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ABSTRACT
Motivation: The increased availability of genome sequences of
closely related organisms has generated much interest in utilizing
homology to improve the accuracy of gene prediction programs. Gen-
eralized pair hidden Markov models (GPHMMs) have been proposed
as one means to address this need. However, all GPHMM implement-
ations currently available are either closed-source or the details of their
operation are not fully described in the literature, leaving a significant
hurdle for others wishing to advance the state of the art in GPHMM
design.
Results: We have developed an open-source GPHMM gene finder,
TWAIN, which performs very well on two related Aspergillus species,
A.fumigatus and A.nidulans, finding 89% of the exons and predicting
74% of the gene models exactly correctly in a test set of 147 con-
served gene pairs. We describe the implementation of this GPHMM
and we explicitly address the assumptions and limitations of the sys-
tem. We suggest possible ways of relaxing those assumptions to
improve the utility of the system without sacrificing efficiency beyond
what is practical.
Availability: Available at http://www.tigr.org/software/pirate/twain/
twain.html under the open-source Artistic License.
Contact: bmajoros@tigr.org

INTRODUCTION
As the amount of genomic sequence available in public archives
skyrockets, our reliance on purely or largely automatic meth-
ods of identifying genes in unannotated sequence will likely also
increase. Unfortunately, ab initio methods of gene prediction are
far from perfect. This has prompted some researchers in the field
to investigate the use of homology evidence to improve the accur-
acy of current gene-finding technology. Fortunately, for a growing
number of species, genome centers are now generating two or
more sequences from closely related organisms. The most well-
known (and largest) related species are the human, mouse and
rat genomes, soon to be joined by the chimpanzee and other
mammals. Less well-known but equally useful are a large set of
related Drosophila species (12 in all), several fungal genomes,
at least four yeast genomes (Kellis et al., 2003), three trypano-
somids and others soon to come. This increased availability of
genome sequences from closely related organisms has generated
much interest of late in utilizing apparent synteny to improve
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the accuracy of gene prediction programs. The idea behind this
strategy is that the patterns of conservation between close relat-
ives at the level of amino acids versus nucleotides should follow the
corresponding transitions between coding and non-coding regions
within those genomes. Generalized pair hidden Markov models
(GPHMMs) have been proposed as one means to observe these
patterns of conservation and incorporate them into the gene pre-
diction process (Pachter et al., 2002; Alexandersson et al., 2003).
GPHMMs provide an attractive theoretical framework for compar-
ative gene finding, and constitute a natural progression from earlier
ad hoc methods (e.g. Bafna and Huson, 2000; Novichkov et al.,
2001).

Though at most a handful of GPHMMs for gene finding have been
published to date (e.g. Alexandersson et al., 2003), detailed meth-
ods for their efficient implementation have not been fully described,
making it difficult for others to replicate or extend the research that
has so far been reported. GPHMM gene finders are especially dif-
ficult to implement efficiently due to the combinatorial explosion
inherent in considering all possible pairs of open reading frames in
two genomes. A naïve implementation of a GPHMM would be use-
less in practice due to the enormous time and memory requirements
of such an implementation (Alexandersson et al., 2003).

In an attempt to help remedy this situation, we describe the
algorithms and heuristics which we developed during the imple-
mentation of our open-source GPHMM gene finder, and also the
assumptions that allowed us to improve the speed and memory effi-
ciency of the program. While the program in its current form was
found to achieve higher accuracy than an identically trained non-
comparative gene finder, we have hopes that even greater levels of
accuracy and utility can be achieved if we can discover efficient
means to relax some of the assumptions that were made in the devel-
opment of our GPHMM gene finder. We suggest some possible ways
in which this might be achieved.

BACKGROUND

Generalized hidden Markov models
A number of gene-finding programs have been developed which
utilize the generalized hidden Markov model (GHMM) framework
(e.g. Kulp et al., 1996; Burge and Karlin, 1997; Stanke and Waack,
2003; Majoros et al., 2004; Korf, 2004). This class of models has
been found to provide competitive prediction accuracy while also
providing an intuitive probabilistic interpretation of the gene-finding
problem. A GHMM is a state-based generative model in which each
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state emits a sequence of bases comprising a feature such as an exon
or intron. As traditionally formulated, a GHMM does not incorporate
homology information.

