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Abstract

Advances in modern technologies and computers have enabled digital image processing to become a vital tool in conventional clinical
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ractice, including mammography. However, the core problem of the clinical evaluation of mammographic tumors remains a highly d
ognitive task. In order for these automated diagnostic systems to perform in levels of sensitivity and specificity similar to that of huma
t is essential that a robust framework on problem-specific design parameters is formulated. This study is focused on identifying a
f clinical features that can be used as the base for designing the input of any computer-aided diagnosis system for automatic ma

umor evaluation. A thorough list of clinical features was constructed and the diagnostic value of each feature was verified agai
linical practices by an expert physician. These features were directly or indirectly related to the overall morphological propert
ammographic tumor or the texture of the fine-scale tissue structures as they appear in the digitized image, while others contain

linical data of outmost importance, like the patient’s age. The entire feature set was used as an annotation list for describing
roperties of mammographic tumor cases in a quantitative way, such that subsequent objective analyses were possible. For the pu
tudy, a mammographic image database was created, with complete clinical evaluation descriptions and positive histological ver
ach case. All tumors contained in the database were characterized according to the identified clinical features’ set and the resu
as used as input for discrimination and diagnostic value analysis for each one of these features. Specifically, several standard m
f statistical significance analysis were employed to create feature rankings according to their discriminating power. Moreover, thre
lassification models, namely linear classifiers, neural networks and support vector machines, were employed to investigate the tru
f each one of them, as well as the overall complexity of the diagnostic task of mammographic tumor characterization. Both the
nd the classification results have proven the explicit correlation of all the selected features with the final diagnosis, qualifying t
dequate input base for any type of similar automated diagnosis system. The underlying complexity of the diagnostic task has j
igh value of sophisticated pattern recognition architectures.
2005 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Breast cancer is the most common cancer type and the sec-
nd most common death cause in women in civilized world.

∗ Corresponding author. Present address: 43 Knossou Str., Glyfada 16561,
thens, Greece. Tel.: +30 210 9648663.
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Screening mammography, for detecting early breast can
asymptomatic women, increases the likelihood for cure
long-term survival. However, in cases of indeterminate m
mographic findings, breast biopsy may be required. Avoi
unnecessary biopsies is important due to the discomfort
and probable breast scars inflicted upon the patients, w
may cause diagnostic difficulty in future mammographic
aminations.
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The diagnostic and clinical evaluation of mammographic
images constitutes a difficult and complex cognitive task,
which requires advanced levels of expertise and knowledge
by the trained physicians. Mammographic screening, for the
identification of abnormalities and the pathological char-
acterization of breast tissue, is a visual task that combines
several aspects and X-ray findings, presented in various
areas of the mammographic image, as well as external data
available through each patient’s clinical history. Specific
clinical findings, such as the morphological properties and
fine-scale structural information of the underlying tissue,
are the key factors in characterizing the severity of every
mammographic tumor, i.e., its benign or malignant nature
[1]. Modern computer technology can be used to implement
automatic image processing and analysis of various aspects
of these findings, thus supporting effectively the expert’s
evaluation as a valuable suggestive tool. However, the exact
task of tissue characterization and classification of a tumor,
as probable benign or probable malignant, is extremely
complex and includes advanced inference mechanisms[2,3].
Consequently, computer-aided diagnosis (CAD) systems
focus on specific aspects of the diagnostic process, such
as the identification and analysis of microcalcifications or
the detection of irregular tissue structures, each suggestive
of specific abnormalities[4]. Therefore, it is essential that
these morphological and textural properties are defined in
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type of automated tumor diagnosis system that is based on
morphological, textural or descriptive datasets.

