discrete (e.g., the atom types), and
the edges are now labeled by the bin index of the corre-
sponding interatomic distance. We consider the problem of
computing the Gram matrixK associated with such a set of
molecular graphs{Gi ) (VGi,EGi)}i)1,...,n for the kernel in eq
15. The alphabetA, involved in the graph labeling function
l of section 5, is defined asA ) LV ∪ LE, whereLV is the
set of vertex labels, corresponding to the set of atom labels
L, andLE is the set of edges labels, corresponding to the set
of distance bins indices.

The algorithm is based on the manipulation of sets of walk
pointers within each graph, according to a tree transversal
process. If we letn andp be the cardinalities ofLV andLE,
respectively, we define a rooted, depth-four tree structuring
the space of pharmacophoresu3 as follows:

•The root node hasn sons, corresponding to then possible
vertex labels.

•The depth-one and depth-two nodes haven × p sons,
corresponding to then × p possible pairs of edge and vertex
labels.

•The depth-three nodes havep sons, corresponding to the
p possible edge labels, a leaf node being implicitly associated
with the vertex label of its depth-one ancestor. A path from
the root to a leaf node therefore corresponds to a triplet of
distinct vertex labels, together with a triplet of distinct edge
labels. There is therefore a one-to-one correspondence
between the leaf nodes and the pharmacophores ofu3. The
principle of the algorithm is to recursively transverse this
tree until each leaf node (i.e., each potential pharmacophore)
is visited. During this process, a set of walk pointers is
maintained within each molecule. The pointers are recur-
sively updated such that the pointed walks correspond to the
pharmacophores under construction in the tree-transversal
process. When reaching a leaf node, the pointed walks
correspond to the occurrences of a particular pharmacophore
t in the molecules. The mappingφt(Gi) can therefore be
computed for the molecular graphs{Gi}i)1,..., n, and the kernel
matrix K can be updated by adding the productsφt(Gi) φt-
(Gj) to its (i,j) entries.

A pseudo code of the algorithm is given in algorithms
1-4 (Chart 1). Algorithm 1 is the main program in charge
of the tree-transversal process, and algorithms 2, 3, and 4
are subroutines, introduced to initialize the walk pointers,
extend the pointed walks, and update the Gram matrix,

respectively. This pseudocode relies on the abstract types
Pointer andLabel, to represent the walk pointers involved
in the algorithm and the generic vertices and edges labels,
belonging toLV and LN, respectively. Formally, aPointer
object consists of two graph vertices: astart and acurrent
vertex, representing the first and the current vertices of the
pointed walk being extended. To maintain walk pointers
within each molecule, we introduce a matrix of pointers
walkPointers) Pointer[][]: this matrix is initially empty, and
during the walk extension process, walkPointers[i][ j] corre-
sponds to thejth pointer of the molecular graphGi. The
stopping criterion of the recursion is controlled by an integer
variabledepthcorresponding to the depth in the tree during
the transversal process. It is initialized to zero and incre-
mented at each recursive call. When depth is three, a depth-
three node is reached in the tree, which corresponds to
pointers on length-two walks in the graphs. In the subsequent
recursive step, depth is four, and the pointers are updated to
ensure that the extended walks correspond to self-returning
ones. A leaf node is then reached, and the recursion
terminates, leading to an update of the Gram matrix. Note,
however, that the recursion is aborted whenever the set of
walk pointers becomes empty for all graphs, because we only
need to reach the leaf nodes corresponding to the pharma-
cophores truly present in the set of graphs.

Computing the Gram matrixK simply requires a call to
the COMPUTEfunction of algorithm 1 with the following
arguments: Pointers, the empty Pointer matrix;depth
initialized to zero; andK , then × n Gram matrix filled with
zeros.

The cost of this algorithm depends on the number of leaf
nodes visited and is therefore bounded by the total number
of leaves of the tree, that is, (np)3 if the number of distinct
vertex labels isn and the number of distance bins isp.
However, the maximum number of distinct pharmacophores
that can be found in the moleculem is |m|3, and we do not
need to exhaustively transverse the tree. This means that, to
compute the kernel between the moleculesmandm′, at most,
min(|m|3,|m′|3) leaves, corresponding to the common phar-
macophores ofmandm′, need to be visited. The complexity
of the algorithm is thereforeO[min[(np)3, min(|m|3,|m′|3)]].
For small molecules, the cost of the kernel will therefore
depend on their number of atoms, while it will depend on
the size of the discrete pharmacophore space for large
molecules.