Formally, let α = {A, T, C, G}, αn = {s|s is a string over α of
length n}, α∗ = ⋃

n(α
n), N = the non-negative integers, and R =

the reals. We denote a GHMM as a 6-tuple (Q, Pt , Pd , Pe, π0, πf )

comprising a set of states Q with designated start state π0 and final
state πf (both silent), a set of state transition probabilities Pt : Q ×
Q → R, a set of length or ‘duration’ probabilities Pd : N × Q → R

conditional on state, and a set of emission probabilities Pe : α∗ ×
Q × N → R conditional on state and duration. A single n-state run
of the GHMM begins in state q0 = π0, transitions stochastically
from state qi−1 to state qi for 1 ≤ i < n according to Pt (qi |qi−1),
and terminates in state qn−1 = πf . In each state qi the GHMM
stochastically chooses duration d according to Pd(d|qi) and emits
string Si ∈ αd according to Pe(Si |qi , d). Note that Pd(0|π0) =
Pd(0|πf ) = 1.

Gene finding with a GHMM involves finding the most probable
parse φmax of a given nucleotide sequence S:

φmax = arg max
φ

P (φ|S) = arg max
φ

P (φ, S)

P (S)

= arg max
φ

P (φ, S) = arg max
φ

P (S|φ)P (φ), (1)

where each φ = {(qi , di)|0 ≤ i < n} specifies a time-ordered series
of states (features) and integer durations (feature lengths) during a
single run of the GHMM. P(S|φ) can be factored according to the
states in φ to produce

∏
Pe(Si |qi , di), where the precise formula for

each Pe(Si |qi , di) is defined separately for each state depending on
the type of model used in the state (a Markov chain, position-specific
weight matrix, etc.). P(φ) can likewise be decomposed by state into
a product of transition and duration probabilities to produce

φmax = arg max
φ

n−1∏
i=1

Pe(Si |qi , di)Pt (qi |qi−1)Pd(di |qi), (2)

where the concatenation S0, . . . , Sn−1 of individual features forms the
input sequence S. This maximization step can be efficiently com-
puted using a modified Viterbi decoding algorithm (Burge, 1997;
Majoros et al., 2005).

Let θ = (Pe, Pt , Pd) denote a particular parameterization of the
GHMM. If we define the accuracy of the gene finder on a training
set T = {(Si , φi)|0 ≤ i < m} of m sequence × parse pairs as∑

(S,φ)∈T P (φ|S, θ), then we can expect to obtain the highest accur-
acy on the sequences in T when we use the GHMM parameters θ∗
defined by:

θ∗ = arg max
θ


 ∑

(S,φ)∈T

P (S, φ|θ)/P (S|θ)




= arg max
θ


 ∑

(S,φ)∈T

∏n−1
i=1 Pe(Si |qi , di)Pt (qi |qi−1)Pd(di |qi)

P (S|θ)




(3)

Because evaluation of Equation (3) is generally too expensive to
perform on current commodity computing systems, the individual
terms are typically optimized independently in practice (Cawley

et al., 2001; Rabiner, 1989), resulting in a parameterization which is
not guaranteed to be globally optimal (Majoros and Salzberg, 2004).
This problem will remain when we incorporate homology into the
model.

Generalized pair hidden Markov models
With the increased availability of closely related genomes comes the
prospect of utilizing identifiable synteny between regions of those
genomes to refine the gene prediction process. An elegant method
of adapting a GHMM gene finder to utilize apparent homology is by
permitting each state in the GHMM to emit a pair of features, one
per genome, rather than a single feature at a time. Such a model may
be called a GPHMM (Pachter et al., 2002).

Formally, we denote a GPHMM as a 6-tuple (Q, Pt , ψd , ψe, π0,
πf ) in which all elements are as defined above for the GHMM except
ψd which is a joint distribution of paired durations ψd : N × N ×
Q → R conditional on state, and ψe which is a joint distribution of
paired emissions ψe : α∗×α∗×Q×N×N → R conditional on state
and two durations. At each state qi the GPHMM first selects a pair
of durations di,1 and di,2 according to ψd(di,1, di,2|qi) and then emits
sequences Si,1 and Si,2 into genomes 1 and 2, respectively, according
to the joint emission distribution ψe(Si,1, Si,2|qi , di,1, di,2).