2. Materials and methods

The current study was based on four distinct issues: (1)
create a thorough list of abnormal findings regarding diagnos-
tic evaluation of a mammogram, especially related to image
textural and morphological features of the underlying tissue.
From this list, the most prominent and content-rich features
were to be selected, according to their suitability for auto-
matic extraction through image processing algorithms. (2)
Create a specialized mammographic image database, con-
taining clearly identifiable and histologically verified cases
of benign or malignant tumors. All cases were evaluated and
annotated in relation to the previously defined list of impor-
tant clinical features. (3) Analyze the newly constructed set
of mammographic images in relation to the feature list, focus-
ing especially on investigating the importance, comprehen-
siveness and consistency of each one of these features when
correlated with the verified final diagnosis. (4) Investigate
the performance of individual features, as well as subsets of
combined features, when used as real training datasets for
various classifier architectures, i.e., linear classifiers, neural
networks (NN) and support vector machines (SVM).
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etail as a specific list of qualitative features that can
ormulated into a robust set of corresponding quantita
easurements.
This study focuses on three core issues: (a) to invest

fficient mammographic features, already used in cu
linical practice for the pathological evaluation of ma
ographic tumors, (b) to assess their diagnostic value
bjective statistical and classification methods, and

o formulate a robust quantitative model for using th
s the input for any automated image analysis me
pecifically, a complete and coherent set of clinical feat
as constructed, by exploiting significant patholog

actors, related to mammographic abnormalities and dir
r indirectly suggestive of probable malignant case
reast tumors. The information content of these fea

s related to the mammographic image itself, namely
orphological and textural properties of the tumor’s a
r external data obtained by the patient’s clinical hist
ubsequently, this set of qualitative descriptive estimat
upplied by the expert physician’s subjective evaluation,
uantified and translated into a robust dataset. This da
as used in statistical and classification analysis sche
mploying a wide range of discrimination evaluatio
anging from standard significance tests, to advanced p
ecognition architectures. The results obtained during
nalysis can be used for objective comparative stu
s well as to produce ranking lists of clinical feature
ccordance to their true diagnostic value. These fea
nd their relative discriminative power constitute the in
pecifications and guidelines, which are essential for
.1. Mammographic features list

The first phase of the study included an extensive rese
hrough various aspects of identifying and evaluating nu
us radiologic findings in mammographic images, rel

o benign and malignant abnormalities. The investiga
as conducted by enumerating and documenting al
orphological and textural tissue characteristics, which

ecognized and evaluated by the experts when they co
clinical diagnosis[5–7]. Furthermore, an additional li

f other important features, like patient’s age and clin
ackground, were also included in this list. Some of

eatures, like the presence of suspicious masses or m
alcifications, are normally related directly to abnormalit
hile others, like the exact location and size of the mass
sually evaluated as intermediate suggestive indicatio
enignancy or malignancy[2,3].

The complete list of the 31 features, along with di
ndications of benign and malignant biopsy results, is s

arized inTable 1. The features were grouped in catego
ccording to the general type of abnormality they refe
he “CPU” column refers to the capability of relating
orresponding features to image processing algorit
hich can automatically extract specific content-rela

nformation. Advanced algorithms for automated mam
raphic lesion detection have been proposed, however

evel of sensitivity and specificity, as well as their fine-sc
ccordance to the corresponding expert’s detailed descr
f tumor boundaries, is still under investigation[4,8].
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Table 1
Clinical findings and features normally implicated in mammogram evaluation

Features list Morphological data Textural data Other CPU Doctor

Tumor
Intramammary node

√ √ √
Size (general view)

√ √ √
Inclusion of fat (%)

√ √ √
Degree of irregularity

√ √
Type of irregularity

√ √ √ √
Stellate border

√ √ √
Indistinct border

√ √ √ √
Density (hypo/iso/hyper)

√ √ √
Homogeneity

√ √ √
Location

√ √ √
Diameter

√ √ √
Boundary shape (type)

√ √ √

Microcalcifications
Size of cluster (general view)

√ √ √
Number of elements

√ √ √
Shape of cluster

√ √ √
Variability of size of elements

√ √ √
Irregular shape of elements

√ √ √
Linear or branching elements

√ √ √

Secondary signs
Architectural distortion

√ √
Asymmetric density

√ √ √
Skin thickening or retraction

√ √
Regional calcifications

√ √ √

Previous history
Availability

√ √
comparability

√ √
Existence of abnormality in previous study

√ √

Correlation with clinical findings
Availability

√ √
Correlation: location of clinical findings with radiographic study

√ √
Correlation: size/extent of clinical findings with radiographic study

√ √
Level of suspicion due to clinical findings

√ √

Other data
Age

√ √
Benign/malignant (histological)

