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Summary

Knowledge of the three-dimensional structure of a protein is essential for describing and understanding
its function. Today, a large number of known protein sequences faces a small number of identified
structures. Thus, the need arises to predict structure from sequence without using time-consuming
experimental identification. In this paper the performance of Support Vector Machines (SVMs) is com-
pared to Neural Networks and to standard statistical classification methods as Discriminant Analysis
and Nearest Neighbor Classification. We show that SVMs can beat the competing methods on a dataset
of 268 protein sequences to be classified into a set of 42 fold classes. We discuss misclassification with
respect to biological function and similarity. In a second step we examine the performance of SVMs if
the embedding is varied from frequencies of single amino acids to frequencies of tripletts of amino
acids. This work shows that SVMs provide a promising alternative to standard statistical classification
and prediction methods in functional genomics.
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1. Introduction

Even the complete knowledge of the genomic sequence is only the first step to-
wards an understanding of how an organism develops and functions. The next key
landmark is an overview of the characteristics and activities of the proteins en-
coded in the genes. The function of a protein largely depends on its structure
which itself depends on the protein sequence. Therefore understanding and pre-
dicting how protein sequence information translates into three-dimensional protein
structure and folding has become one of the most challenging open questions of
current molecular biology. Only a small percentage of proteins for which the se-
quence is known could be explored for their tree-dimensional structure by physi-
cal methods and there is a large gap between the number of known protein se-
quences and the number of identified structures (Edler and Grassmann, 1999).
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Methods of statistical classification can help to bridge this gap. Unlike methods
that try to find the 3D structure of a new protein sequence by aligning it to a
protein with given structure (e.g., by homology modeling for closely related se-
quences or threading methods for more distantly related proteins), discriminative
methods of machine learning and statistics have been used to recognize the fold
class of a protein from its amino acid sequence (Grassmann, Reczko, Suhai, and
Edler, 1999; Edler, Grassmann and Suhai, 2001; Cai, Liu, Xu, and Zhou,
2001; Ding and Dubchak, 2001; Leslie, Eskin, and Stafford Noble, 2002).
These previous investigations either concentrated on statistical or on machine
learning methods and did not compare both approaches.
In this paper, we compare Support Vector Machines to various other methods

from machine learning and statistics (Section 3.1). For comparison to previous re-
sults, we embed the proteins by their dipeptide-frequencies. We investigate the biolo-
gical background of misclassifications in section 3.2. In a further step we address the
question, how the choice of an embedding influences the performance of SVM.
Therefore we try SVM with various kernels on different embeddings in section 3.3.
During our investigation of SVMs we also realized that this machine learning

method is not well known in the biometrical community although it has a strong
theoretical foundation as an optimization procedure applicable to high dimensional
data. Therefore we found it timely and justified to draw more attention to this
method and to provide a short outline of the basic elements of SVMs in an appendix.

2. Methods and Materials

2:1 Support vector machines

SVMs were introduced by Vladimir Vapnik (1995, 1998). In the last two years
very good introductory textbooks were published (Cristianini and Shawe-Tay-
lor, 2000; Schölkopf and Smola, 2002). We will give a short overview of the
main steps in the construction of SVMs in the appendix, focussing on the task to
predict a class label y 2 f"1;þ1g from a pattern vector x 2 Rd. As a software we
used the MATLAB Support Vector Machine Toolbox (Gunn, 1997), which can be
obtained from http://www.kernel-machines.org.

Multiple classes. There are many ways to apply SVMs to n > 2 classes. Most
commonly used is a one-against-all approach, also called winner-takes-it-all.
Every class is separated by a SVM from the pooled datapoints of all other n" 1
classes. To test a new point, one calculates the distance to all n hyperplanes and
assigns it to the class for which it achieves maximum distance. Because of the
high computational cost in our case of 42 classes we decided against using all-
versus-all or unique one-versus-all methods, even if Ding and Dubchak (2001)
show evidence that the generalisation performance can be enhanced by these methods.
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Imbalanced datasets. SVM should be adapted to imbalanced datasets, where
points of one class are much more numerous than points of the other class (Kar-
akoulas and Shawe-Taylor, 1999; Brown et al., 1997). In this situation the cost
of misclassifying a point from the smaller class should be heavier than the cost for
errors on the large class. The basic idea is to introduce different error weigths Cþ

and C" for the positive and the negative class (see Equation (13) in the appendix),
which results in a bias for larger multipliers ai of the ‘critical’ class. This induces
a decision boundary which is more distant from the smaller class than from the
other. As a heuristic to automatically adjust the error weight we chose
Cþ ¼ 1=mþ and C" ¼ 1=m", where mþ and m" are the cardinalities of the two
classes.