Formulated in this way, gene prediction with a GPHMM can be
accomplished by finding the most probable parse φmax according to:

φmax = arg max
φ

n−1∏
i=1

ψe(Si,1, Si,2|qi , di,1, di,2)

× Pt (qi |qi−1)ψd(di,1, di,2|qi) (4)

for features Si,1 and Si,2 of lengths di,1 and di,2, respectively, and
where the concatenation S0,j , . . . , Sn−1,j of individual features forms
the input sequence Sj , j ∈ {0, 1}. A parse φ = {(qi , di,1, di,2)|0 ≤
i < n} is now a series of states and corresponding pairs of dura-
tions. The joint emission probability term ψe can be decomposed via
conditional probability as:

ψe(Si,1, Si,2|qi , di,1, di,2) = Pe(Si,1|qi , di,1)Pcond(Si,2|Si,1, qi , di,2)

(5)

(if we ignore any dependence of Si,1 on di,2 and Si,2 on di,1) where
Pe can be estimated in the same way as for a GHMM, and Pcond

can be estimated by aligning Si,1 and Si,2 and mapping the result-
ing alignment to a conditional probability based on the alignment
properties of a set of known orthologues. Similarly, the joint dur-
ation distribution ψd can be estimated from known orthologues, if
such are available; otherwise, ψd(di,1, di,2|qi) may be very roughly
approximated using Pd(di,1|qi) or Pd(di,2|qi), as long as we expect
the durations to be highly correlated. As with the GHMM we can-
not at this time recommend a simple and efficient means of obtaining
the globally optimal model parameters for the GPHMM using widely
available computing resources.

Note that for simplicity we have not considered GPHMMs which
can emit features in one genome which are not paired with match-
ing features in the other genome. To our knowledge, all currently
available GPHMM implementations suffer from this shortcoming
[though non-generalized pair HMMs exist which do allow inserted
or deleted features, e.g. Doublescan (Meyer and Durbin, 2002)]. We
address this issue briefly in the Discussion section.
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Fig. 1. Software architecture for a GPHMM gene finder, TWAIN. Two gen-
omes are read as inputs, and predictions for both genomes are emitted. The
three major components of the system are a whole-genome alignment com-
ponent (MUMmer), a region-of-synteny extractor (ROSE) and a GPHMM
decoder (OASIS). Optional ab initio gene predictions may also be used
by ROSE to more effectively cluster syntenic regions, but these are not
obligatory.

IMPLEMENTATION
We implemented a GPHMM-based comparative gene finder called
TWAIN, which consists of three programs: MUMmer, Region-Of-
Synteny Extractor (ROSE) and Optimal Alignment of Structures In
Synteny (OASIS) (Fig. 1). Whereas OASIS implements the actual
GPHMM decoding algorithm, MUMmer and ROSE act as prepro-
cessors for OASIS, identifying regions of contigs on which to run the
GPHMM decoder and also providing a set of precomputed ‘guide’
alignments for OASIS to use as a basis for estimating Pcond terms.
A Perl script is provided to automate the end-to-end operation of the
system’s pipeline.

ROSE
ROSE is a program which identifies likely orthologous regions
between any given pair of contigs from two genomes. These regions
are then provided as inputs to the GPHMM for parsing of those
regions into pairs of gene predictions.

ROSE utilizes the MUMmer package for whole-genome align-
ment (Kurtz et al., 2004). The PROmer program distributed with
this package is used to identify conserved coding regions by per-
forming six-frame translation in both genomes and assessing local
amino acid alignments between pairs of such translated regions. The
result is a set of reference points on the contig pair corresponding to
significant alignments in amino acid space. Similarly, NUCmer iden-
tifies significant HSPs (High-scoring Segment Pairs) in nucleotide
space. These alignments are used by OASIS to approximate Pcond in
putative coding and non-coding features, respectively, and allow the
GPHMM to utilize information about both coding and non-coding
conservation across the two genomes.

Because PROmer can report hits for any of the four strand combin-
ations of the two contigs and because TWAIN’s GPHMM predicts
genes only on the forward strand, ROSE employs a standard longest
common subsequence algorithm (Cormen et al., 1990) to find the

longest series of PROmer hits having consistent orientations, and
then performs reverse-complementation as necessary to render the
putative exons underlying those PROmer hits onto the forward strand
in both genomes.