√ √

It is obvious that some of the above features, although
very important, are not directly related to the mammo-
graphic image by itself and, thus, they have to be provided
as external annotation data for each case by the physician
[5,6]. Furthermore, not all of them are related to the clinical
characterization of tumors, which is the main concern of the
current study. Subsequently, a robust, content-rich subset
of features was constructed, using selected features that are
highly related to tumor benignancy or malignancy and, at the
same, time refer to textural and morphological characteristics
of the tumor, i.e., to objective image properties. These feature
selections were also based on the general requirement that
the features can be automatically extracted and processed. In
this case, the features that are extracted from the image can
be linked directly or indirectly to morphological or textural
properties of the tissue inside and around the tumor area, as it
appears on the image itself[9–12]. Qualitative or descriptive
features were scaled in numerical ranges or percentages,

in order to acquire quantitative data values. Both the final
feature list selections, as well as the exact quantification
scales, were defined in cooperation with an expert physi-
cian in order to ensure complete and detailed clinical
results.

The final set of nine clinical features was the base for the
annotation list, which was used to describe and document
the expert’s clinical evaluation for each mammographic im-
age in the database. Specifically, (1) thepresence of tumors,
(2) thepresence of microcalcifications, (3) the tumor den-
sity, (4) thepercentage of fatwithin the tumor, (5) thetumor
boundary vagueness, (6) thetumor homogeneity, (7) thetu-
mor morphological shape type, (8) thepatient’s age, as well
as (9) thefinal histologic diagnosis, were included. As the
patient’s age remains a feature of high clinical importance, it
was also included in the final annotation list as a unique “ex-
ternal” data, although it cannot be referred directly from the
mammographic image itself[5,6]. Finally, the morphological
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Fig. 1. Morphological shape type representations of mammographic
tumors.

shape type refers to the classification of the tumor’s shape in
one of four predefined shape categories, related to tumor;s
boundary roughness and stellate or lobulated outline. These
four categories, illustrated inFig. 1, are defined asround,
lobulated, micro-lobulatedandstellate, and their ranking is
directly related to their pathology, from benign to malignant,
respectively[13–16].

These quantified properties are essentially explicit infor-
mation related to specific types of malignant mammogram
abnormalities, including architectural distortion, clusters of
microcalcifications, lobulated or stellate masses, as well as
skin oedema[7]. Thus, the initial annotation list constitutes
a complete dataset that provides significant diagnostic data,
which has been used for further statistical and clustering anal-
ysis. The final annotation list, containing the selected features
and quantification scales, is presented inTable 2.

2.2. Mammographic image database

The second phase of the study included the creation of
a thorough mammographic image database, especially de-
signed to focus on cases of tumor presence with histological
verification as benign or malignant by an expert physician.
The requirement for patient’s clinical history and positive
histological verification of the benignancy or malignancy of
each case was assessed as one of extreme importance fo
t s, a
n case
o lua-
t eral
h ase fo
t eri-
fi The

T
F

Q

P
M
M
F
B
M r)
M
M )/3

H t)

selected subset was constructed in accordance to the gen-
eral requirement for complete and unbiased statistical dis-
tributions over all the radiologic findings investigated in the
study.

The selected mammogram films were digitized at a typical
resolution of 63�m (400 dpi) with 8 b graylevel depth, in
order to retain fine scale textural and structural tissue charac-
teristics. Furthermore, some additional post-processing was
applied uniformly over all the selected images, using opti-
mized unsharp filtering for image enhancement with minimal
spectrum alteration. The resulting images were evaluated and
verified by the expert as acceptable in terms of image quality
and resolution. The final set of 130 images of histologically
confirmed lesions (46 benign and 84 malignant) was used
as the base for all the subsequent analysis presented in this
study, with no reduction in spatial resolution or graylevel
depth.

