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Support vector machine for optical diagnosis of cancer

S. K. Majumder Abstract. We report the application of a support vector machine

N. Ghosh (SVM) for the development of diagnostic algorithms for optical diag-
P. K. Gupta nosis of cancer. Both linear and nonlinear SVMs have been investi-
Centre for Advanced Technology gated for this purpose. We develop a methodology that makes use of
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Indore 452013, India SVM for both feature extraction gnd cIassnflcatllor? JOI.nt|y by integrat-
E-mail: shkm@cat.ernet.in ing the newly developed recursive feature elimination (RFE) in the

framework of SVM. This leads to significantly improved classification
results compared to those obtained when an independent feature ex-
tractor such as principal component analysis (PCA) is used. The inte-
grated SVM-RFE approach is also found to outperform the classifica-
tion results yielded by traditional Fisher’s linear discriminant (FLD)-
based algorithms. All the algorithms are developed using spectral data
acquired in a clinical in vivo laser-induced fluorescence (LIF) spectro-
scopic study conducted on patients being screened for cancer of the
oral cavity and normal volunteers. The best sensitivity and specificity
values provided by the nonlinear SVM-RFE algorithm over the data
sets investigated are 95 and 96% toward cancer for the training set
data based on leave-one-out cross validation and 93 and 97% toward
cancer for the independent validation set data. When tested on the
spectral data of the uninvolved oral cavity sites from the patients it

yielded a specificity of 85%. © 2005 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1897396]
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1 Introduction algorithms for feature extraction and classificatford and
have also been used recently for laser-induced fluorescence
{LIF) diagnosis of oral leukoplaki&, cervical precancer

and atherosclerotic plaqu@svith excellent discrimination re-
sults. Van Staveren et # demonstrated the use of multilayer
ANN-based algorithms for autofluorescence detection of oral
leukoplakia. The diagnostic algorithms based on ensembles of

Diagnosis of cancer at an early stage is important for effective
management of the disease. Recently optical spectroscopy ha
received considerable attention for noninvasivesitu, near-
real-time diagnosis of canc&r For diagnosis, it exploits
subtle changes in the spectra of tissue as tissue transform

from normal to malignant. Central to optical diagnosis is a ’ ° ;
diagnostic algorithm that can best extract the diagnostic fea- adial basis gfunct|or_(RBF_) neural networks developed by
Tumer et alt® could identify cervical precancer more accu-

tures from the tissue spectra and accurately correlate them ) i R L
with the tissue histopathology. Most of the algorithms re- rately when compared to their previous multivariate statistical
ported for optical diagnosis of canéel® use traditional mul- ~ &gorithms. Rovithakis et &F. developed a higher order neu-

tivariate statistical techniques such as Fisher's linear discrimi- "8 (HON)-network-based diagnostic algorithm and demon-
nant analysi$2®9 partial least-squaresPLS) analysist strated its use for LIF detection of atherosclerotic plaques

singular value decompositibh(SVD), principal component with excellent discrimination results. Apart from ANN-based
analysid?-15 (PCA), etc. These classical linear techniques algorithms, use of other state-of-the-art statistical pattern rec-
have the advantage of providing closed-form expressions that®gnition techniques has also been reported recéhtfyFor

lead to simplicity in their design. However, they extract infor- €Xample, Agrawal et af: used wavelet transforms  and
mation from only the second-order correlation in the data and showed that features extracted from the polarized autofluores-

ignore higher order correlations, which could also be useful C€NCe spectra of breast tissues through this transforms could
for improved discriminatiort® Use of nonlinear techniquts serve as good discrimination indices. We recently showed that
is receiving attention for the purpose of development of algo- & Nonlinear diagnostic algorithm based on the theory of maxi-

rithms since these could exploit higher order correlation. Ar- MUM representation and discrimination featUwRDF) can

tificial neural network¢ANNSs) provide an array of nonlinear ~ Provide much improved diagnostic performance as compared
to that basetf on linear PCA.
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Another powerful recent approach for statistical pattern optical fiber probe, and a gateable intensified CA@OCD)
recognition based on machine learning is the theory of sup- detector(4 Quik 05A, Stanford Computer Optics, Inc., Ber-
port vector machinéSVM), originally developed by VapnfR kely, CA, USA). The spectral data acquisition was computer
and Burge$? SVMs have already received tremendous atten- controlled. The autofluorescence spectra were recorded with
tion in a wide variety of classification problefs®®and are the tip of the fiber optic probe placed in contact with the tissue

being actively pursued for various theoretical extensiSn&. surface. From each site, spectra were recorded in the 375- to
The possibility of using SVMs for developing diagnostic al- 700-nm spectral range. During each measurement of tissue
gorithms is also attracting attentiéh>*While Palmer et af® fluorescence, a reference spectrum was also acquired simulta-
used a linear SVM classifier for classifying autofluorescence neously from the phosphor-coated tip of an additional fiber
and diffuse reflectance spectra of breast tissoestro, Lin illuminated withN, laser radiation leaking from the other end