In addition, when ab initio predictions are available as additional
inputs, ROSE attempts to cluster PROmer hits in such a way as to
avoid interrupting a likely gene in either genome. When a predicted
gene overlaps an HSP, we use the prediction to extend the boundaries
of the putative conserved coding region. Because the GPHMM can
predict exons only in places where a PROmer hit was found, ROSE
invokes PROmer a second time with a more liberal parameterization
on the regions between the individual HSPs originally identified, to
find evidence of less strongly conserved exons. For this second set
of HSPs, no LIS-like filtering is performed except to ensure that all
HSPs within a cluster are on the same strand. In this way, we try to
attain high sensitivity to avoid over-constraining the GPHMM. The
sequence is segmented around the resulting clusters, with a default
margin of 1000 bp being added on either side before the pair of
sequence segments are provided to OASIS.

Finally, NUCmer’s HSPs are combined into a single, global,
‘guide’ alignment by first applying an LIS-like algorithm to the
NUCmer HSPs (via NUCmer’s −g option) and then employing
the Needleman–Wunsch algorithm (Needleman and Wunsch, 1970)
as necessary to align the gaps between HSPs. This step is neces-
sary in order to allow OASIS to utilize the global nucleotide guide
alignment for evaluating conservation in arbitrarily long non-coding
regions. Similarly, each PROmer alignment is extended with diag-
onal cells in both directions until either an in-frame stop codon is
encountered or the beginning or end of the sequence is reached. The
separate PROmer HSPs are not combined as with NUCmer. All align-
ment parameters can be changed by the user without recompiling the
source code.

A more detailed description of the algorithms used by ROSE can
be found on the web page cited in the abstract.

OASIS
The structure of the GPHMM used by TWAIN is depicted in Figure 2.
The GPHMM decoder in TWAIN is encapsulated in the C++ pro-
gram OASIS. OASIS utilizes a novel modification to the Viterbi
dynamic programming algorithm to find the optimal path φ accord-
ing to Equations (4) and (5). Because each state in φ corresponds to
a pair of features, the OASIS algorithm can be conceptualized as an
alignment algorithm between gene parses, as illustrated in Figure 3.

To formalize the notion of aligning gene parses, define a very
minimal set of signal types σ ={ATG,TAG,GT,AG} denoting start
codon, stop codon, donor site and acceptor site, respectively, of any
appropriate consensus (e.g. TAG ≡ {TAG, TGA, TAA} typically).
The generalization of the methods described below to incorporate
promoters, polyadenylation signals and other signal types will be
obvious. Denote a parse graph G by (V , E) for vertex set V ⊂ σ ×N

and directed edge set E ⊂ V ×V , so that each vertex v = (s, x) cor-
responds to a putative signal of type s ∈ σ at position x in one of the
two genomes, and each directed edge corresponds to a putative exon,
intron or intergenic region. In particular, the following edge types are
represented: ATG→TAG, ATG→GT, GT→AG, AG→GT, AG→TAG
and TAG→ATG. Two hypothetical parse graphs are illustrated in
Figure 3 (one along each axis of the matrix).

The GHMM gene finder TIGRscan (Majoros et al., 2004) is used
as a subroutine by OASIS to construct a parse graph for each of

1784



Efficient comparative gene finding with a GPHMM

Fig. 2. State-transition diagram for the GPHMM used by TWAIN. States
corresponding to fixed-length signals are shown as diamonds and those cor-
responding to variable-length features (e.g. exons and introns) are shown as
ovals. Each state emits pairs of features, as indicated by the ‘×2’ in each
state. Arrows denote legal transitions. The silent initial and final states are
omitted for clarity. States with double borders have implicit edges from the
initial state and to the final state; starting or ending in an intron constitutes
generation of a partial gene.