Note finally that, although we omit the details, the previous
algorithm and complexity analysis hold for the two-point
version of the kernel: the tree involved in the recursive
transversal process is smaller (a depth-two tree, withn2p leaf
nodes), and the complexity is reduced toO[min[n2p, min-
(|m|2,|m′|2)]].

7. EXPERIMENTS

We now turn to the experimental section. The problem
considered here consists of building predictive models to
distinguishactiVe from inactiVemolecules on several protein
targets. This problem is naturally formulated as a supervised
binary classification problem that can be solved by SVM.

7.1. Data Sets.We tested the pharmacophore kernel on
several data sets used in a recent SAR study.32 More
precisely, we considered the following four publicly available

KSpec
2pt (m,m′) ) 〈φ2pt(m),φ2pt(m′)〉 ) ∑

t∈u2

φt(m) φt(m′)

(17)
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data sets (available as Supporting Information of the original
study at http://pubs.acs.org/journals/jcisd8/): the BZR data
set, a set of 405 ligands for the benzodiazepine receptor;

the COX data set, a set of 467 cyclooxygenase-2 inhibitors;
the DHFR data set, a set of 756 inhibitors of dihydrofolate
reductase; and the ER data set, a set of 1009 estrogen receptor

Chart 1. Algorithms 1-4
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ligands. These data sets contain the 3D structures of the
molecules, together with a quantitative measure of their
ability to inhibit a biological mechanism. The reference
paper32 presents a data preparation scheme sought to mimic
a real virtual screening application: data sets were first
filtered to prevent structural redundancy in the compounds
considered and were further split into training and test sets
such that the compounds used for testing are as structurally
different as possible from those used for training. To have a
reference result to which to compare, we kept this particular
data preparation scheme. Table 1 gathers basic information
about the data sets involved in the study.

7.2. Experimental Setup.We investigated in this study
a simple labeling scheme to describe each atom (hydrogen
atoms were systematically removed) and, therefore, the
potential pharmacophores: the label of an atom is composed
of its type (e.g.,C, O, N, ...) and the sign of its partial charge
(+, -, or 0). Hence, the set of labels can be expanded asL
) {C+, C0, C-, O+, O0, O-, ...}. The partial charges account
for the contribution of each atom to the total charge of the
molecule and were computed with the QuacPAC software
developed by OpenEye (http://www.eyesopen.com/products/
applications/quacpac.html). It is important to note that,
contrary to the physicochemical properties of atoms, partial
charges depend on the molecule and describe the spatial
distribution of charges. Although the partial charges take
continuous values, we simply kept their signs for the labeling
as basic indicators of charges in the description of pharma-
cophores. We callcategorical kernelthe kernel resulting
from this labeling, where the kernel between labelsKFeat is
the Dirac kernel (eq 11) and the kernel between distances
KDist is the Gaussian RBF kernel (eq 10).

Alternatively, we tested several variants of this basic
categorical kernel. On one hand, we tested the effect of the
partial charges by removing them from the labels and keeping
the same Dirac and Gaussian RBF kernels for the labels and
distances, respectively. In this case, the label of an atom
reduces to its type. On the other hand, we tested the fast
approximation and its two-point counterpart mentioned in
section 6 with our original labeling scheme, that is, atoms
labeled by their types and the sign of their partial charges.