et al®* classifiedin vivo autofluorescence spectra from na- of the N, laser cavity. The peak of this reference spectrum
sopharingeal tissues by using both the linear and the nonlinearwas used to normalize the acquired tissue spectra and thus
SVM classifier with RBF kernel. In the reports of both the account for the observed pulse-to-pulse variation of khe
groups, the tissue spectra were dimensionally reduced by apdaser power. The intensity of fluorescence from each tissue
plying linear PCA algorithms prior to using the SVM ap- site is reported in this calibrated unit.
proach for classification. Lin et &t.showed that the classifi- The study involved 13 normal volunteers with no history
cation performance of an SVM classifier trained on the full of the disease of the oral cavity and 16 patients selected from
spectral data was comparable to that obtained with the classi-those enrolled for medical examination of the oral cavity at
fier trained on the diagnostically relevant principal compo- the outpatient departmef®PD) of the Government Cancer
nents only. Their combined PCA-SVM approach was reported Hospital, Indore. Informed consent was obtained from each
to have reduced computational complexity. patient as well as the normal volunteers who participated in
In this paper, we report, the use of an SVM for both feature this study. The patients included in this study had no history
extraction and classification jointly by integrating the ap- of malignancy and were suspected on visual examination by
proach of recursive feature eliminatiBr(RFE) in the frame- the concerned physician of having early cancer of the oral
work of an SVM (Refs. 23 and 24 RFE is a new technique  cavity. For these patients, biopsies were taken from the sus-
developed recently by Guyon et3lfor extracting an optimal pected areas subsequent to acquisition of spectra. Only those
subset of nested features relevant for classification from a setpatients for whom histopathological diagnosis was squamous
of data with a vast number of features. Since RFE performs cell carcinomaSCQ), grade I, were included in this studyn
feature extraction using a performance criterion set by the vivo autofluorescence spectra were acquired from a total of
classifier, the use of the integrated framework of SVM and 171 tissue sites from patients, of which 83 were SCC and the
RFE is expected to lead to a better classification performancerest were uninvolved squamous tissue. Spectra were also re-
compared to that with the use of an independent feature ex-corded from 154 sites from healthy squamous tissue of nor-
tractor such as PCA. We developed both linear and nonlinearmal volunteers. In each patient, the normal tissue sites inter-
SVM-based diagnostic algorithms using spectral data ac- rogated were from the contralateral apparently uninvolved
quired in a clinicalin vivo LIF study conducted on patients region of the oral cavity. On an average, five spectra from the
being screened for cancer of the oral cavity and normal vol- cancerous tissue sites and four spectra from the uninvolved
unteers. Although, in this paper, we focus on binary classifi- tissue sites were recorded. In normal volunteers, on an aver-
cation, i.e., cancerous versus normal, it can be easily extendedage, 10 spectra were recorded from the healthy squamous
to a multiclass classification using various approacfes, tissues. Each site was treated separately and classified via the
thereby enabling one to classify spectral data into more than diagnostic algorithm developed.
two classes comprised of patients with various kinds of le-
sions of the oral cavity, for example, leukoplakia, eryth-
roplakia, etc. in addition to cancerous and noncancerous le-2.1 Spectral Data
sions. In this paper, however, we focus on classifying spectral Each tissue fluorescence spectrum consisted of 717 intensity
data of cancerous and normal tissue. We also compare thevalues(corresponding to 717 pixels of the ICEBpanning
diagnostic efficacy of the SVM-based algorithms with that the wavelength range of 375 to 700 nm. The autofluorescence
based on PCA and Fisher's linear discrimin&RLD) using  spectra recorded from different cancerous and contralateral
the same spectral data set. The algorithms based on SVM-normal sites of the oral cavity of a patient are shown in Figs.
RFE as well as SVM alone provide significantly improved 1(a) and 1b), respectively. The considerable site-to-site varia-
diagnostic performance as compared to that based on bothtion in the spectra is apparent. The differences in the spectra
PCA and FLD in discriminating the cancerous tissue sites of from some of the normal and cancerous tissue sites are not
the oral cancer patients from the healthy squamous tissue siteshat apparent, because they are masked by the large intrapa-
of normal volunteers as well as the uninvolved tissue sites of tient and interpatient variability in the intensity and line
the patients with cancer of the oral cavity. shapes. While some of this variation may represent intrinsic
variation in tissue fluorescence, the variable nature of the con-
. tact of the probe with the tissue surface in a clinical situation
2 Materials and Methods will also add to the variation. It is pertinent to note that in the
In vivo autofluorescence spectra were recorded using ain vitro studies on oral cavity tissuéswhere the variability
N,-laser{337-nm-based portable fluorimeter reported due to the nature of contact of probe with tissue surface is
earlier™>? |t comprises a sealed-off pulséd, laser, a spec-  expected to be minimal, a percentage variatign’x) of
trograph(Acton Research Corporation, Acton, MA, UgAan ~30% was observed in the spectrally integrated intensities
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Fig. 1 N,-laser-excited autofluorescence spectra recorded from (a)
squamous cell carcinoma tissue sites (solid line) and (b) uninvolved
tissue sites (dashed line) of the same patient.

(= 1) from different sites of normal or cancerous tissues over
the total sample size investigated. Hexds the mean of |
values from different sites of one category ands the stan-
dard deviation. In comparison, in this vivo study, the per-
centage variatiofo/x) in (2 1) was~60%. To ensure good
discrimination, it is necessary to minimize these variations
that may obscure the intercategory differences. To minimize
the inter- and intrapatient variability, a two-step procedure for
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Fig. 2 Preprocessed autofluorescence spectra from squamous cell car-
cinoma tissue sites (solid line) and from uninvolved squamous tissue
sites (dashed line) of the oral cavity of the same patient.

patients are considered as a whole. Various earlier reports on
measurements of tissue fluorophdfess well as tissue
parameters also demonstrate this effect. Figure 3 shows the
preprocessed spectra from cancerous and contralateral normal
tissue sites of four patients chosen at random. It is evident
from the figure that the interpatient differences in the prepro-
cessed spectra do not appear to be that prominent in compari-
son with the intrapatient differences shown in Fig. 2.

2.2 Algorithm Development

For the development of the diagnostic algorithm, the entire set
of preprocessed spectral data from the SCC tissue sites of the
patients and the healthy squamous tissue sites of the normal
volunteers was randomly split into two groups: the training
data set and the validation data set, ensuring that both sets
contain roughly equal number of spectral data from each his-
topathologic category. The purpose of the training data set
was to develop and optimize the diagnostic method, and the
purpose of validation set was to prospectively test its accuracy
in an unbiased manner. The random assignment was carried
out to ensure that not all the spectral data from a single indi-

preprocessing of the raw spectral data was adopted. In the first,jq,a| were contained in the same data set. Next, the prepro-

step, the mean spectrum over all the healthy squamous tissugessed spectral data of the training set were used as inputs for
sites of the normal volunteers was calculated and subtracted, development of the diagnostic algorithms.

from the spectrum of each tissue site of the oral cavity of

patients as well as of normal volunteers. Since mean subtrac-yrgiotype spectral data included in the training set. The more
tion displays the differences in the spectra of the diseasedgyactly the prototype data represent the different disease cat-
with respect to the mean spectra of the healthy squamousgqqries to be discriminated, the better will be the accuracy
tissue, it is expected to lead to enhancement of spectral dif- expected in the performance of the algorithm. The general

ferences between the two diagnostic categories. Next, the re-
sultant spectrum of each category was normalized with re-
spect to the standard deviation of the spectra of that category.
This normalization is expected to remove from the spectra the
influence of scatter in the spectral intensity by making the
standard deviation of the spectra of each diagnostic category
equal to unity. Indeed, mean subtraction followed by normal-
ization of the spectra with respect to their respective standard
deviations made the spectral differences between the two di-
agnostic categories much more apparent. Figure 2 shows the
spectra for cancerous and uninvolved sites of the oral cavity
of the same patient after preprocessing. Note here that the
differences in the preprocessed spectra from cancerous and