Fig. 3. A conceptual representation of the full OASIS dynamic programming
matrix. A parse graph for each of the two genomes is shown along each axis.
Rows and columns of the matrix correspond to vertices in the two parse
graphs. The vertices in the parse graphs correspond to signals such as splice
sites and start and stop codons, and edges correspond to features such as
exons, introns, and intergenic regions. Edges are implicitly directed 5′–3′
along the sequence (arrows not shown for clarity). Interior to the matrix is
shown a single step of the trellis linking process, in which the cell marked ‘?’
is linked back to the optimal predecessor cell in each pair of phases. Each
edge in the trellis corresponds to a pair of edges from the two parse graphs.

the two genomes. TIGRscan constructs its graph left-to-right by
sliding its signal sensors [typically WMM, WAM or MDD (Burge
and Karlin, 1997) models] along the sequence and allocating a ver-
tex at each high-scoring position. Non-consensus splice sites are
permitted. Each new vertex is attached via an edge in from any pre-
vious vertex of the appropriate type (unless eclipsed in all frames by
stop codons). In the case of non-coding predecessor edges, only the
top-scoring r predecessor edges are kept at each vertex, for some
user-defined r; for coding edges, no such limit is imposed. Ver-
tices unreachable from either end of the graph are discarded. This
heuristic tends to retain only the high-scoring subgraphs, and was
found to be invaluable for maintaining speed and space efficiency
(see Results section). Each edge is annotated by TIGRscan with three
scores associated with the corresponding feature in the three possible
phases (or a single phase for non-coding edges). These scores com-
prise the Pe(Si,1|qi , di,1)Pt (qi |qi−1)Pd(di,1|qi) term corresponding
to Equations (4) and (5), and are computed as described in Majoros
et al. (2005).

The vertices in these two graphs are then placed along the axes
of a two-dimensional dynamic programming matrix as shown in
Figure 3. Because this matrix can become very large in practice,
OASIS employs a sparse representation of the matrix by eliminating
all but the most promising regions from consideration.

In particular, each PROmer alignment is mapped into the signal
space of the OASIS matrix (using the genome coordinates of the
putative signals in the two parse graphs as a frame of reference).
Only those OASIS cells within a user-specified nucleotide distance
� of a PROmer alignment path are retained, and only those for which
the two corresponding signals are of the same signal type. The result
is typically a rather sparse matrix (see Results section).

Each OASIS cell is then attributed with a set of predecessor links
(Fig. 3) formed by taking the cartesian product of the incoming edges
on the two vertices corresponding to that cell. In this way, each
OASIS link has associated with it two TIGRscan edges, one from
each parse graph for the two genomes. The resulting set of OASIS
cells and their predecessor links form a trellis. It should be evid-
ent that a path through the trellis outlines an isomorphism between
subgraphs of the two parse graphs, and that these subgraphs outline
corresponding gene predictions [although ensuring that those gene
predictions are well formed requires tracking of phase constraints
using the usual mod 3 arithmetic employed in GHMM gene finders,
as described in Majoros et al. (2005)].

Evaluation of the matrix is then performed according to
Equations (4) and (5). Each coding link in the trellis is annotated
with nine scores (or one score for the non-coding links), corres-
ponding to the cartesian product of the three possible phases of the
associated features in the two genomes. Storing all nine scores separ-
ately is necessary for coding edges in order to avoid greedy behavior
in the GPHMM decoding algorithm. The dynamic programming
recurrence for this algorithm is as follows:

β(i, j) = max
(h,k)∈pred(i,j)

[β(h, k)Pe(Sh:i,1|qh:i , dh:i )Pe(Si,1|qi)

Pcond(Sk:j ,2|Sh:i,1, qh:i , dh:i )Pd(dh:i |qh:i )Pt (qi |qh)] (6)

where (i, j) and (h, k) address cells in the OASIS matrix, pred(i, j)

is the set of links to predecessor cells in the trellis, Si,1 is the fixed-
length sequence in the immediate vicinity of signal i in the parse
graph for genome 1, Sh:i,g is the variable-length sequence between
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(a) (b)

Fig. 4. (a) Approximation of percent identity or percent similarity (Pident) between a pair of features delimited by cells A and B in the OASIS matrix. An
approximate alignment is rapidly formed by jumping from OASIS cell A to the nearest ‘guide’ alignment cell z, then following along the precomputed alignment
from z to y, and then jumping from y to OASIS cell B. Jumps to and from the guide alignment incur indel penalties δA and δB . The remaining portion of the
alignment is scored in constant time by simple subtraction. (b) Correlation between approximate alignment scores (x) and full Needleman–Wunsch alignment
scores (y), using percent identity as the alignment score in both cases. Correlation coefficient was 0.92 for points above (0.5, 0.5).

