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J. von Frese,c§ W. Köhler,f J. Schmitt,e R. Somorjai,d T. Udelhoven,e S. Verzakovc} and

W. Petrich*b

a Veterinary Laboratory Agency, TSE Molecular Biology Department, Weybridge, UK

KT15 3NB
b Roche Diagnostics GmbH, Sandhofer Str. 116, 68305 Mannheim, Germany.

E-mail: wolfgang.petrich@roche.com; Fax: 149 621 759 8673; Tel: 149 621 759 8324
c Westfälische Wilhelms-Universität, Institut für angewandte und analytische Chemie,

Korrenstr. 30, 48149 Münster, Germany
d National Research Council Canada, Institute for Biodiagnostics, 435 Ellice Avenue,

Winnipeg, Manitoba R3B 1Y6, Canada
e Synthon GmbH, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
f Baseline GbR, Sophienstr. 56, 60487 Frankfurt, Germany

Received 11th June 2004, Accepted 29th June 2004

First published as an Advance Article on the web 7th September 2004

Signatures of Bovine Spongiform Encephalopathy (BSE) have been identified in serum by means of

‘‘Diagnostic Pattern Recognition (DPR)’’. For DPR-analysis, mid-infrared spectroscopy of dried films of 641

serum samples was performed using disposable silicon sample carriers and a semi-automated DPR research

system operating at room temperature. The combination of four mathematical classification approaches

(principal component analysis plus linear discriminant analysis, robust linear discriminant analysis, artificial

neural network, support vector machine) allowed for a reliable assignment of spectra to the class ‘‘BSE-

positive’’ or ‘‘BSE-negative’’. An independent, blinded validation study was carried out on a second DPR

research system at the Veterinary Laboratory Agency, Weybridge, UK. Out of 84 serum samples originating

from terminally-ill, BSE-positive cattle, 78 were classified correctly. Similarly, 73 out of 76 BSE-negative

samples were correctly identified by DPR such that, numerically, an accuracy of 94.4 % can be calculated. At a

confidence level of 0.95 (a ~ 0.05) these results correspond to a sensitivity w 85% and a specificity w 90%.

Identical class assignment by all four classifiers occurred in 75% of the cases while ambiguous results were

obtained in only 8 of the 160 cases. With an area under the ROC (receiver operating charateristics) curve of

0.991, DPR may potentially supply a valuable surrogate marker for BSE even in cases in which a deliberate

bias towards improved sensitivity or specificity is desired. To the best of our knowledge, DPR is the first and—

up to now—only method which has demonstrated its capability of detecting BSE-related signatures in serum.

Introduction

Sponge-like modifications of brain tissue are the main patho-
logical characteristics of a family of diseases, collectively
known as Transmissible Spongiform Encephalopathies (TSE)
(see e.g. refs. 1–3). Scrapie was the first example identified
within this group of diseases, reported in sheep almost 300 years
ago. Besides scrapie, other forms of TSE are known today,
such as Kuru, Gerstmann–Sträussler–Scheinker Syndrome,
Fatal Familiar Insomnia, and Creutzfeldt–Jakob Disease in
humans or Bovine Spongiform Encephalpathy (BSE), Chronic
Wasting Disease, Feline Spongiform Encephalopathy and
Transmissible Mink Encepahlopathy in cattle, deer, cats and
mink, respectively. Since changes of the Prion protein from

PrPc (c: cellular) to PrPsc (sc: scrapie) were directly linked to
TSE,4 the disorders are often called Prion diseases.

In 1986 an epidemic broke out within the cattle population
of the UK and to date more than 180,000 cases of BSE have
been reported worldwide.1–3 Many countries have implemented
BSE screening and testing programs for cattle, in which PrPsc

is detected post-mortem in brain tissue, e.g. by means of the
Prionics Check testing.

Despite the success of post-mortem testing of BSE-infected
brain tissue, a test for the living cattle population remains
highly desirable. Such a living animal test would probably be
based on fluid samples such as cerebrospinal fluid, blood,
serum or urine. Signatures specific to TSE have recently been
detected in the serum of artificially infected hamsters5 and,
during a field study, of cattle6 using mid-infrared spectroscopy
and multivariate data analysis methods.