The performance of a diagnostic algorithm depends on the
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contralateral uninvolved tissue sites of the same patient areFig. 3 Preprocessed autofluorescence spectra from squamous cell car-

generally more distinét*” as compared to the differences

cinoma tissue sites (solid line) and from uninvolved squamous tissue

when preprocessed spectra from similar tissue sites of all thesites (dashed line) of the oral cavity of four patients chosen at random.
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practice is to use spectral data of uninvolved tissue sites sur-trivial solutions that may overfit the datd.This means that
rounding the cancerous tumor of patients as the normal data-there may exist infinitely many hyperplanes that can success-
base for development of diagnostic algorithths> However, fully separate the training set data, but perform miserably on
the normal appearing region surrounding a cancerous tumorunseen(tes) data points.

of a patient might have some biochemical changes due to the The SVM is developed to simultaneously sidestep both
field effect of malignanc§® particularly at the advanced stage these difficulties. It avoids overfitting by choosing an optimal
of the disease. This was believed to be the reason for obtain-separating hyperplan€éOSH) in the feature spacdfrom

ing reduced classification performance in our eariierivo among the manythat maximizes the width of the margin
studies® In this study, although the patients included were between the classes, i.e., the empty area around the decision
reported to have earlier stag@gade ) of squamous cell car-  boundary defined by the distance to the nearest training data
cinoma, we investigated the use of two separate normal data-points of either clas& The OSH also minimizes the risk of
bases for the development of diagnostic algorithms. In one, misclassifying not only the data points in the training G&t,

we took as normal database, the spectral data of contralaterabmpirical risk minimization but also the yet-to-be-seen data
uninvolved tissue sites of patients, while in the second, we points of the test set for a fixed but unknown probability dis-
took the spectral data of healthy squamous tissue sites of nor-tribution of the data thereby following the SRM princigfe.
mal volunteers who had no history of any disease of oral The approach of SRM equips the SVM with a greater ability
cavity. Our initial results showed that use of spectral data of to generalize, which in turn leads to significantly improved
normal volunteers gave slightly improvéay ~5 to 799 clas- classification performance as compared to the traditional tech-
sification performance. Therefore, for subsequent develop- niques that follow only the empirical risk minimization prin-
ment of diagnostic algorithms we considered, as the normal ciple to minimize the mean-squared error over the training
database, the spectral data from the healthy squamous tissudata set.

sites of the normal volunteers and avoided use of spectral data The location of the OSH in the feature space is specified
from tissue sites of normal-appearing mucosa in the contralat- by real-valued weights on the training set data poifilthose

eral uninvolved region of the oral cavity of patients. training set data points that lie far away from the OSH do not
participate in its specification and therefore receive weights of
23 SWM zero. Only the training set data points that lie close to the

SVMs are powerful tools for data classification. The central decision boundary between the classes receive nonzero
idea of an SVM is to separate classes with a surface thatweights?>** These training set data points are called support
maximizes the margin between théf he formulation of the vectors®* since only these points define the classification
technique relies on the theory of uniform convergence in boundary and removing them would change the location of
probability and associated structural risk minimizati&RM) the OSH. It has also been shown by Vaghik and Burge®'
principle?® to minimize the structural risk, i.e., the probability that if the training data points must be separated without er-
of misclassifying yet-to-be-seen patterns for a fixed but un- rors by an OSH, the expected error rate on an unseen data
known probability distribution of the data. The mathematical point is bounded by the ratio of the number of support vectors
formulation and associated theoretical background of SVM to the number of training data points. Since the ratio is inde-
have been detailed in Vapnik's bddkas well as in several ~ pendent of the dimension of the problem, obtaining a small
literature source® #3132 the following, we briefly discuss ~ set of support vectors can guarantee a good generalization
the basic ideas of SVM for the purpose of our description. ~ performance of an SVM classifier.

Given a set ofN-dimensional(N being the number of Another important advantage of the SVM approach is that
wavelengths over which spectra were recojded spectral it avoids the computational burden of explicitly mapping the
data of cancerous and normal squamous tissue sites labeled binput data to the higher dimensional feature spaga non-
Ne{—1,+1} with A\=+1 referring to cancer angd=—1 refer- linear mappingg:Ry— F from input spacer, to the feature

ring to normal, the task of an SVM is to separate this set of spaceF) without ever explicitly performing the mapping,
binary labeled input data into its constituent classes. A simple since neither the SVM learning algorithm nor the SVM deci-
way to build a binary classifier is to construct a hyperplane sion function must represent explicitly the input data points in
(decision boundapyin the N-dimensional input space that the feature space(x) and only use dot products between
separates class membépositive examplesfrom nonmem-  such pointg ¢(X),¢(y)) in the feature spacé.This is done
bers(negative examplésonsidered as points in that space. A simply by defining a functionK(x,y)=(¢(x),¢(y)) that
look at the LIF spectral datésee Figs. 1 and)3vould show plays the role of dot product in the feature space. The function
that because of considerable intercategory overlap, there exK(x,y) is called the kernel functidfiand is termed legitimate
ists no separating hyperplane in the input space that successonly if it obeys Mercer’s theorerf®:** The use of this kernel
fully separates the positive from negative examples. One ap-function enables the SVM to operate efficiently in a nonlinear
proach to solve this inseparability problem is to map the data high-dimensional feature space without being adversely af-
from the input space into a higher dimensional feature spacefected by the dimensionality of that space.

through ama priori chosen nonlinear mapping and constructa ~ Computationally, the algorithm proceeds by calculating in
separating hyperplane that is linear in that space, but is non-the final step the two-class decision function defined by an
linear with respect to the input spateHowever, the techni- ~ SVM classifier:

cal difficulty involved in mapping the training set data to a

higher dimensional space for classification is the computa-

tional burder?* Furthermore, artificially separating the data in

this way exposes the learning system to the risk of finding D(x)=sigr{ 2 ai MK (X ,X) + aq |, (N