2:2 The data set of protein sequences

For training and testing we use the data set of Grassmann et al. (1999), originat-
ing from the Database for Expected Fold-classes (DEF) of Reczko and Bohr,
(1994). In the DEF a sequence of amino acids is assigned a specific fold-class.
According to topological similarities of the backbone a set of 38 fold classes was
defined (Pascarella and Argos, 1992) and later enlarged to 42 classes of tertiary
structure, which are called 42-CAT (Reczko and Bohr, 1994). Grassmann et al.
(1999) also study the classification of protein sequences into the four so called
super secondary classes characterized by the presence and absence of a-helices
and b-sheets in the three-dimensional structure of the protein. The SVM methods
developed above are applicable to this classification task in the very same way
(Markowetz, 2001). In this paper we will report only the results obtained for the
much harder classification into the 42 fold classes, were most of the standard
statistical methods failed.
We chose the same experimental setting as Grassmann et al. (1999). The data

set consists of 268 sequences divided into a training set of 143 and a test set of
125 sequences. This division was done randomly, balanced with respect to the
prior probabilities of the 42 classes. Typical for protein sequence data, there is no
uniform distribution of the classes. A list of all the sequences used can be found
at http://www.dkfz.de/biostatistics/protein/gsme97.html. This webpage also con-
tains a summary of the performance of all statistical classification methods pre-
viously applied to this dataset.

2:3 Data representation

Formally, a protein is a sequence ðs1; . . . ; sqÞ, where each of the si stands for one
of the twenty amino acids. To use SVM, these sequences have to be embedded
into a more regularly defined feature space. A simple embedding is achieved by

Biometrical Journal 45 (2003) 3 379



the relative frequencies of k-tuples of amino acids. This results in a feature space
of dimension 20k. Cai et al. (2001) and Ding and Dubchak (2001) use k ¼ 1, i.e.
the sequences are embedded into R20. Both report that the amino acid composi-
tion is a very effective way to describe protein sequences. But of course the way a
protein folds does not only depend on single amino acids, but on the relationships
between neighbors in the sequence (Branden and Tooze, 1991). Therefore we
investigate the performance of classification methods for bigger values of k.
This is similar to the work of Leslie, Eskin and Stafford Noble (2002). They

design a kernel function that compares the number of k-length contiguous subse-
quences in two protein sequences. In our terminology: they embed the protein
sequences by the frequencies of k-tuples of amino acids into a 20k-dimensional
vector space and then use a dot product in this space. Our approach differs in two
important aspects: first, we use relative frequencies to take into account the un-
equal lengths of the sequences, and second, we not only use dot products on the
embedded proteins but also higher degree polynomials and radial basis function
kernels.

3. Results

3:1 Comparison of SVM to other classification methods

In (Grassmann et al., 1999) several statistical methods are used on the training
data embedded by dipeptide frequencies: Feed Forward Neural Networks (NN),
Additive Model BRUTO, Projection Pursuit Regression (PPR), Linear Discrimi-
nant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Flexible Discrimi-
nant Analysis (FDA) and the k-Nearest-Neighbor Rule (kNN). We compare these
methods to SVM in three ways: the error on the training set, the error on the test
set and the ten-fold cross-validation error (CV(10)). Classification methods usually
break down in very high dimensions (“curse of dimensionality”). Therefore,
Grassmann et al. (1999) preprocessed the data by Principal Component Analysis.
Please note, that we do not need to use any dimension reduction in SVM.
The left half of Table 1 shows the results of the classification methods used by