Subsequently, every mammographic image in the database
was evaluated by two expert radiologists and all the impor-
tant findings were recorded separately for each case, using
the annotation list that was created during the previous phase
of the study. As the tumor’s shape is one of the most impor-
tant morphological properties for clinical characterization, it
was essential that shape type information was provided by
the expert and registered into the annotation list. In addition,
for further morphological and textural analysis capabilities at
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ew, special-purpose image set was assembled, using
f mammographic tumors with complete radiologic eva

ion and histologic diagnosis. The initial set contained sev
undreds standard mammograms and it was used as a b

he final selection of tumor cases with positive clinical v
cation by surgical biopsy and histologic examination.

able 2
inal annotation list and quantification details

ualitative feature Range

atient’s age True age
ass existence Yes/no
icrocalcifications existence Yes/no
at percentage 0,. . ., 100
oundary sharpness 0,. . ., 100
ass density L (hypo)/M (iso)/H (hype
ass homogeneity 1,. . ., 10
ass shape type 1 (round)/2 (lobulated

(micro-lobulated)/4
(stellate)

isologic diagnosis B (benign)/M (malignan
r

s

r

ome later stage, it was crucial that every tumor was cl
escribed and registered by defining its boundary ou

n order to obtain tumor boundaries of high quality and
ail, a manual segmentation was applied. Specifically,
umor was manually described by the radiologists usi
igh-resolution digitizer device and stored as an embe
oundary descriptor via alpha channel data. These bou
escriptions were used for further independent work on
efinition of mass inclusion masks and boundary zone

extural features extraction at these areas of interest.

.3. Statistical analysis

Statistical analysis was conducted on the data obta
hrough the annotation list in three groups: benign cases
ignant cases and all cases. For each of these groups, n
istribution approximation parameters, i.e., mean value
ariance, were calculated and the results were investi
nder statistical significance analysis and projected alia
rrors [17]. Specifically, for mean values calculated se
ately for each case grouping, significance ranges were
ated according to the current group size and variance.

equently, feature distributions for each group were app
ated by normal distributions and the statistical error was

ulated according to the optimal limiting value separating
ifferent classes, i.e., benign and malignant cases, using

ndividual feature. In other words, for every individual feat
ontained in the annotation list, an optimal decision thres
as calculated and the corresponding classification e

or the benign and malignant cases were used as an indi
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Fig. 2. Likelihood probability distributions of tumor boundary sharpness versus diagnosis and the corresponding bimodal normal distribution. Interference
between the two normal distribution curves constitutes the statistical error probability due to aliasing between the two classes. The true aliasingerror was
calculated by applying the specific decision threshold for boundary sharpness indicator in the current set of 130 mammographic images.

measurement of statistical aliasing. As an example, the use of
tumor boundary sharpness, as the sole discrimination feature
for bimodal normal distribution modeling, is illustrated
in Fig. 2.

The features were also processed through Univariate
significance analysis, specificallyT-test [18]. Multivariate
significance analysis was also applied, using the multivariate
analysis of variance (MANOVA) method[19]. In both cases,
every feature was investigated separately under statistical
dependence hypotheses in relation to the diagnosis and
the results formulated a quantitative ranking, regarding the
correlation between each feature and the diagnosis.

2.4. Classification analysis

In order to assess the discriminative power of each one of
the qualitative clinical measurements, several classification
schemes were applied against the verified diagnosis for each
case. Pattern recognition techniques include various types
of decision-theoretic approaches for data analysis and clas-
sification, and have been proven extremely valuable to real
problems of high complexity such as the task of mammo-
graphic diagnosis. In this study, several of the standard linear
and non-linear classifiers were used in order to evaluate both
the true performance of these features, as well as the overall
c

Both linear and non-linear classification architectures
were employed for every dataset configuration. Specifically,
optimization of the best feature set was investigated by ap-
plying exhaustive search through all the combinations of
features, in order to identify the ones that yield maximum
discrimination capability and optimal performance. Fur-
thermore, the performance of each classifier was evaluated
through extensive use ofk-fold cross validation techniques,
specifically leave-one-out and leave-k-out methods[20].

For linear classificationtesting, three standard models
were considered.Linear discrimination analysis(LDA) was
applied in the form of classifier, using iterative subsets of the
initial training set and employing leave-one-out classifica-
tion for every individual pattern in the set[21]. A minimum
distance classifier(MDC) with Mahalanobis distance func-
tion was employed in combination with least-squares data
transformation for better statistical compactness, yielding the
least-squares minimum distance classifier(LSMD) that was
used in this study[18].