Xje
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whereK(x; ,x) is the kernel function of a new data pointto algorithms with then vivo LIF spectral data. The selection of

be classifieland a set of training data points, Sis the set optimal values of the ordet in the polynomial kernel and the

of support vectorda subset of training sgtand\;==*1 is width o in the Gaussian RBF kernel is an optimization prob-

the label of training data points anda;=0 are the Lagrange  lem, where the possible values that the parameters can have is

multipliers for OSH. a finite set, and the cost function is defined by the application.
For the LIF spectra data that contain considerable classWe chose the cost function as the misclassification error in the

overlap, the maximum-margifor the hard-marginSVM ap- training set data obtained with the leave-one-out cross-

proach may not be able to find any separating hyperplane atvalidation estimate. If the total number of misclassified
all.?* This problem is addressed by using a soft margin that samples was the same at more than @oeo values, then the
allows some training data points to fall on the wrong side of value at which the total number of cancerous samples mis-
the separating hyperplad&Therefore, completely specifying  classified was minimum was selected. For selecting optimal
an SVM, in this case, also requires specifying additional pa- value for the polynomial kernel, the polynomial SVM was
rameters that provide the magnitude of the penalty for violat- trained on the full spectral data of the training set with the
ing the soft margin. These parameters, along with others, arepolynomial kernel raised to different degregselected from
determined during the training phase of the SVM algorithm a set ofd values ranging from 1 to 4 with increments of 1. The
by solving a quadratic optimization problem giver?by optimal value ofd was chosen to be the one that gave the
highest leave-one-out cross-validation classification perfor-
. T mance. We restricted the set @dfvalues up to 4, since fod
min,| o’ AKAa+ CE oK 2 values larger than 4, the learning algorithm was found to have
. convergence problems with the given data set. Since the ker-
under the constraink;D(x;)=1—¢;, VX; inthe training set,  nel is learned from the data at hand during training of the
where A is a diagonal matrix containing the labels, and algorithm, it appears that the polynomial kernel at higher val-
the matrixK stores the values of the kernel functik(x; ,x) ues ofd became a “bad kernel” for the given data. In other
for all the training data points belonging to both the classes. words, it means that the kernel matrix perhaps no longer re-
The set of slack variableg; in Eq. (2) allow for the class  mained positive-definite and became diagonal during learning
overlap, controlled by the penalty weigBt>0. This param- from the given spectral data probably due to the generation of
eterC, called the regularization parameter, basically controls a large number of irrelevant features in the kernel-induced
the trade-off between the largest margin and lowest number of feature space. Similarly, the optimal value @fvas selected
errors. ForC=x, no class overlap is allowed. During opti- using an exhaustive search method. The RBF-SVM classifier
mization, the values of; become 0 for the majority of train-  was trained on the full set of spectral data of the training set
ing data points, except for the support vectors that comprise for the differento values selected from a set of values
only a small subset of the total number of training data points ranging from 0.1 to 1000 with increments of 0.1 f@wvalues
and are only finally needed for separating class members frombetween 0 to 1, with increments of 1 fervalues between 1
nonclass members. This property allows the SVM to classify to 20, with increments of 5 foo values between 20 to 100,
new data points efficiently, since the majority of the training and with increments of 50 far values between 100 to 1000.
data points can be safely ignored. Optimal value ofo was the one that gave the least leave-one-
out cross-validation error.
2.4 Selection of Kernels
The selection of an appropriate kernel function is very impor- 2.5 FLD

tant, sinpe it defines thg feature space in which the training selGiven a set of input data comprising of LIF spectral data from
Idat_a_ points are_clas&ﬂedh A?/llong as rt1he E%Qel function is ¢4 cerous and normal tissues with a given dimensionality, the
egitimate, 1.e., it obeys the Mercer’s theorent," an SVM FLD (Ref. 42 aims to project this data onto a line and per-
will operate correctly even if the designer does not know ex- ¢, g classification in this 1-D space. The projection maxi-
actly what features of the training data are being used in the i o5 the distance between the means of the two classes while
kernel-induced feature space. This kernel function must be yinimizing the variance within each class. This defines the

c_hpseng priori and it determines the type of the SVM clas-  rishers criterion, which is maximized over all linear projec-
sifier. Given a set of support vectorg,and a data point (to

be classifiefl the simplest kernel that can be used is just the tlons, w

dot product in the input spac&(x;,x)=x;, x+ 1, resulting 2
in a linear classifier. When this dot product kernel is used, the J(w)= 11— pa
feature space is essentially the same asNkdimensional S§+S§

input space, and the SVM will define a linear OSH in this here u represents the meas? s th . d
space. Raising the kernel to higher powers yields nonlinear v prep €an; represents he variance, an

kernels that are polynomial separating surfaces of higher de-the subscripts denote the two classes. Maximizing this crite-

grees in the input space. In general, nonlinear kernels, such ad'on ylel.ds a cllosed-for.m solution that invalves the inverse of

K(x;,X)=(x; ,x+1)9 result in ad'th-order polynomial SVM a covariance-like matrix.

classifier. Similarly, use of Gaussian RBF results in an RBF )

kernel:K(x; ,x) = exp(—[%—X[?/202), whereo is the width ~ 2-6  Feature Selection: RFE

of the Gaussian. For each preprocessed LIF spectral data consisting of 717
We used linear as well as both the nonlingamlynomial intensity values we have in the input data space 717 features

and RBH kernels for the development of SVM diagnostic representing intensities at different wavelengths. It is often

Journal of Biomedical Optics 024034-5 March/April 2005 + Vol. 10(2)



Majumdar, Ghosh, and Gupta

necessary, while designing a classifier, to select a subset ofare basically nestef;CF,C---CF, which means that the
diagnostically relevant features from the vast number avail- selected subset dffeatures is included in the subsetlof 1

able. It is important because throwing away irrelevant features features. Clearly, the previous method of feature ranking is
(i.e., the features that do not assist in classificati@uuces computationally equivalent to the first iteration of RFE. Thus,
the risk of overfitting and decreases computational RFE provides a ranked list of features indicative of feature
complexity® At the same time, limiting the number of fea- subset ranking, as opposed to feature ranking. This means that
tures has the associated risk of reducing the expected classithe features that are top rankédk., eliminated lagtare not
fication performance by introducing a bi&sThe objective of necessarily the ones that are individually most relevant. Only
any feature selection exercise is to select optimal number of taken together, they are relevant for classification.