signals h and i in genome g ∈ {0, 1}, qi is the state corresponding to
signal i, and qh:i is the variable-duration state corresponding to Sh:i,g .
The product Pe(Sh:i,1|qh:i , dh:i )Pe(Si,1|qi)Pd(dh:i |qh:i )Pt (qi |qh) is
cached in each edge of parse graph 1 so that these terms need not
be re-evaluated for each cell in the OASIS matrix; these terms are
evaluated by TIGRscan. β(h, k) is the inductive score which is stored
separately for each of the nine phase pairs in each cell of the OASIS
matrix. Note that the phases of putative orthologous exons are not
required to match; phase is tracked only to enforce phase constraints
separately in the two genomes, as in a typical GHMM gene finder.
The Pcond(Sk:j ,2|Sh:i,1, qh:i , dh:i ) term is approximated as:

(Pmatch)
Pidentdh:i (1 − Pmatch)

(1−Pident)dh:i (7)

where Pident (percent identity or similarity) is estimated using an
approximate alignment procedure, as described below. Pmatch is a
parameter to the GPHMM which is estimated during training to
reflect the probability of a single residue match in a coding or non-
coding alignment (as per the coding/non-coding status of state qh:i).
A pointer to the predecessor (h, k) selected by the max term above is
stored in one of the nine slots at each cell (according to phase). Once
the matrix has been evaluated the highest-scoring path through the
trellis is found using a standard trace-back procedure with the usual
phase constraints for coding regions.

The Pident term is estimated using an approximate alignment pro-
cedure (Fig. 4a), as follows. In each cell c of a PROmer or NUCmer
alignment are stored two values: µc, the cumulative number of
matches from the beginning of the alignment to the current cell c; and
λc, the length of the alignment up to cell c. For PROmer alignments a
BLOSUM score >0 is counted as a match. Which BLOSUM matrix
to use is specified in a configuration file loaded at run-time. Because
a pair of OASIS cells A and B may not fall directly on the PROmer or
NUCmer alignment, additional indel terms δA and δB are assessed by
finding the nearest alignment cells z and y to OASIS cells A and B,

respectively, using a binary search, and then simply assessing the
distance from each OASIS cell to the corresponding alignment cell
in nucleotide space. In this way, Pident can be estimated using:

Pident = (µz − µy)

(λz − λy + δA + δB)
, (8)

where the putative feature pair extends from OASIS cell B to A.
When no PROmer or NUCmer alignment is near enough to A and B

to give a non-negative value for the numerator of Equation (8), we
set Pident = 0.

Figure 4b shows that these approximate alignment scores (x-axis)
correlate fairly well with full Needleman–Wunsch alignment scores
(y-axis), though the approximate scores appear to underestimate the
degree of conservation for the less-conserved features, and there is a
non-negligible amount of variance. Percent identity was used for both
alignment scores in the graph. The sequences which were aligned
were selected randomly from Aspergillus fumigatus and Aspergillus
nidulans ORFs and filtered so as to consider only those which differed
by no more than 5% in length and which overlapped a PROmer HSP.
Only nucleotide sequences were aligned.

RESULTS
We compared the performance of TWAIN to the non-comparative
gene finder TIGRscan on a set of 147 A.fumigatus × A.nidulans
likely orthologues. The orthologues were identified by using BLAST
(Altschul et al., 1990) to obtain the mutual best-match triples between
A.fumigatus, A.nidulans and Aspergillus oryzae auto-annotated
genes (W.C.Nierman et al., submitted for publication), as in the
well-known COG method (Tatusov et al., 2000, 2003). The auto-
annotation pipeline used for this genome did not at this time include
TWAIN or any of its components. The A.fumigatus and A.nidulans
pairs were filtered to eliminate those having unequal numbers of
exons, those not aligned by BLAST over their full length, and those
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Table 1. Accuracy results for OASIS applied to A.fumigatus using A.nidulans
as the reference genome, and TIGRscan applied to A.fumigatus

Nucleotide Splice Start/stop Exons Genes
(%) sites (%) codons (%) (%)
Sn Sp F Sn Sp Sn Sp Sn Sp F Sn (%) #

TIGRscan 99 100 99 89 81 81 80 78 73 75 54 79
TWAIN 99 100 99 94 88 92 92 89 85 87 74 109