Mid-infrared spectroscopy plays an increasing role in bio-
medical research.7–9 It has been shown that the interpretation
of mid-infrared spectra of serum in terms of particular diseases
allows for the identification of disease-specific signatures
e.g. for diabetes mellitus,10,11 the metabolic syndrome12 or
rheumatoid arthritis.13 Throughout this paper we refer to this
combination of the spectroscopy of molecular vibrations and
multivariate classification algorithms as ‘‘Disease Pattern
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Recognition’’ or ‘‘Diagnostic Pattern Recognition’’ (DPR).10–14

The DPR-method yields a number between 1 and 0 (‘‘DPR-
score’’) which relates to the likelihood of a spectrum resembling
typical spectra of serum from donors, who either do or
don’t suffer from the particular disease under investigation,
respectively.

Along the path of the DPR-method from academic research
laboratories to routine use, improvements in convenience
(e.g. room temperature operation, simplified sample and data
logistics) and robustness of the DPR-method play a key role. In
this paper we present the application of DPR to the detection
of BSE-specific signatures in bovine serum with emphasis on
the applicability to daily routine. Based on the pioneering work
of Lasch et al.6 further progress has to target the following
issues:
. The experimental precedure requires simplification and

improved convenience (no repeating of measurement, through-
put of at least 80 samples per day, single operator only, may be
operated by spectroscopically unexperienced users).
. In order to avoid time-consuming washing cycles and due

to the infectious nature of BSE, disposable sample carriers need
to replace the repetitively cleaned ZnSe sample carrier used in
ref. 6.
. The robustness of classification needs to be investigated

and classification methods have to be compared in order to
choose the optimum method and/or the optimum combination
of methods.
. Given the high accuracy of the presently available post-

mortem tests, further improvement of the overall accuracy of
the ante-mortem method is required.
. In some application scenarios, sensitivity is more important

than specificity. Thus, the possibility to bias the testing towards
higher sensitivity at the expense of specificity needs further
investigation.

Experimental

A total of 641 serum samples were acquired from confirmed
BSE-positive or BSE-negative cattle by the Veterinary
Laboratory Agency (VLA), Weybridge, UK and from BSE-
negative cattle of a commercial abattoir in southern Germany.
All 210 BSE-positive samples were obtained by VLA and
originated from cattle in the clinical stage, i.e. the animals
showed clinical signs of BSE and were subsequently shown
to be BSE-positive by histopathological examination. As a
reference, 211 BSE-negative samples from the VLA were
augmented by 220 BSE-negative samples obtained from a
German abbattoir. All of the BSE-negative samples originated
from animals which were not suspected to suffer from BSE.
However, approximately 1/3 of the confirmed BSE-negative
samples originated from farms at which at least one case of
BSE-infection had occurred.

After thawing, 3 ml of each sample were pipetted onto each of
three disposable silicon sample carriers using a modified
COBAS INTEGRA 400 instrument., Each sample carrier
carried up to 89 samples. The triplicate pipetting allowed for
the improved detection of failures or outliers, which may occur
due to variations in the surface properties of the sample carrier,
the dispensing probe head, and/or the sample itself. After
pipetting, the samples were left to dry in the analyser for 30 min.
The drying stage helps to suppress the strong absorption
background of water which usually exists in aqueous fluids and
which frequently hampers the reproducible spectroscopy in the
mid-infrared region. Upon drying, the serum sample forms a
homogenous film with a diameter of 6 mm and a thickness of a
few micrometers. The film thickness has been optimized to give

reasonably large infrared absorbance signals in the spectral
regions of interest while simultaneously staying well within the
minimum volume capabilities of the liquid handling system.

Spectra were measured using a Matrix HTS/XT spectro-
meter (Bruker Optics GmbH, Ettlingen). Spectroscopy is per-
formed in transmission using a DLaTGS detector, which in
contrast to MCT detectors can be operated without liquid
nitrogen cooling. Avoiding the need for liquid nitrogen cooling
has indeed been one of the major requirements in terms of
convenience and user-friendliness. Each spectrum was recorded
in the wavenumber range from 500–4000 cm21 and consisted of
3629 data points. Spectra were acquired at a resolution of
4 cm21 and averaged over 32 scans. Blackmann–Harris 3-term
apodization was used and the zero filling factor was 4. The
three absorbance spectra of each sample measurement were
corrected for the sample carrier background. Automation
allowed for routine triplicate measurement of 89 samples per
day with one operator.

For teaching, 96 BSE-positive (VLA) and 325 BSE-negative
(VLA: 105; German abattoir: 220) samples were measured on a
DPR research system in the laboratories of Roche Diagnostics
GmbH. A second system was placed at the VLA, and 60
additional serum samples (30 BSE-positive, 30 BSE-negative)
of the VLA archive were measured on this system. The
corresponding spectral and sample information was also used
for teaching the classification algorithms.