features, using which the performance of the classifier is as In our case, we used both SVM and FLD to select an
good as if not better than that using all the features. The optimal subset of features using RFE. While the feature-
selection of an optimal subset of features from a set of fea- ranking criterion used for SVM-RFE was

tures can be carried out by using an appropriately designed
performance measure to evaluate their ability to classify the
sampled® (e.g., cancer versus normah brute-force search of
the best combination of featurésombination of 2, 3, or more o
number of features of 717 featujabat results in best classi- fof FLD-RFE itis

fication performance is impractical, because the number of 1

possible feature combinations will be prohibitively large for W =S, (H1— 12),

such large set of features. One apprdaéhto train the clas- whereS,, is the within-class scatter matrix angi\, K, andu

sifier itself with the full set of features, compute some feature zre as defined previously. For computational reasons, we re-
ranking criteria(e.g., the weights of the classifidp evaluate  moved several features at a time. We started with all 717
rank the features based on the criteria, and then use a fixedianked and the bottom half closest to half of the total number
number of top-rar_1ked features to flnall)_/ cIaSS|fy the data. This of features was eliminated. Similarly, at each subsequent it-
method has an important drawback in that if some of the eration, we eliminated close to half of the remaining features.
features(say, the least-ranked oneare removed and the pro- e thus obtained a total of 11 nested subsets of features of
cess is repeated, the resulting ranking of the remaining fea-increasing informative density from the whole set of features.
tures differs from their previous ranking obtained without re- The 11 subsets are composed of 717, 350, 175, 80, 45, 20, 15,
moving any of the features. Therefore, use of this approach 10, 5 and 1 feature, respectively. The quality of these subsets
may not provide an optimal subsgbr classification from of features was assessed by training the four classifters

the full set of features. This problem has been very effectively £| D and the three SVMsat each iteration stage.

addressed by the recursive feature eliminatl®RFE) method,

proposed recently by Guyon et3lIn this approach, feature 2.7 Analysis of Algorithm Performance
ranking is carried out through a recursive procedure. Given

W= > aiNK(x;,x),

VXi €

the preprocessed spectral data with a full set of feat(ire The performance of a diagnostic algorithm depends on how
717pintgnsit valueg at the different wavelengjttae al c?— accurately the algorithm separates the set of data being tested
Y 9 into the different classes. The relative performance of the dif-

::SS: S;z;fs?e/str?rzglr;glz:\rt]i?/edﬁ;glr?;nucsemgfatluethfee;?ﬁgsreii ?ﬁeferent diagnostic algorithms was assessed by carrying out a
classifier by computing the feature ranking criteféag., the receiver-operating characteri$fi¢ROC) analysis of the cor-

weights of the classifig¢r eliminates the least important fea- responding classification results. An ROC curve was gener-
turegcorresponding to t,rrle smallest ranking crite?ion and lists ated corresponding to each diagnostic algorithm for the vali-
the index corresponding to this feature in a feature-ranked list dation data set by plotting the true positive retensitivity as

initialized for this purpose. The classifier is again trained with a function of the faise positive ratd-specificity as the clas-
- purpose. ag . sification threshold was varied. An ROC curve provides a
the remaining set of surviving features as input, the least im-

portant feature corresponding to the lowest ranking criterion wsuagl. comparison of the trade-off between sensitivity and
is again eliminated, and the index corresponding to this fea- specificity of a diagnostic test. The closer the curve follows
ture is added to thé previous feature-ranked list. This proce- the Ieft_-hand border and the top bo_rder of Fhe ROC.: shace, the
dure of training the classifier, computing the fea:[ure ranking better is the performance of the diagnostic algprlthm. Simi-

o oSTIE ME . . larly, the closer the curve comes to the 45-deg diagonal of the
criteria, and feature elimination is carried out recursively to

update the feature-ranked list at each iteration until all 717 ROC space, the less is its accuracy. To quantify the perfor-

L mance measure of the different algorithms, the areas under the
features of the original spectral data have been assessed. Thu%ifferent ROC curves were estimated. An area of 1 represents
at the end of the iterative loop, one gets, as the output, a '

. : X an ideal diagnostic algorithm, while an area of 0.5 represents
feature-ranked “St.' Aft(_ar havmg_ prepared the list, the _next a worthless one. The closer the area is to 1, the more accurate
task of RFE algorithm is to decide on the subset of optimal

number of features required for best classification. For that, 's the corresponding diagnostic algorithm.

the different numbers of top-ranked features are selected to

form a series of different feature subséttarting with the full 3 Results

seh and the performance of the classifier is assessed itera-Table 1 lists the diagnostic results obtained with a linear SVM
tively with these selected subsets of features to determine theclassifier trained on the spectral data set corresponding to raw
optimal subset. The series of different feature subsets formedspectra and preprocessed spectra with the full set of spectral
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Table 1 Classification results obtained with the linear SVM classifier and the conventional nearest mean classifier (NMC) using the data set
corresponding to the unprocessed raw spectra and the preprocessed spectra with full set of spectral features.

Training Data Set Validation Data Set
Sensitivity Specificity Sensitivity Data Set | Specificity Data Set Il Specificity

Spectral Data Classifiers (%) (%) (%) (%) (%)
Raw spectra SVM 81 94 78 96 74

NMC 74 58 83 58 66
Preprocessed SVM 86 91 88 92 77
spectra

NMC 81 65 80 58 55

Sensitivity and specificity values in the training set data represent leave-one-out cross-validation values.

features(i.e., N=717 intensity values For comparison’s To train an SVM algorithm one must suppdy priori the
sake, the classification results yielded by a conventional NMC value of the regularization paramet€rto the learning algo-

on the same data sets are also listed in the same table. Arrithm. Since no established guideline exists in the SVM
NMC is based on least Euclidean distance of the test featuresmethodolog$>?*as to what should be the optimal value@f

from the means of the prototype features of the correspondingthe linear and nonlinear SVM classifiers were trained with
tissue types in the training set. The sensitivity and specificity different values ofC (C=1, 10, and»). It was found that the
values for the training set data were obtained on the basis ofclassifier withC=« gave the best generalized classification
leave-one-out cross-validation. It is evident from the table that performance, i.e., the total misclassification error over the
the sensitivity and specificity values in the training and the training (leave-one-out cross-validatipand the independent
validation data sets are much improved with the preprocessedvalidation data sets was the least. Therefore, for subsequent
spectral data as compared to the unprocessed raw spectrdieature subset selection with the RFE algorithm we trained
data. Therefore, we extended the subsequent exercise on aleach of the SVM classifiers wit= oo at each iteration stage.
gorithm development only with the preprocessed spectral dataTo evaluate the diagnostic contribution of each selected subset