In addition, we tested the state-of-the-art Tanimoto kernel
based on the 2D structure of molecules19 to evaluate the
potential gain obtained by including 3D information. This
kernel is defined as the Tanimoto coefficient between
fingerprints indicating the presence or absence of all possible
molecular fragments of a length up to eight in the 2D
structure of the molecule, where a fragment refers to a
sequence of atoms connected by covalent bonds. We note
that this fingerprint is similar to classical 2D fingerprints
such as the Daylight representation (http://www.daylight-
.com/dayhtml/doc/theory/theory.toc.html), with the difference
that our implementation does not require the folding of the
fingerprint into a small-size vector.18

The different kernels were implemented in C++ within
the open-source ChemCpp toolbox (available at http://
chemcpp.sourceforge.net), and the SVM experiment was
conducted with the open-source Python machine learning
package PyML (http://pyml.sourceforge.net). The SVM
prediction is obtained by taking the sign of a score function
(eq 1). However, by varying this zero decision threshold, it
is possible to compute the evolution of the true-positive rate
versus the false-positive rate in a curve known as the receiver
operating characteristic (ROC) curve. The area under the
ROC curve (AUC) is known to be a safer indicator of the
quality of a classifier than its accuracy,33 being 1 for an ideal
classifier and 0.5 for a random classifier. For each experi-
ment, all parameters of the kernel and the SVM were
optimized over a grid of possible choices on the training set
only, to maximize the mean AUC over an internal 10-fold
cross-validation.

The results on the test set correspond to the performance
of the SVM with the selected parameters only. The optimized
parameters include the widthσ ∈ {0.1, 1, 10} (in angstroms)
of the Gaussian RBF kernel used to compare distances, the
soft-margin parameter of the SVM over the grid{0.1, 0.5,
1, 1.5, ..., 20}, and the number of bins used to discretize the
distances for the fast approximations over the grid{4, 6, 8,
..., 30}.

7.3. Results. Table 2 shows the results of classification
for the different kernel variants. Each line corresponds to a
kernel and reports several statistics: the accuracy (fraction
of correctly classified compounds), sensitivity (fraction of
positive compounds that were correctly classified), specificity
(fraction of negative compounds that were correctly classi-
fied), and AUC. The first line corresponds to the basic
categorical kernel. The following three lines show the results
of the variants of the categorical kernel: the reduction of
the atom labels to their types (i.e., categorical kernel without
partial charges) and the fast approximation of the kernel (i.e.,
three-point spectrum kernel), together with its two-point
counterpart. Finally, we added the performance obtained by
the state-of-the-art 2D Tanimoto kernel, based on the 2D
structure of the molecules, and the best results reported in
the reference publication.32 This latter method, labeled
“Sutherland” in Table 2, is based on descriptors inherited
from the 2D structure and the atomic composition of the
molecules, which are selected using a genetic algorithm.

The results of parameter optimization on the training set
often led to similar choices for different kernels. For example,
the width of the Gaussian RBF kernel to compare distances
was usually selected at 0.1 Å, which corresponds to a very
strong constraint on the pharmacophore matching. Finally,
the number of bins selected by the fast approximations to
discretize the distances was usually between 20 and 30 bins.

We can first observe from Table 2 that removing the partial
charges from atom labels decreases the accuracy by 2-4%,
corresponding to a relative variation of 3-5%, on all data
sets except COX. This superiority in accuracy of the
categorical kernel is significant at ap value ofp ) 0.125,
according to the one-sided Wilcoxon signed-rank test for
paired data34 based on the accuracy statistic, which suggests
that the partial charge information is important for the
definition of pharmacophores.

Morevover, the fast pharmacophore kernel obtained by
applying a Dirac kernel to check when pairs of candidate

Table 1. Basic Information about the Data Sets Considered

train test

positive negative positive negative

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110
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pharmacophores fall in the same bin of the discretized space
(three-point spectrum kernel) systematically degrades the
accuracy by 1-5%, corresponding to a relative variation of
1-6%, over all four data sets compared to the categorical
kernel. This is significant at ap value of p ) 0.062 and
suggests that the gain in computation time obtained by
discretizing the space and computing a 3D-fingerprint-like
representation of molecules has a cost in terms of accuracy
of the final model. A particular limitation of the fingerprint-
based method is that two pharmacophores could remain
unmatched if they fall into two different bins, although they
might be very similar but close to the bins’ boundaries. In
the case of the pharmacophore kernel, such pairs of similar
pharmacophores would always be matched.

We observe finally that, except for the COX data set, the
discrete kernel based on two-point pharmacophores leads to
worse accuracy results than its three-point counterpart. This
tends to highlight the benefits of the three-point pharma-
cophore characterization of the molecular structure, but this
is only significant at ap value ofp ) 0.312.