Grassmann et al. (1999). The best results are 28.8% test error by a Neural Net-
work with 9 hidden layers and 30.2% cross-validation error by Linear Discrimi-
nant Analysis. The right half of Table 1 summarizes the results of support vector
classification. The width of the rbf kernel is chosen as the median of the inter-
class distances (Jaakkola, Diekhans and Haussler, 2000). The first observations
is that the linear poly1-SVM shows excellent performance. With 28.8% test error
it is as good as NN(9) and with 29.1% CV error it is even better than LDA. The
rbf-SVM shows the best error rate of 23.2% on the test set, but this success does
not show in cross-validaton, where rbf-SVM has an error of 30.2%. The poly2-
SVM and poly3-SVM exhibit only slight differences on the test set (32% and
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32.8%). For the polynomial SVM there are no great differences between the per-
formance on the test set and the behaviour in 10-fold cross validation. In this case
the test error seems to be a reliable estimate of generalization ability. rbf-SVM
shows a large gap between test error and CV(10). The low test error of 23.2% has
to be attributed to the choice of the test set and not to the generalization ability of
the Support Vector Machine. The fluctuations in the training error in the case of
polynomial SVMs are due to the fact, that the use of kernel mappings in the
construction of SVM (see the Appendix for details) results in non-nested model-
ing.

3:2 Confusion matrices and biological interpretation

In protein fold classification one is usually not only interested in the number of
misclassifications but also in the pattern of classification errors. Are all errors uni-
formly distributed among the 42 classes, or are some classes more likely to be
falsely predicted than others? This question is answered by the construction of a
so called Confusion Matrix. This is a matrix M ¼ ðmijÞ with entries
mij ¼ #f x : x is predicted as class i and truely belongs to class jg:
We built confusion matrices for poly1-SVM and rbf-SVM based on the output

of CV(10). The most striking feature in both matrices is the high frequency of
misclassifications into class 22 and class 29. As an example we show the confu-
sion matrix of poly1-SVM in Figure 1.
To gain insight into the attractiveness of classes 22 and 29 for misclassifica-

tions, we investigate the biological properties of the according proteins. Why
are so many sequences falsely predicted as belonging to class 22 or 29? Why
are the sequences of class 29 very well recognized by Support Vector Ma-
chines, while more than half of the sequences in class 22 are misclassified
themselves?
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Table 1

Results of classification methods (embedding by dipeptide frequencies). k-Nearest-Neighbor
(kNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Neur-
al Networks (NN) and Projection Pursuit Regression (PPR) are compared to Support Vector
Machines with radial basis kernel (rbf: s chosen as the mean of the inter-class distances)
and polynomial kernel of degree 1, 2, 3 (poly1, poly2, poly3). The best results on the test
set and in cross-validation are emphasized both for the the competing methods and for
SVMs

Error kNN LDA QDA NN(0) NN(5) NN(9) PPR rbf poly1 poly2 poly3

train 0 0 0 9.8 11.2 2.1 >50 0 0 4.2 1.4
test 33.6 34.4 38.2 39.2 36.8 28:8 >50 23.2 28.8 32 32.8
CV 34.0 30.2 38.4 36.9 38.8 32.5 >50 30.2 29.1 35 34.2



Class 22: TIM Barrels. The barrel structure is distinguished by a core of
eight parallel b-strands arranged closely together, like staves, into a barrel
(Scheerlinck et al., 1992). The b-strands are connected by a-helices, all lying
on the outside of this barrel. This structure is called a TIM barrel, because it
was first observed in the enzyme triosephosphate isomerase. The eight-stranded
a=b-barrel structure is one of the largest and most regular of all protein do-
main structures. It has been found in many different proteins with completely
different amino acid sequences and different functions. The sequence similiarity
is generally poor among these proteins. This suggests that the eightfold a=b-
barrel could be a rather nonspecific stable motif that is quite tolerant to se-
quence variations and onto which different functionalities can be designed. The
low sequence similiarity between barrel proteins also gives a reason for the
observed misclassifications. Class 22 is very heterogeneous, containing an mul-
titude of diverse sequences. This explains why its elements are often misclassi-
fied. In addition, the diversity of barrel sequences explains the high number of
false positives: the hyperplanes at the boundary of class 22 are chosen to em-
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Fig. 1. Confusion Matrix of poly1-SVM. Notice the numerous misclassifications in class 22 (31 false
positives, 4 false negatives, 3 true positives) and class 29 (23 false positives, 1 false negative, 15 true
positives)



brace much volume and this often causes sequences from other classes to fall
into this space where they do not belong.