Four different approaches were investigated for teaching.
Each approach started with a data reduction step, which aimed
at the selection of those spectral regions, which are suited for
the discrimination between spectra originating from BSE-
positive samples versus spectra from BSE-negative samples. A
classification algorithm was then trained using the reduced data
set, namely a linear discriminant analysis (LDA) based on
principal components, a robust linear discriminant analysis
(R-LDA, see e.g. ref. 13), an artificial neural network (ANN,
see e.g. refs. 5, 6 and 15) and a support vector machine (SVM,
see e.g. refs. 16–18). To the best of our knowledge this is the
first time that an SVM classification algorithm is applied and
compared to other classification methods in the context of
vibrational spectroscopy.

When training the classifier algorithms, it is important
to know that variances between the spectra may be influenced
by covariates other than the disease state, such as gender,
breed, system-to-system variation, etc. Thus, it was helpful
to employ a cascade of classification steps within each
approach prior to finally performing the discrimination
between BSE-positive and BSE-negative. This multilayered/
stacked classification has previously been described e.g. in the
context of microbiology.15,19

Finally, the results of the four approaches for differentiating
between BSE-positive and BSE-negative serum samples
were combined by means of a voting scheme. The combined
classifier assigned the sample under investigation to BSE-
positive if two or more of the classifiers were positive and
assigned a sample to BSE-negative if none of the approaches or
only one of them indicated BSE-positive. As an alternative to
the voting scheme, the individual DPR scores were arithme-
tically averaged to give a DPR-score of the combined classifier.

After the teaching was finished, the classifier software was
installed at the VLA system and 160 serum samples (released by
an independent audit committee, the IAAG, from the VLA
data bank) were run through the system in a blinded manner.
Note that these samples had not been subject to any DPR
investigation before and the individual diagnoses were not
known to the operators at the time of the spectral measurement
and subsequent analysis. During each measurement, the result
of the classification of each validation sample (class assignment
based on voting scheme as well as DPR-score of the combined, COBAS INTEGRA is a trademark of a member of the Roche Group.
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classifier) was calculated on-line and stored with the sample
identification number. After the blinded validation was
finished, the data was compared to the true diagnosis (based
on a post-mortem test of the corresponding brain tissue) and the
comparison was reported to Roche Diagnostics.

Results

Analysis of the variation within the triplicate measurement of
each sample allowed an evaluation of the reproducibility,
which we defined as the (wavenumber dependent) ratio
between the mean absorbance and the reproduction error.
The results shown in Fig. 1 are based on the comparison of the
automated and the manual pipetting of 200 arbitrarily chosen
bovine serum samples from this study and are averaged over
the wavenumber regions 900–1500 cm21 and 2700–3000 cm21.
Here as well as in the other wavenumber regions, automation
of the pipetting step resulted in a significant improvement
(t-test: a ~ 0.05, p v 0.001) of the reproducibility when
compared to manual pipetting (see also ref. 20).

The arithmetic mean of the absorbance is shown in Fig. 2 as
a function of wavenumber after pre-processing of all the 421
sample spectra measured on the first DPR research system. The
relative spectral differences between the spectra of BSE-
positive samples and BSE-negative samples are wavenumber-
dependent and amount to 2% of the mean absorbance or less
for most of the spectrum (see Fig. 2, middle). Since non-
disease-specific variations contribute to the spread of spectral
shapes around a mean value, the ratio between spread and
difference has to be considered on a statistical basis. We have
applied the Mann–Whitney (MW) test as a univariate measure
of deviation at each wavenumber (see lower curve in Fig. 2). At
any given wavenumber, the MW-test gives a value (MW-score)
between 0.5 and 1.0 if the BSE-positive absorbance is more
frequently above the BSE-negative absorbance and a value
between 0 and 0.5 in the opposite case.

The spectral regions selected for classification between BSE-
positive and BSE-negative are shown in Fig. 3 for each of the
four approaches. Although the different spectral windows vary
in number, position and width, some intervals have been selected
by all of the classification approaches (1052 cm21, 1139 cm21,
1312 cm21, 1330 cm21, 1742 cm21, 2884 cm21, and 2942 cm21).