For each data set, the results obtained with the 2D-
Tanimoto kernel are significantly worse than those of the
categorical kernel, with a decrease ranging from 3 to 7%,
corresponding to a relative variation of 3-10%, on the
different data sets. This is significant at ap value of p )
0.062 and confirms the relevance of 3D information for drug
activity prediction, which motivated this work. Finally, we
note that, on all but the COX data set, the categorical kernel
outperforms the best results of ref 32. This tends to confirm
the competitiveness of our method compared to state-of-the-
art methods, but these latter results are only significant at a
p value ofp ) 0.312.

Regarding the computational complexity of the different
methods, Table 3 shows the time required to compute the
kernel matrices on the BZR training set for different kernels,
on a desktop computer, equipped with a Pentium 4 3.6 GHz
processor with 1 GB of RAM. In the discrete version, the
distance range was split into 24 bins, and as expected, the
kernels based on the discretization of the pharmacophore
space are faster than their counterparts by a factor of 4-35,
depending on the type of labels used (with or without the
partial charge information). In the exact kernel computation,
the effect of removing the partial charges from the labels is

to induce more matches between atoms and, therefore, as
discussed in section 4, to drastically slow the computation
by a factor of 12, consistent with the theoretical estimate
that dividing the size of the label classes byk increases the
speed by a factor ofk3.

8. DISCUSSION AND CONCLUSION

This paper presents an attempt to extend the application
of recent machine learning algorithms for classification to
the manipulation of 3D structures of molecules. This attempt
is mainly motivated by applications in drug activity predic-
tion, for which 3D pharmacophores are known to play
important roles. Although previous attempts to define kernels
for 3D structures (similar in fact to the two-point spectrum
kernel we tested) led to mixed results,30 we obtained
performance competitive with that of state-of-the-art algo-
rithms for the categorical kernel based on the comparison
of pharmacophores contained in the two molecules to be
compared. This kernel is not an inner product between
fingerprints and, therefore, fully exploits the mathematical
trick that allows SVM to manipulate measures of similarities
rather than explicit vector representations of molecules, as
opposed to other methods such as neural networks. We even
observed that, for the closest fingerprint-based approximation
obtained by discretizing the space of possible pharmacoph-
ores (three-point spectrum kernel), the performance signifi-
cantly decreases. This highlights the benefits that can be
gained from the use of kernels, which provide a satisfactory
answer to the common issue of choosing a “good” discreti-
zation of the pharmacophore space to make fingerprints:
once discretized, pharmacophores falling on different sides
of bins’ edges do not match, although they might be very
close. We notice that approaches based on fuzzy finger-
prints,35 for example, aim at correcting this effect by
matching pharmacophores based on different distance bins.

Concerning the practical use of our approach for the
screening of large data sets, Table 3 shows that, even for
the fastest variants, the approach based on kernel methods
can be computationally demanding even for relatively small
data sets. In practice, however, the time to train the SVM
can be smaller than the times presented in Table 3 because
not all entries of the matrix are required. Speeding up SVM
and kernel methods for large data sets is currently a topic of
interest in the machine learning community, and applications
in virtual screening on large databases of molecules will
certainly benefit from the advances in this field.

Among the possible extensions to our work, a promising
direction that is likely to be relevant for many real-world
applications is to take into account different conformers of
each molecule. Indeed, it is well-known that the biological
activity to be predicted is often due to one out of several

Table 2. Classification of the Test Sets, after Model Selection on the Training Set