sets. of features at each iteration stage of the RFE algorithm, we set
Figures 4 and 5 demonstrate the leave-one-out cross-the cost function as the total number of samples misclassified
validation error as a function of the degrdes of the poly- by the classifier in the independent validation set as well as in

nomial kernel and the width@r) of the Gaussian RBF kernel, the training set data with leave-one-out cross-validation. The
respectively. From Fig. 4 it is clear that the leave-one-out optimal subset of features was the one for which the total
error is the minimum fod= 2, and therefore, we used poly- number of misclassified samples was the minimum. If the
nomial kernel of degree 2 for training the polynomial SVM total number of misclassified samples was the same for more
classifier for algorithm development. Figure 5 shows that than one feature subsets, then the feature subset for which the
leave-one-out error is the minimum at more than onelue total number of cancerous samples misclassified was mini-
(e.g., ato=50, 75, and 100 However, for thes value of 100 mum, was selected.
the total number of cancerous samples misclassified was the The total misclassification error for the 11 nested subsets
minimum and thereforeg=100 was used as the width of of features was determined with the SVM RFE method. The
the RBF kernel for subsequent training of the RBF SVM results for linear, polynomial, and RBF kernels are shown in
classifier. Figs. 6 to 8, respectively. It is evident from the figures that
while the misclassification error is the minimum for the linear
SVM classifier trained with the subset of 45 features ranked
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Fig. 4 Leave-one-out cross-validation error in the training set data as a Fig. 5 Leave-one-out cross validation error in the training set data as a
function of the degree of the polynomial kernel for the polynomial function of the width of the Gaussian radial basis function for the RBF
SVM classifier. SVM classifier.
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data set as a function of the 11 nested subsets of features obtained

Fig. 6 Total misclassification error in the training and the validation using the SVM RFE algorithm with an RBF kernel.

data set as a function of the 11 nested subsets of features obtained
using SVM RFE algorithm with a linear kernel.

(PCg9 are listed in Table 7. PCA of preprocessed spectra re-

sulted in six PCs that collectively accounted for 99.5% of the
by the SVM RFE algorithm, for both the polynomial SVM total variance of the spectral data. Of the six PCs, only four
and the RBF SVM the respective misclassification errors are (PC 1, PC 3, PC 4, and PQ &ere found to have significantly
the minimum with the subset of 350 features ranked by the different (p<<0.00]) values for SCC and normal squamous
respective SVM RFE algorithms. The diagnostic perfor- tissue. Therefore, these four PCs, which together accounted
mances of the SVM RFE algorithms with linear, polynomial, for 79% of the total variancé”C 1 accounting for 70%, PC 3
and RBF kernels are listed in Tables 2 to 4. The sensitivity for 6%, and PC 4 for 2% of the total variance, and PC 5
and specificity values for the training set data represent the accounting the remaining 1vere used for subsequent clas-

leave-one-out cross-validation values. sification.

Similarly, for the development of the RFE algorithm with Figure 10 shows the ROC curves generated for the differ-
the FLD classifier, it was trained on the training set data and ent diagnostic tests based on SVMs and FLD. To quantify the
tested on the training séleave-one-out cross-validatipas accuracy of the tests, the areas under the curves were also

well as on both the independent validation data sets at eachestimated. Table 8 lists the area under the curve values for the
iteration stage. Figure 9 shows the total misclassification error ROC curves corresponding to linear, polynomial, and RBF
as a function of the 11 nested subsets of features obtainedSVM diagnostic algorithms.
with the FLD RFE method. The figure clearly shows that the
misclassification error is the minimum with the subset of 45 4 Discussion
features ranked by the FLD RFE algorithm. Table 5 summa- |n Table 1, we summarized the diagnostic performance of the
rizes the diagnostic results obtained with the FLD RFE algo- SVM classifier and the nearest mean classifier. For both the
rithm. Here also, the sensitivity and specificity values for the classifiers, the diagnostic results were obtained using the pre-
training set data represent the leave-one-out cross-validationprocessed spectral data and the unprocessed raw spectral data.
values. The results clearly indicate that SVM outperforms the NMC
Table 6 lists the sensitivity and specificity values for the for both data sets. The superior classification performance of
training and the validation data sets obtained using the FLD asthe SVM classifier originates from the built-in capability of
well as the three SVM algorithms with the full spectral fea- the SVM approach to separate classes that are not linearly
tures as well as with the optimal subset of features selectedseparable in the original parametric sp&t€&he advantage of
using the respective RFE algorithms. For comparison’s sake, the two-step preprocessing of the raw spectral data, as de-
the sensitivity and specificity values obtained using the linear scribed in the previous sections, is also apparent from the
PCA-based algorithm as well as the linear SVM algorithm table.
trained with the diagnostically relevant principal components  The diagnostic performances of the SVM-based and the
linear-PCA-based algorithms over the training and the two
independent validation data sets are listed in Table 7. For

s SVM-based algorithms, classification results were obtained
g 459 i :
s for two cases. In one case, SVM was used as a classifier with
= ¢ PCA, providing the diagnostically relevant featuresVM
é 301 PCA), and in the second case, SVM was used for classifica-
'§ tion with the full set of spectral features as well as for both
g 154 feature extraction and classification jointly using the SVM-
E —— RFE approach. A perusal of the table shows that the SVM-
€ o — . . . , based algorithms have resulted in significantly improved clas-
& 0 200 400 600 300 sification performance as compared to that obtained with the
Number of Features PCA-based algorithms. Further, in view of the previous work
. 34 .
Fig. 7 Total misclassification error in the training and the validation by Lin et al™ using the SVM PCA_' our resu'lts show .that the
data set as a function of the 11 nested subsets of features obtained integrated SVM-RFE approach gives considerably improved
using the SVM RFE algorithm with a polynomial kernel. diagnostic performance as compared to the SVM-PCA algo-
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Table 2 Classification results of the linear SVM-based diagnostic algorithm for the training and the validation data sets with the 11 subsets of
features selected through the RFE method.