In routine laboratory diagnostics, the quality of a diagnostic
marker is frequently measured by the sensitivity (number of
correctly classified BSE-positive samples divided by the total
number of BSE-positive samples), specificity (number of

correctly classified BSE-negative samples divided by the total
number of BSE-negative samples) and accuracy (number of
correctly classified samples divided by the total number of
samples). The results of resampling are summarized in Table 1
in terms of sensitivity and specificity. Combining the four
classifiers by means of the voting scheme resulted in the correct
classification of 94 out of the 96 BSE-positive and 315 out of
the 325 BSE-negative samples. Numerically this corresponds to
a sensitivity and specificity of 98% and 97%, respectively, and
an acuracy of 97.1%.

After the training of the classifiers had been completed, the
classification algorithms together with the voting scheme were
implemented into the DPR research system at the VLA. 160
unknown bovine serum samples were measured by the VLA
and the DPR-score calculated was displayed on-line and

Fig. 1 Ratio between absorbance and reproduction error for 200
bovine serum samples using manual pipetting and automated pipetting.
Averages of this ratio in the interval 900–1500 cm21 and 2700–
3000 cm21 are given. (lower (upper) symbols of the box-and-whiskers
plot: –: 1% (99%), 6: 5% (95%), whiskers: 10% (90%), box: 25% (75%),
line: 50%, %: arithmetic mean.)

Fig. 2 Mean infrared absorbance spectra of the samples used for
teaching the classifiers (top) together with the relative absorbance
difference D between the BSE-positive and the BSE-negative samples
(middle). The lower part of the figure illustrates the statistical
significance of the spectral differences by means of the Mann–Whitney
score (MW-score). The MW-score equals the area under the ROC
curve for univariate analysis, i.e. if one were to use a single wavenumber
to discriminate between BSE-positive and BSE-negative samples.

Fig. 3 Spectral regions used for classification by means of the linear
discriminant analysis (LDA), the robust linear discriminant analysis
(R-LDA), support vector machine (SVM) and artificial neural network
(ANN).
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recorded for each sample. When all measurements of this
blinded validation were finished, the true sample diagnoses
(based on the post-mortem BSE-test) were unblinded and
compared to the DPR-predictions: The combined classifier
correctly classified 78 out of 84 BSE-positive samples, which
numerically corresponds to a sensitivity of 93%. Furthermore,
73 out of the 76 BSE-negative samples were correctly classified
such that a specificity of 96% can be calculated. Numerically,
the accuracy amounts to 94.4%. The individual classifier results
are summarized in Table 2. When interpreting these values,
however, the low number of samples has to be considered.
Requiring a 95% confidence level (a ~ 0.05) results in a
sensitivity above 85% and a specificity above 90% for the
combined classifier based on the implemented voting scheme.

Analysis of the classification results on the individual sample
level showed that all classifiers gave the identical classification
result (i.e. either BSE-positive or BSE-negative) in 120 cases,
out of which 117 were correct with respect to the true diagnosis
(Table 3). This finding hints towards a sample-specific origin
for misclassification. Only in 8 cases did two classifiers indicate
BSE-positive while the other two indicated ‘‘BSE-negative’’.
Since the voting scheme was deliberately biased towards higher
sensitivity, the samples were assigned BSE-positive by the
combined classifier, while it turned out that 6 out of the 8 cases
were actually BSE-negative according to the post-mortem
diagnosis.

In order to quantify the classification result of each sample, a
combined DPR-score was calculated as the arithmetic mean of
the DPR-scores of those classifiers, which contributed to the

majority decision for the voting scheme (see also Fig. 4). The
combined DPR-score together with the variation of the
threshold value allows for increasing e.g. the sensitivity at
the expense of specificity or vice versa. This interrelation
between sensitivity and specificity is frequently illustrated in the
form of the Receiver Operating Characteristics21 (ROC, see
Fig. 5). As an example, should a sensitivity of 99% be desired,
the threshold value should be lowered to 0.173 (based on the
teaching data), which decreases the specificity to 89% in the
independent validation. The area under the ROC-curve ranges
from 0.5 (worst case) to 1.0 (best case) and may serve as a
measure for marker quality regardless of the particular
threshold value. The area under the ROC-curve amounts to
0.991 for the validation data shown in Figs. 4 and 5.