Class 29: Virus Capsid Proteins. Viruses are maybe the simplest form of life.
They are constructed from two basic components: a genomic nucleic acid mole-
cule, which is surrounded by a protein shell, a capsid (and sometimes by an addi-
tional envelope) (Branden and Tooze, 1991). No nucleic acid can code for a
single protein molecule that is big enough to enclose it. Therefore, the protein
shell of a virus is built up from many copies of one or a few polypeptide chains.
Consider as an example the shell of picorna viruses. It is a spherical construction
of 60 copies each of four polypeptide chains, called VP1 to VP4. The first three
chains VP1, VP2 and VP3 are the main building blocks, whereas VP4 is much
smaller and can be considered as a continuation of VP2 that has become detached.
The three subunits VP1, VP2 and VP3 exhibit no significant amino acid sequence
similiarity. So here again we encounter a class of proteins belonging to the same
folding class but with great differences on the sequence level. As in the case of
TIM barrels, this explains the extent and diversity of the class, which in turn
results in many false positives. In contrast, the same subunit from different picor-
na viruses show a high rate of sequence identity, for example 30% for VP2 from
Mengo virus and rhinovirus. Roughly speaking, the whole class is divided into
three clusters according to the three protein subunits. This explains the high num-
ber of true positives: every sequence in the test set has nearly related sequences in
the training set.

3:3 Influence of neighborhood relations between amino acids

In Section 3.1 we fixed the embedding of the protein sequences to dipeptides
(k ¼ 2) for the comparison between the different classification methods and found
that SVM achieved a new record performance on the data set. Our next question
is this: how does the performance of SVM depend on the embedding of the data?
In other words: How big is the influence of neighborhood relations between ami-
no acids on the performance of SVM? Since we have no data from the competing
methods, we can only compare the behaviour of SVM for different choices of the
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Table 2

Comparison of 10-fold Cross Validation error for different embeddings of the protein se-
quences: amino acid frequencies (1-tuple, R20Þ, dipeptide frequencies (2-tuple, R400) and
tripeptide frequenices (3-tuple, R8000Þ

CV(10) rbf poly1 poly2 poly3

k ¼ 1 29.5 46.6 52.2 59.3
k ¼ 2 30.2 29.1 35 34.2
k ¼ 3 22.4 23.5 22.8 22.8



kernel function. Table 2 shows the CV(10) error for k ¼ 1; 2; 3. We did not try
k ¼ 4 because this would result in separating 268 data points in a space of dimen-
sion 204 ¼ 160 000, which we do not think to be reasonable. Also, Leslie et al.
(2002) report performance decreasing for k ¼ 4.
The combination of a SVM with radial basis kernel and an embedding by 3-

tuples achieves almost 8% less cross validation error than LDA with an embed-
ding by dipeptides (as shown in Table 1). If the size of the tuples increases from 1
to 3, more information is contained in the embedding and we expect the error
rates to improve. In all polynomial kernel SVM this can clearly be seen, while the
rbf-SVM has almost the same CV(10) error for data embedded by single or pairs
of amino acids. Generally, the gap between k ¼ 1 and the k ¼ 2 is bigger than the
gap between k ¼ 2 and k ¼ 3. We conclude that SVM mainly learn the amino
acid frequencies, including information about the direct neigborhood improves the
results, but further information about more distant neighborhood relations has less
impact on the classification. Whether this is a biological property of protein folding
or a property of the predictive power of SVM remains open to further research.

4. Discussion

Excellent performance in very high-dimensional spaces. Our results show that
SVMs are able to achieve high performance in spaces where many other methods
break down. The competing methods could achieve their best results only after
reducing the dimensionality by Principal Component Analysis, while SVMs in-
crease generalization performance even in an 8000 dimensional input space.

SVM outperform classical methods. The ability of SVMs to handle high dimen-
sional data leads to classification results surpassing those of the competitors. Even
when the sequences were embedded by their dipeptide-frequencies, the error rates
were better than those achieved with the classical methods, but the real power of
SVMs shows in the embedding by the frequency of 3-tuples of amino acids.
While classical methods break down in these high dimensions, SVMs reduce the
error in cross validation to roughly 22–23%.
Our experiments confirm the results of (Cai et al., 2001) and (Ding and Dub-

chak, 2001) who also report higher accuracy of SVMs as compared to Neural
Networks. Ding and Dubchak (2001) obtain their results on 27 protein folding
classes, whereas Cai et al. (2001) only compare four classes. Because of these
different experimental setups, we see the need to identify benchmark datasets for
statistical protein fold class prediction to achieve a more thorough comparison of
prediction methods.