Sn = TP/(TP + FN), Sp = TP/(TP + FP), TP = true positives, FP = false positives,
TN = true negatives, FN = false negatives. F = 2SnSp/(Sn + Sp). For nucleotides a
positive is a coding nucleotide. For exons a true positive had both begin and end coordin-
ates exactly correct. For genes a true positive had all exons correct. Numbers of genes
predicted corrected are shown in the column marked ‘#’.

not having an amino acid similarity �90%. This filtering was neces-
sary to obtain a relatively high confidence test set, since no set of
confirmed orthologues was available at the beginning of our study.
Test genes were on average 1840 ± (SD) 1193 bp long (range: 655–
7451) and consisted of 3.4 ± 1.6 coding exons (range: 1–8). The
underlying GHMM was trained on a set of 9796 A.nidulans and
9368 A.fumigatus annotated genes. BLAST was used to ensure that
the training and test sets were disjoint.

The results are shown in Table 1. As can be seen from the
table, OASIS produces higher accuracy than TIGRscan even though
TIGRscan already performs very well on this test set. Despite the
stringent filtering of the test set we feel these results illustrate well
the value of employing homology in gene finding. Though this
elevated performance of the syntenic over the non-syntenic gene
finder can be expected only for those gene pairs exhibiting a suitable
degree of homology, for certain pairs of organisms we expect these
gains in accuracy to make a noticeable improvement in the qual-
ity of annotations in the more highly conserved portions of those
genomes.

OASIS was able to process the 147-gene set in just under 1h on
a laptop computer equipped with a 1.6 GHz Intel Centrino 725 pro-
cessor and 512 Mb of RAM. Most runs required under 50 Mb of
RAM. ROSE (and all subprocesses, including MUMmer) was able to
process both genomes in under 30 min on a 2.4 GHz Intel dual-Xeon
machine and consumed 689 Mb of RAM. Sequences provided by
ROSE to OASIS were on average 3830 ± 1190 bp in length (range:
2652–9448). The OASIS dynamic programming matrix remained
quite sparse during all runs, with on average only 4 ± 1.7% of cells
in the matrix being allocated (range: 1–8%).

We found through trial and error the optimal Pmatch (probability of
the GPHMM emitting a pair of matching residues) values for coding
and non-coding features for our test set to be 0.64 and 0.58, respect-
ively. These differ from the observed mean similarity of 0.80 and
mean identity of 0.47 for coding and non-coding alignments, respect-
ively, in the test set. As a possible explanation for this discrepancy,
we draw attention to the fact that while 0.80 and 0.47 would seem
to be the maximum likelihood estimates for these two parameters
based only on the alignments in the test set, they do not necessarily
represent the ML estimates for the globally optimal parameterization
according to Equation (3). A global optimization procedure would
have to take into account the interactions between the different terms
in the formula for P(φ|S), the probability of a parse φ given the
sequence S (Majoros and Salzberg, 2004).

That such an interaction exists involving Pcond, and is non-trivial,
is suggested by our informal observation that for Pmatch values of
0.80 (coding) and 0.47 (non-coding) the gene finder tended to pre-
dict additional exons of small size (∼17 bp) which were not present
in the annotation. Though a small number of these extra exons may
be true exons which were missing from the annotations in the test
set, we rather suspect that the Pmatch values were largely to blame
by causing prediction of additional small exons exhibiting spurious
patterns of amino acid conservation. Thus, in order to prevent the
alignment term from dominating the optimization step during gene
prediction to the detriment of overall accuracy, it may be necessary
in many cases to modify the Pmatch values so as to strike a more suit-
able balance between the homology and ab initio forms of evidence.
Alternatively, some statistical test may be necessary to reject evid-
ence of conservation based on small sample sizes. A theoretically
sound way of incorporating such a test might involve adding states
to OASIS to represent paired nonconserved features in addition to the
paired conserved states already in the GPHMM; then the results of
an appropriate test on feature length might influence the probability
of transitioning into the conserved versus nonconserved state.