Additionally, a typicalnearest neighbor classifierwith
variable neighborhood size (K-NN) was employed, using the
neighborhood sizeK as an optimization parameter[18].

From the various types of typical non-linear classifiers,
two representative neural architectures were considered. A
multi-layered perceptron(MLP) neural network model was
used, using the back-propagation algorithm for training,
omplexity of the problem itself[18].
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employing topology optimization and various choices for the
neuron activation functions, specifically softmax, hyperbolic
tan and hard limiter[22]. Similarly to the MLP, aradial
basis function(RBF) neural network architecture was also
employed as a kernel-based alternative, using Gaussian
activation functions and optimized topology[23]. For neural
network classifiers, no feature reduction was necessary, as
the neurons of the (trained) input layer could be examined
in order to discard features that correspond to input weights
with zero or near-zero values[24]. In other words, the
architecture of the neural networks favors the automatic
ranking of the inputs during the training phase, in a way
that the final classifier can be examined in order to identify
significant and non-significant features.

For more advanced investigation of the feature set, typical
support vector machine(SVM) models were applied in re-
lation to the final diagnosis. Specifically, the C-SVC model
was used in combination with standard RBF kernel functions,
optimizing the penalty factor (C) and the Gaussian spread pa-
rameter (σ) during training[25]. SVM classifiers employed
limited feature set optimizations, using iterative runs of en-
larging inclusions of several features, available on the feature
ranking lists created by MANOVA significance analysis. Due
to the statistical importance of the shape type feature, all clas-
sifications were considered both with and without the inclu-
sion of this specific feature.
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Table 3
Distribution of the four morphological shape types against diagnosis

Round Lobulated Micro-lobulated Stellate

Benign 25 18 2 1
83% 95% 5% 3%

Malignant 5 1 41 37
17% 5% 95% 97%

Percentages are calculated per column.

Table 4
Distribution of the “1 + 2” and “3 + 4” grouped morphological shape types
against diagnosis

Round + lobulated Micro-lobulated + stellate

Benign 43 3
88% 4%

Malignant 6 78
12% 96%

Percentages are calculated per column.

micro-lobulated and stellate types exhibited 95 and 97% of
malignancy, respectively, as illustrated inTable 3. When com-
bining the round and lobulated cases, the overall percentage
of malignancy was 12%, while for combined micro-lobulated
and stellate cases, the overall percentage of malignancy was
96%, as illustrated inTable 4. This high statistical depen-
dency of specific morphological features of each tumor with
its verified pathology confirms the clinical value of its shape
when conducting a pathological evaluation of a mammogram.
It should be noted that if the shape type feature were to be
used as the sole input for predicting the final diagnosis, an
accuracy rate just over 93% could be achieved.

3.1. Statistical significance analysis

Global statistics of the dataset were calculated for every
individual feature in relation to the final diagnosis. The

T
S

iation Skewness Kurtosis Mean configuration range

B
0.119 1.623 ±2.583

−1.417 0.006 ±0.121
2.208 3.539 ±0.078

−2.925 8.514 ±0.059

M

C culated alculate
s

. Results

Preliminary analysis on the initial dataset has confir
he strong statistical correlation between morpholog
hape type and verified diagnosis of breast tumors in
ammograms. Specifically, the first two types of morp
gy, round and lobulated tumors, exhibited 17 and 5% of

ignancy, respectively, within the same class. On the cont

able 5
tatistics of benign and malignant cases

Mean Standard dev

enign (cases: 46)
Patient’s age 47.457 8.939
Microcalcifications presence 0.783 0.417
Fat% inclusion 0.126 0.270
Boundary sharpness 0.808 0.205
Tumor density 0.326 0.701
Tumor homogeneity 7.109 1.464
Tumor shape type 1.543 0.690

alignant (cases: 84)
Patient’s age 57.631 9.079
Microcalcifications presence 0.810 0.395
Fat% inclusion 0.000 0.000
Boundary sharpness 0.255 0.264
Tumor density 0.798 0.485
Tumor homogeneity 5.381 1.605
Tumor shape type 3.310 0.776

ells indicating “–” mean that the specific parameter could not be cal
ignificance level (alpha) 0.95.
−0.555 −0.781 ±0.203
−0.951 0.979 ±0.423