Data representation. Our results indicate that incorporating neighborhood rela-
tions into the embedding of protein sequences (k > 1) is more advantageous than
just using the amino acid composition (k ¼ 1). For large values of k efficient ways
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to calculate the kernel function have to be found and one always has to bear in
mind the immense dimension of the input space for k > 3. Further research is
needed to evaluate more complex representations of the protein sequences, e.g. by
allowing gaps in the embedding. Protein folding is a biological problem, thus
every choice of an embedding has to be backed up by sound biological reasoning.
We are convinced that the combination of state-of-the-art classification methods
with a biologically sensible data representation will help to answer important ques-
tions in functional genomics.
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Appendix: Construction of Support Vector Machines

In the following we give a short and comprehensive outline of the basic theory
and construction of SVMs. For details we refer to the textbooks cited in Section
2.1. In the last few years SVMs proofed excellent performance in many real-world
applications such as analysis of microarray data, text categorisation, hand-written
character recognition, image classification or biological sequence analysis. An al-
most complete listing of all applications can be found in the publications section
of www.kernel-machines.org.
SVMs are a method of supervised learning. The statistical task is to predict a

class label y 2 f"1;þ1g from the information stored in pattern vectors x 2 Rd

after building the classifier on a training set with known labels. SVMs combine
two concepts: Optimal margin hyperplanes and kernel mappings.

Optimal Margin Hyperplanes

Consider a set of training examples

X ¼ fðx1; y1Þ; . . . ; ðxl; ylÞ : xi 2 Rd; yi 2 f"1;þ1g; i ¼ 1; . . . ; lg ; ð1Þ

where the xi are real d-dimensional pattern vectors and the yi are dichotomous
labels. The set (1) is called separable by the hyperplane H ¼ fx 2 Rd j hw; xi
þ b ¼ 0; w 2 Rd; b 2 Rg if there exist both a unit vector w ðkwk ¼ 1Þ and a
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constant b such that the inequality

yiðhw; xii þ bÞ " 1 & 0 i ¼ 1; . . . ; l : ð2Þ
holds, where h', ' i denotes the inner product in Rd. The hyperplane H defined by
w and b is called a separating hyperplane. The margin giðw; bÞ of a training point
xi is defined as the distance between H and xi:

giðw; bÞ ¼ yiðhw; xii þ bÞ : ð3Þ
The margin gSðw; bÞ of a set of vectors S ¼ fx1; . . . ; xng is defined as the mini-
mum distance from H to the vectors in S:

gSðw; bÞ ¼ min
xi 2S

giðw; bÞ : ð4Þ

The Optimal Margin Hyperplane is the separating hyperplane achieving maximal
margin of separation on the training set X . It is the solution of the optimization
problem

maximize gXðw; bÞ
subject to gXðw; bÞ > 0 and kwk2 ¼ 1 :

(5)

Equivalently (Schölkopf and Smola, 2002, p. 196) for i ¼ 1; . . . ; l

minimize 1
2 kwk

2

subject to yiðhw; xii þ bÞ " 1 & 0 :

(6)

This optimization problem can be solved by finding the saddle point of the primal
Lagrangian

LPðw; b;aÞ ¼ 1
2 kwk

2 "
Pl

i¼1
ai½yiðhw; xii þ bÞ " 1) ; ð7Þ

where ai & 0 are the Lagrange multipliers. The Lagrangian LPðw; b;aÞ has to be mini-
mized with respect to the primal variables w and b and maximized with respect to the
dual variables ai. The dual problem is to find multipliers ai which solve the problem

maximize LDðaÞ ¼
Pl

i¼1
ai " 1

2

Pl

i; j¼1
aiajyiyjhxi; xji ;

subject to ai & 0 8i ; and
Pl

i¼1
aiyi ¼ 0 :

(8)

The construction of the Optimal Margin Hyperplane amounts to maximizing LD
with respect to the ai, subject to (2) and positivity of the ai. Denote the solution
by a*i, then we obtain

w* ¼
Pl

i¼1
a*iyixi : ð9Þ

The solution ðw*; b*Þ of (6) fulfills the Kuhn-Tucker complementarity condition

aiðyiðhw*; xii þ b*Þ " 1Þ ¼ 0 8i : ð10Þ
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Notice that for a given training point xi either the corresponding Lagrange multi-
plier ai equals zero, or xi lies on one of the margin hyperplanes