BZR COX DHFR ER

acc. sens. spec. AUC acc. sens. spec. AUC acc. sens. spec. AUC acc. sens. spec. AUC

categorical 76.4 74.0 78.9 82.1 69.8 69.8 69.8 75.1 81.9 63.3 88.8 84.8 79.8 72.0 84.7 86.8
categorical, no partial charges 74.3 73.6 75.0 81.5 70.0 68.5 70.9 74.6 78.1 65.2 82.7 82.2 77.6 71.7 81.4 87.2
three-point spectrum 75.4 74.4 76.3 81.3 67.0 64.4 69.5 75.9 76.9 70.9 79.0 81.9 78.6 78.3 78.8 87.4
two-point spectrum 71.4 61.3 81.6 80.3 68.9 70.2 67.7 74.7 67.7 67.4 67.9 72.3 78.7 75.9 80.4 84.5
2D-Tanimoto 71.2 71.9 70.5 80.8 63.0 67.5 58.6 69.8 76.9 73.8 78.0 83.0 77.1 69.3 82.1 83.6
Sutherland, ref 32 75.2 70.0 81.0 73.6 75.0 72.0 71.9 74.0 71.0 78.9 77.0 80.0

Table 3. Computation Times in Minutes Needed to Compute the
Different Kernel Matrices on the BZR Training Seta

exact discrete

with charges 20′ 6′
without charges 249′ 7′

a The first column refers to the computation of the exact kernel (eq
7) and the second one to the approximate kernel (eq 15).
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conformers for a given molecule, which suggests the
representation of a molecule not as a single 3D structure
but as a set of structures. This problem, known as multi-
instance learning, has been drawing considerable interest in
the machine learning community since its initial formula-
tion.36 The SVM and kernel approaches lend themselves
particularly well to this extension, thanks to the possibility
of defining kernels between sets of structures from a kernel
between structures,37 and extensions of the SVM algorithm.38

A second direction would be to test and validate different
definitions and labeling for the vertices of the pharmacoph-
ores. We limited ourselves to the simplest possible three-
point pharmacophores based on single atoms annotated by
their types and partial charges. The method could be
improved by testing other schemes known to be relevant
features as basic components of pharmacophores. It is, for
example, possible to consider groups of atoms forming
functional units instead of single atoms to form pharma-
cophores. Alternatively, the atom labels considered in this
work may be enriched with the introduction of various
physicochemical properties known to account for the steric
and electrostatic behavior of atoms. As a first step in this
direction, we investigated a labeling scheme based on a set
of four physicochemical properties (namely, the atomic van
der Waals and covalent radii, electronegativity, and first
ionization energy), but the corresponding results were not
convincing: they were globally similar to those obtained with
atom types labels without partial charges. This is actually
not really surprising because these properties are deduced
from the atom types and, therefore, bear little additional
information, contrary to the partial charges which depend
on the molecular conformation. A third possible extension
is to generalize this work to pharmacophores with more
points, for example, four or five. Although several results
will not remain valid in this case, such as the expression of
the kernel as the trace of a matrix, this could lead to more
accurate models in cases where the binding mechanism is
well-characterized by such pharmacophores. Finally, we note
that several approaches were recently proposed to derive a
measure of similarity between structured objects from the
similarity of their substructures.39-41 These approaches could
generalize the present work to alternative measures of
similarity between 3D structures based on pharmacophore
similarity.

Note Added after ASAP Publication. This article was
released ASAP on August 12, 2006, with extraneous text in
section 2. The correct version was posted on August 18,
2006.
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(37) Gärtner, T.; Flach, P. A.; Kowalczyk, A.; Smola, A. J. Multi-instance
kernels. InProceedings of the Nineteenth International Conference
on Machine Learning; Sammut, C., Hoffmann, A., Eds.; Morgan
Kaufmann: San Francisco, CA, 2002; pp 179-186.

(38) Andrews, S.; Hofmann, T.; Tsochantaridis, I. Multiple instance learning
with generalized support vector machines. InProceedings of the
Eighteenth National Conference on Artificial Intelligence; American
Association for Artificial Intelligence: Edmonton, Alberta, Canada,
2002; pp 943-944.

(39) Cuturi, M.; Fukumizu, K.; Vert, J. P. Semigroup kernels on measures.
J. Machine Learning Res.2005, 6, 1169-1198.

(40) Wolf, L.; Shashua, A. Learning over sets using kernel principal angles.
J. Machine Learning Res.2003, 4, 913-931.

(41) Jebara, T.; Kondor, R.; Howard, A. Probability Product Kernels.J.
Machine Learning Res.2004, 5, 819-844.

CI060138M

2014 J. Chem. Inf. Model., Vol. 46, No. 5, 2006 MAHEÄ ET AL.