Training Data Set Validation Data Set
Diagnostic Sensitivity  Specificity ~ Misclassification Error  Sensitivity  Specificity ~ Misclassification Error
Algorithm Number of Features (%) (%) (%) (%) (%) (%)
(Al)717 86 91 11 88 92 9
350 93 96 5 88 94 8
175 95 97 3 88 92 9
90 98 97 2 88 92 9
45 98 97 2 88 94 8
Linear SVM 25 98 97 2 88 91 10
15 86 94 9 74 88 16
10 86 96 8 78 88 15
5 64 83 24 71 86 19
2 69 87 19 63 86 22
1 62 83 24 68 84 21

Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.

rithm developed based on the same data set. This is not surdinear transformation matrix. PCA optimizes the transforma-
prising because PCA, which is basically an independent fea-tion matrix by finding the largest variations in the original
ture extractol’® extracts features by projecting the input data input spacé®*? thereby reducing the dimension of the origi-
into a new feature space of lower dimensionality through a nal data by optimally representing the data in the form of a

Table 3 Classification results of the polynomial SVM-based diagnostic algorithm for the training and the validation data sets with the 11 subsets
of features selected through the RFE method.

Training Data Set Validation Data Set

Sensitivity ~ Specificity ~ Misclassification Error ~ Sensitivity ~ Specificity ~ Misclassification Error

Diagnostic Algorithm  Number of Features (%) (%) (%) (%) (%) (%)
717 93 97 4 90 94 8

350 93 100 2 90 95 7

175 90 97 5 93 94 7

90 88 97 6 90 94 8

45 88 97 6 90 92 8

Polynomial SYM 25 90 96 6 90 92 8
15 90 100 3 88 92 9

10 90 99 4 90 92 8

5 93 94 6 90 90 10

2 62 94 18 63 91 19

1 60 91 21 66 92 17

Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.
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Table 4 Classification results of the RBF-SVM-based diagnostic algorithm for the training and the validation data sets with the 11 subsets of
features selected through the RFE method.

Training Data Set Validation Data Set

Sensitivity ~ Specificity ~ Misclassification Error ~ Sensitivity ~ Specificity  Misclassification Error

Diagnostic Algorithm  Number of Features (%) (%) (%) (%) (%) (%)
717 93 96 5 93 95 6

350 95 96 4 93 97 4

175 90 95 7 90 99 4

90 90 96 6 90 96 6

45 95 97 3 88 95 8

RBF SVM 25 95 96 4 88 94 8
15 95 99 2 83 91 12

10 90 97 5 83 94 10

5 86 95 8 85 92 10

2 57 96 18 56 94 19

1 64 94 17 59 94 19

Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.

few PCs(which are linear combinations of the original data  the cost of classification performance. However, the speed
However, the PCs do not ensure any class-discriminatory in- aspect should not matter when developing an off-line diagnos-
formation. The drawback of an independent feature extraction tic algorithm where the main focus is the accuracy and sim-
algorithm such as PCA is that its optimization criterion is plicity. Speed requirements can also be taken care of by the
different from the classifier's minimum classification error SVM-RFE approach, which practically performs dimension
criterion'® which can cause inconsistency between feature ex- reduction through feature selection.
traction and classification stages of a diagnostic algorithm  |n Table 6, we list the diagnostic performance of the FLD
and, consequently, may degrade the performance of classifi-and the three SVM algorithms with the full spectral features
ers. This problem is overcome by pursuing the integrated ap-as well as with the optimal subset of features selected using
proach of SVM and RFE, since RFE performs feature extrac- the respective RFE algorithms. A perusal of the table shows
tion by selecting the diagnostically relevant input variables that SVM-based algorithms provide significantly improved di-
while USing the performance criterion set by the classifier agnostic performance as Compared to FLD. While the differ-
itself.*> Further, note also that computational complexity is ence in diagnostic performance is particularly large for full set
also not reduced in the SVM-PCA approach, because theof spectral features, it is reduced for an optimal subset of
S_VM c_:lassification operation does_not depend on th_e (_JIi_men- features(selected by the respective RFE algorithmEhe
sionality of the feature space, which can be even inffifite. ROC analysis of the classification results provides a more
Perhaps the SVM-PCA approach could be little faster, but at cyjtical evaluation. Figure 10 shows that while all three ROC
curves corresponding to the SVM-based algorithms are very
close to the point of ideal performancee., the upper left-

2004 -~ " hand corney, the ROC curve corresponding to the FLD-based
" algorithm is quite far away from the ideal point. This is fur-
1504 ther supported by the observations of significantly higher val-

ues of the area under the ROC cury&able § corresponding

Total misclassification error

wo] & to the SVM-based algorithms as compared to that based on
| /' FLD with the performance of the RBF-SVM algorithm being
so] the best.
, . . . . The large improvement in diagnostic performance of
0 200 400 600 800 SVM-based algorithms as compared to that based on classical
Number of Features FLD, appears to be due to the fact that while FLD extracts
Fig. 9 Total misclassification error in the training and the validation !nformatlon from only th? second-order correlations in the
data set as a function of the 11 nested subsets of features selected input spectral dafd (covariance matrixto enhance the class-
through RFE for FLD classifier. discriminatory information, the SVMs use higher order
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Table 5 Classification results of the FLD-based diagnostic algorithm for the training and the validation data sets with the 11 subsets of features
selected through the RFE method.

Training Data Set Validation Data Set

Sensitivity ~ Specificity ~ Misclassification Error ~ Sensitivity ~ Specificity  Misclassification Error

Diagnostic Algorithm  Number of Features (%) (%) (%) (%) (%) (%)
717 60 44 96 37 48 115

350 45 44 111 61 60 79

175 45 53 102 46 52 102

90 79 94 27 71 70 59

45 83 99 18 73 92 35

FLD 25 76 96 28 76 92 32
15 76 92 32 80 90 30

10 81 96 23 68 91 41

5 69 83 48 66 83 51

2 67 82 51 71 82 47

1 71 74 55 76 73 61

Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.

correlationsg* Note also that FLD optimizes the transforma- data has multiple clusters per class it might so happen that the
tion matrix by finding the largest ratio of between-class varia- mean for a class of two clusters can lie close to the mean of
tion and within-class variation when projecting the original another class.

input data to a feature space of lower dimengfofihus, it From the viewpoint of pattern recognition, the task of tis-
considers the squared separation between the means of eacbue classification based on LIF spectral data is a pattern clas-
class and, therefore, is not expected to perform well on non- sification problem, and the feature vector for classification
symmetric data such as the LIF spectral data that may havecomprises the measured intensities corresponding to the dif-
multiple clusters per clags.This follows because when input  ferent pixels(of the detectorthat specify the dimension of the

Table 6 Classification results of all the diagnostic algorithms for the training data set and the two independent validation data sets with the full and
optimal subsets of features selected through the RFE method.