Discussion

It is the strength of the DPR method that complete under-
standing of the biochemical basis for the changes in infrared

Table 1 Sensitivity and specificity of the different classification
methods in the teaching set. All values were calculated by resubstituting
the teaching spectra. Note that any interpretation of the given numbers
needs to take into account the limited number of samples. Furthermore
the resubstitution procedure is known to overestimate the accuracy of
classification as compared to an independent validation

Method Sensitivity (%) Specificity (%)

Linear discriminant analysis 82 93
Robust linear discriminant analysis 85 97
Artificial neural network 99 97
Support vector machine 98 99

Combined classifier 98 97

Table 2 Sensitivity and specificity of the blinded validation for the
different classification methods. The last row gives the results of the
combined classification based on the voting scheme, in which—after
unblinding—78 out of 84 BSE-positive and 73 out of 76 BSE-negative
samples were identified correctly. Note that any interpretation of the
given numbers needs to take into account the limited number of
samples. Statistical analysis (confidence level: 0.95) shows that the
sensitivity and specificity are larger than 85% and 90%, respectively

Method Sensitivity (%) Specificity (%)

Linear discriminant analysis 82 93
Robust linear discriminant analysis 80 88
Artificial neural network 93 93
Support vector machine 88 99

Combined classifier 93 96

Table 3 Number of samples (BSE-positive or BSE-negative) of
the validation set for which the individual classifiers indicate
‘‘BSE-positive’’

Number of classifiers 4 3 2 1 0

True BSE positive 61 12 2 0 1
True BSE negative 2 4 6 16 56

Fig. 4 Results of the blinded validation of 84 BSE-positive and 76
BSE-negative samples using the combined classifier. The x-axis shows
the combined DPR-score of the different classification approaches (see
text). For a DPR-threshold of 0.5 correct classification was obtained
for 78 BSE-positive and 73 BSE-negative samples.

Fig. 5 Receiver Operating Characteristics (ROC) of the combined
classifier (area: 0,991) applied to blinded validation data (solid line; 84
BSE-positive and 76 BSE-negative samples) and upon resampling
within the teaching set (dotted line; 126 BSE-positive and 355 BSE-
negative samples). The filled circle (triangle) marks that combination of
sensitivity and specificity within the validation (teaching) set, for which
the cut-off in DPR-score is set to 0.5.
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spectra is not required for the classification. However, it is
legitimate to ask for the biochemical interpretation of the
spectral differences observed. Indeed, some of the spectral
regions which allowed for discrimination between BSE-positive
and BSE-negative were identified independently by all four
classifiers. A coarse analysis of the common wavenumbers did
not hint towards identification of a specific biochemical group
of serum components as the source of the discriminatory signal.
Furthermore, the direct detection of conformational changes of
the prion protein can be excluded: firstly, the amide I and
amide II regions were intentionally excluded from the analysis
of the differentiation between BSE-positive and BSE-negative
such that the observed discrimination potential is unlikely to be
based on specific protein signatures. Secondly, the concentra-
tion of prion proteins in serum22–24 is less than 50 ng ml21 and,
hence, well below the mid-infrared detection limit.

In summary, we have shown that the automation of the DPR
process was successfully implemented into a DPR research
system resulting in added convenience, simplified sample and
data logistics and an improvement in reproducibility. The
expensive ZnSe plates (which required washing cycles) were
successfully replaced with disposable silicon sample carriers,
which is particularly useful in an infectious disease environ-
ment. Robustness of the analysis method was enhanced by the
joint application of four classification approaches. To the best
of our knowledge our investigation constitute the first direct
comparison of classification methods—and in particular
SVMs—in the context of DPR. Given the high measurement
reproducibility and the improved stability of analysis, the
independent, blinded validation on a second system served as a
sound proof of the reliability of the DPR method. Further-
more, with 151 out of 160 samples being correctly identified
during the blinded validation, the overall accuracy has
substantially improved to 94.4% as compared to the ‘‘pure
ANN’’ validation results** (84.8% and 89.2%) reported in
ref. 6. Finally, the high value of the area under the ROC curve
of 0.991 shows that the method may deliberately be biased
towards improved sensitivity by changing the cut-off in
DPR-score.

To the best of our knowledge the DPR-method is the only
approach which has been able to reliably identify serum
samples of cattle with BSE-infection up to now. When aiming
to implement the DPR approach into daily routine for BSE-
related investigations, further work has to target the impact of
covariates such as animal breed, gender, medication and nutri-
tion as well as technical aspects like the system-to-system
variation. Furthermore the influence of other diseases (in
particular neurological diseases such as listeriosis) onto the
classification accuracy has to be clarified. Further experiments
should also address the question whether BSE-specific signa-
tures can be identified prior to the onset of clinical symptoms.
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