DISCUSSION
Although the results reported above are very encouraging, there are
a number of possibilities for further improvement which we would
like to see investigated. Chief among these is the ability to correctly
predict orthologues with inserted introns and/or exons, which to our
knowledge is not possible with the current generation of GPHMM
implementations. Currently, exons must be emitted in pairs, as must
introns. Proper handling of unequal numbers of exons in OASIS
would require changes both to the strict signal-type matching dis-
cipline in the OASIS matrix (thereby allowing cells to correspond
to signals of differing types) as well as a means for detecting which
additional regions of the sparse matrix must be allocated in order
to accommodate exons not detected by a PROmer HSP. Unless the
presence of nonconserved exons can be reliably detected at matrix
allocation time (i.e. without first evaluating the full matrix), such
changes to OASIS are likely to expand the allocated portion of
the dynamic programming matrix significantly, thereby increasing
execution time and memory requirements, perhaps beyond what is
practical. We are currently considering possibilities for doing this
efficiently. Although the prediction of nonconserved exon struc-
tures is apparently easier in the case of non-generalized pair HMMs
(e.g. Meyer and Durbin, 2002), we would like to be able to do so
with a generalized pair HMM so as to benefit from all of the advant-
ages of model generalization as documented in the GHMM literature
(e.g. Kulp et al., 1996).

Of the other heuristic elements of TWAIN, those which seem
to us the most likely targets for profitable improvement are those
associated with the use of approximate alignments. The effect-
ive use of approximate alignments to improve the run-time effi-
ciency of a GPHMM gene finder was first demonstrated in SLAM
(Alexandersson et al., 2003), although a number of non-GPHMM
comparative gene finders have used precomputed alignments as
well, including GLASS/ROSETTA (Batzoglou et al., 2000), SGP1
(Wiehe et al., 2001), EvoGene (Pedersen and Hein, 2003) and (to
some degree) DoubleScan (Meyer and Durbin, 2002). Because cur-
rent commodity computing systems cannot compute full pairwise
alignments between all cells in the GPHMM dynamic programming
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matrix with acceptable rapidity, the use of approximate alignments
in GPHMM gene finders is likely to remain necessary in some form
for the foreseeable future, at least on common computing hardware.
There are, however, a number of ways in which the approximate
alignment procedure described herein might be extended to allow for
possibly more accurate estimation of alignment scores. These include
the use of larger numbers of pre-computed ‘guide’ alignments, both
in nucleotide and amino acid space, for each putative orthologue
pair; the use of alternate alignment scoring functions; the use of a
more accurate paired duration probability function, ψd(di,1, di,2|qi);
and the use of a more principled model of nucleotide and amino acid
conservation based on evolutionary distances and estimates of sub-
stitution rates, perhaps similar to methods employed in evolutionary
HMMs (Pedersen and Hein, 2003) or phylogenetic HMMs (Siepel
and Haussler, 2004).

It has been debated previously (Batzoglou et al., 2000; Wiehe et al.,
2001; Zhang et al., 2003) whether one might expect a rather limited
range of evolutionary distances in which two genomes must fall in
order for comparative gene-finding methods to provide an advantage
over ab initio methods. Though we cannot here resolve this debate,
comparison of the nucleotide and amino acid alignment scores for
known exons and introns for a number of the genes in our test set
show that very often the amino acid conservation was higher than the
nucleotide conservation for the exons (91%), and vice versa for the
introns (99.7%). Conventional wisdom suggests that the difference
between nucleotide and amino acid conservation for coding and non-
coding features of orthologues should influence the accuracy gains
associated with the use of homology evidence during gene prediction,
yet to our knowledge reliable bounds have not been placed on the
ideal divergence by empirical studies, though some simulations have
been performed (Zhang et al., 2003). We hope that the availability
of our open-source comparative gene finder will allow this question
to be more directly addressed in the near future through large-scale
comparative studies, as larger numbers of closely related genomes
become available.

In summary, although TWAIN appears to perform very well on
this pair of fungal genomes, we believe additional gains in accur-
acy are likely possible. Our immediate goals are to explore possible
enhancements to our implementation after more fully characterizing
its current strengths and weaknesses on a larger dataset. We are now
in the process of organizing a larger-scale experiment to study its
accuracy on a wider array of organisms and under a wider range of
parameterizations. We hope to report the results of those experiments
at a future date, and in the meantime we encourage others to consider
using our software for annotation and/or computational research pur-
poses, in hopes of improving the state of the art in comparative gene
finding.
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