Training Data Set Validation Data Set
Diagnostic Number of Sensitivity Specificity Sensitivity Data Set | Specificity Data Set Il Specificity
Algorithm Features (%) (%) (%) (%) (%)
Full 60 44 37 48 67
FLD
Optimal subset 83 99 73 92 80
Linear Full 86 91 88 92 77
SYM Optimal subset 98 97 88 94 85
. Full 93 97 90 94 85
Polynomial
SVM Optimal subset 93 100 90 95 86
RBF Full 93 96 93 97 82
SVYM Optimal subset 95 96 93 97 85

Sensitivity and specificity values in the training set data represent leave-one-out cross-validation values.
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Table 7 Classification results for the training data set and the two independent validation data sets obtained with PCA-based algorithms and
linear-SVM-based algorithms.

Training Data Set Validation Data Set
Diagnostic Sensitivity Specificity Sensitivity Data Set | Specificity Data Set Il Specificity
Algorithm Number of Features (%) (%) (%) (%) (%)
PCA+NMC Four PCs 83 66 80 58 56
SYM-PCA Four PCs 69 90 76 91 71
SVM Full 86 91 88 92 73
SVM-RFE Optimal subset 98 97 88 94 85

For the PCA-based algorithm, the diagnostically relevant PCs were classified using the NMC. For the SVM-based algorithm, classification results were obtained for two
cases. In one case, SYM was used as a classifier with PCA providing the diagnostically relevant features (SVM-PCA), and in the second case, SYM was used for
classification with the full set of spectral features as well as for both feature extraction and classification jointly using the SYM-RFE approach. Sensitivity and specificity
values in the training set data represent leave-one-out cross-validation values.

features. If working directly with all these spectral features (e.g., the present set of LIF spectral dafeurther, an added
whose dimension is much highéN=717 in this casg¢ as advantage of using RFE is that it directly becomes clear
compared to the siz€~119 in this casg of the training which spectral regions dominate the classification problem, in
samples, the classifier might suffer from the so-called “curse contrast to using PCA for dimension reduction, where one
of dimensionality,”® causing it to have poor generalization in  must perform a component-loading operation to get back the
classification performance. The use of RFE not only helps in spectral regions of interest. For example, the optimal subset of
choosing an optimal subset of features that are relevant for 350 features selected by the SVM RFE with RBF kernel cor-
classification, but also reduces the feature dimension by solv-respond to wavelengths that span nearly the entire spectral
ing the “curse of dimensionality” problem. This is evident region going from 355 to 700 nm.
from the observed large improvements in the classification  Also note here that although the standard SVMs are de-
performance of the diagnostic algorithm based on FLD for the signed for binary classificatiofi;?* multiclass classification
optimal subset as compared to the full set of spectral features,problems could be solved either by directly constructing a
leading to an increase of 29.5 and 49.5%, respectively, in the multiclass SVM classifiéf or by using voting scheme meth-
average sensitivity and specificity values. Note, however, that ods based on combining many basic binary SVM decision
the diagnostic algorithms based on SVM are not too sensitive functions® For example, one-against-all decomposition is the
to the selection of optimal subset of features. For example, most commonly used voting scheme method. In this case, the
while for the linear SVM, the average sensitivity and speci- classification problem t& classes is decomposed kdinary
ficity values improve by 6 and 4%, respectively, by going SVM decision functionsf ,(x), me K={1,...k}, where the
from the full set to the optimal subset of spectral features, no decision functionf,(x) separates training data of tmgth
change in sensitivity and only a 2% increase in specificity class from the training patterns of other classes. The classifi-
values was observed for the polynomial SVM. For the RBF cation of a patterx is performed according to maximal value
SVM, the resulting improvements in the average sensitivity of the functionsf,(x), i.e., the label ofx is computed as
and specificity values were found to be by 1 and 3.5%, re- arg max,.k fm(X). The development SVM algorithms for mul-
spectively. This highlights the built-in capability of the SVM ticlass classification is underway in our group. Here, the po-
to sidestep overfitting to a large extent, despite the fact that it tential of the SVM to simultaneously classify spectral data
was trained on a set of training data where the number of into more than two classes comprising patients with various
features is large compared to the size of training pattérns kinds of lesions of the oral cavity, for example, leukoplakia,
erythroplakia, etc., in addition to cancerous and noncancerous
tissues will be explored.

1.0] Note also here that the development of diagnostic algo-
’ oA - rithms described here was based on spectral data from pa-
0.8 l,..a---"" tients who belonged to a high-risk populatigmere suspected
£ 06 e FID
= 0.4 —o— Linear SVM .
g g —+— Polynomial SVM Table 8 Area under the ROC curve values corresponding to the four
2 52 —o— RBFSVM diagnostic algorithms tested on the validation data set with optimal
subset of features.
0.0
00 02 04 06 08 10 FLD  Linear SYM  Polynomial SYM  RBF SVM
1 - specificity
Fig. 10 ROC curves for different diagnostic algorithms based on SVMs ﬁ\roeg zﬂie; the  0.71 0.90 0.94 0.96

(linear, polynomial, and RBF) and FLD.

Journal of Biomedical Optics 024034-12 March/April 2005 + Vol. 10(2)



Support vector machine . . .

of having SCC on visual examinatiprirhis patient selection
criteria might influence the sensitivity and specificity values
obtained in this study. However, the motivation for this work

was to compare the relative performance of the different types 11.

of diagnostic algorithms using the same spectral data set from
the same population of patients. The patient selection criterion
is unlikely to influence this comparison.

5 Conclusions

The application of an integrated framework of the SVM and
RFE for discrimination of early squamous cell carcinoma

from the normal squamous tissue sites of the oral cavity was 13-

reported. The flexibility of the framework of the SVM-RFE
algorithm makes it convenient to conduct feature extraction
and classification jointly, leading to improved classification

results. Both linear- and nonlinear-SVM-based diagnostic al- 14

gorithms were developed using spectral data acquired in a
clinical in vivo LIF study conducted on patients being
screened for cancer of the oral cavity and normal volunteers.

The relative diagnostic performances of the algorithms have 1°:

been evaluated and also compared with that of the classical
FLD and PCA-based algorithms. The results show signifi-

cantly improved classification performance of the integrated 16.

SVM-RFE algorithms as compared to both FLD and PCA-
based algorithms.
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