H1 ¼ fx :hw*; xi þ b* ¼ þ1g or H2 ¼ fx : hw*; xi þ b* ¼ "1g ;

containing the training points with the minimal distance to the Optimal Margin
Hyperplane. The vectors on H1 or H2 with ai > 0 are called Support Vectors
(SV). The complementarity condition (10) is used to compute the offset b*:
choose any i for which ai 6¼ 0; then (2) becomes an equality from which b* can
be computed. The predicted label of a new test point x is the output of

f ðxÞ ¼ sign ðhw*; xi þ b*Þ ¼ sign
P#SV

i¼1
aiyihxSVi ; xi þ b*

! "
; ð11Þ

where signð'Þ denotes the sign function with values in fþ1;"1g. Next we show
how a separating hyperplane can be adapted to the case of linear non-separable
datasets. Therefore, the separability constraints (2) are relaxed by introducing mis-
classification penalties xi ði ¼ 1; . . . ; lÞ:

yiðhw; xii þ bÞ " 1þ xi & 0 i ¼ 1; . . . ; l : ð12Þ

If xi & 1 then xi is misclassified; if 0 < xi < 1, then xi is classified correctly, but
lies inside the margin; and if xi ¼ 0, then xi is classified correctly and lies outside

the margin or on the margin boundary.
Pl

i¼1
xi is an upper bound on the number of

training errors. The minimization problem is changed to

minimize 1
2 kwk

2 þ C
Pl

i¼1
xki

subject to yiðhw; xii þ bÞ " 1þ xi & 0 and xi & 0 ;

(13)

where the error weight C has to be chosen e. g. by cross-validation. For k ¼ 1,
the primal Lagrangian for this problem becomes

LPðw; b; x;a; bÞ ¼ 1
2 kwk

2 þ C
Pl

i¼1
xi "

Pl

i¼1
aiðyiðhw; xii þ bÞ " 1þ xiÞ

"
Pl

i¼1
bixi ð14Þ

with ai & 0 and bi & 0. The bi are the Lagrange multipliers introduced to enforce
xi & 0. This results in the following dual formulation:

maximize LDðaÞ ¼
Pl

i¼1
ai " 1

2

Pl

i; j¼1
aiajyiyjhxi; xji

subject to 0 * ai * C 8i and
Pl

i¼1
aiyi ¼ 0 :

(15)
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The only difference to (8) is that the Langrange multipliers have an upper
bound of C. Non-zero xi only occur for ai ¼ C. Pattern vectors xi for which
0 < ai < C lie on one of the two margin hyperplanes H1 or H2.

Kernel mappings

The optimal separating hyperplane obtained by solving the margin optimization prob-
lem (5) is a simple special case of a SVM. We will now show how this concept can
be enhanced to more complex nonlinear classifiers. By the use of kernel functions
the pattern vectors x 2 Rd are mapped to a high dimensional space H and separated
there by a linear classifier. This results in a classifier nonlinear in Rd.

Kernel functions. Given a mapping F : Rd ! H from input space Rd to an (inner
product) feature space H, the function k : Rd +Rd ! R is called a kernel func-
tion, iff for all x; z 2 Rd

kðx; zÞ ¼ hFðxÞ; FðzÞiH : ð16Þ
The kernel function behaves like an inner product in H, but can be evaluated as a
function in Rd. Choosing a kernel-function will implicitly define a mapping F.
Most commonly used are

polynomial kernels kðx; zÞ ¼ ðhx; zi þ 1Þp and ð17Þ

radial basis function kernels kðx; zÞ ¼ exp ð"kx " zk2=2s2Þ ; ð18Þ
where the parameters p & 1 (degree of polynomial) and s > 0 (width of rbf) are
to be chosen by the user. All kernel functions have to fulfill Mercer theorem (see
Cristianini and Shawe-Taylor, 2000, p. 33).
A Support Vector Machine then is the Optimal Margin Hyperplane combined

with the kernel-induced mapping to a high dimensional feature space. This can be
easily incorporated into (15) by substituting the inner product h'; 'i with the kernel
function kð'; 'Þ: to construct a SVM we have to solve the optimization problem

maximize LDðaÞ ¼
Pl

i¼1
ai " 1

2

Pl

i;j¼1
aiajyiyjkðxi; xjÞ

subject to 0 * ai * C 8i and
Pl

i¼1
aiyi ¼ 0 :

(19)
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