1.324 2.215 ±0.199

0.098 −0.188 ±1.942
−1.605 0.590 ±0.084

– – –
1.017 −0.032 ±0.056

−2.420 5.260 ±0.104
0.266 −0.328 ±0.343

−1.398 2.394 ±0.166

due to zero variance. All confidence ranges for mean values were cd for
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Table 6
Test statistics of benign versus malignant cases

Statistics (benign vs. malignant) Classes boundary T-test value F-test value Statistical errors Error probability (%)

Patient’s age 47.791 1.704e−08 0.926 29 22.31
Microcalcifications presence N/S 0.721 0.660 – –
Fat% inclusion N/S 0.003 – – –
Boundary sharpness 0.601 1.041e−24 0.067 15 11.54
Tumor density N/S 0.127e−03 3.801e−03 – –
Tumor homogeneity 7.006 1.181e−08 0.505 34 26.15
Tumor shape type 2.226 3.890e−24 0.392 9 6.923

ForF-test values, cells indicating “–” mean that the specific parameter could not be calculated due to zero variance. Class boundary values indicating “N/S”
mean that the clustering of the specific feature could not be qualified as bimodal normal distribution model, i.e. it could not produce any linear discrimination
on the base classes.

properties and differences in the resulting bimodal normal
distributions, for benign and malignant cases, revealed the
discriminating power of each individual feature, as well as
the corresponding significance ranges for the mean values.
The mean value and standard deviation of each feature were
used for constructing a bimodal normal distribution statistical
model, while the corresponding aliasing error between the
two kernels was used to evaluate the statistical separability of
benign and malignant cases, according to this feature.Fig. 2
presents a graphical display of using boundary sharpness for
this type of statistical modeling.Table 5summarizes the com-
plete results of these tests, whileTable 6summarizes all types
of statistical discrimination modeling, includingT-test,F-test
and bimodal normal distribution modeling. Although some
tests were not applicable to specific features due to statistical
limitations (e.g., zero variance or non-separable Gaussian
distributions), early conclusions on the discrimination power
of each individual feature could already be drawn from these
early tests.

Furthermore, in order to produce feature rankings, which
take into account statistical dependencies between the indi-
vidual features, MANOVA was applied, investigating the dis-
criminating power of each feature against the final diagnosis,
as well as its independency to all the other features.

Table 7summarizes the feature rankings for all statisti-
cal significance analysis methods applied in this study. The
r ing,
U n-
s s in

T
F rs
a

T

B pe
M pness
P
M
M s?
F eity
M

F verall
s ead of
t

the exact ordering with regard to the importance of each fea-
ture.

3.2. Classification results

Classifications results were used as guidelines for evaluat-
ing the performance of individual features, as well as identi-
fying optimal feature combinations. Classification accuracy
rates were thoroughly investigated for all classifier models
and comparative results were obtained against the final diag-
nosis.

3.2.1. Individual features evaluation
Datasets of single feature inclusions were constructed for

conducting discriminating power analysis against diagnosis,
using a typical LSMD classifier. The complete results for in-
dividual feature classification configurations are summarized
in Table 8. Similarly to the results already obtained by sta-
tistical significance analysis, the morphological shape type
of the tumor proved to be the most correlated feature with
regard to final diagnosis. When patient’s age and shape type
features were excluded, optimal feature combinations, which
were selected by the classifier, included tumor’s boundary
sharpness, fat inclusion percentage and tumor homogeneity,
yielding a maximum accuracy rate of 86.9%. The introduc-
t uced
o sifi-
c tions
w 87.7
t ape

T
T MD
c

Q

M
B
F
M
M
P
M

esults obtained by bimodal normal distribution model
nivariate and MANOVA were generally similar and co
istent, producing feature rankings with little difference

able 7
eature ranking lists produced byT-test, bimodal normal distribution erro
nd MANOVA evaluations against diagnosis

-test ranking Bimodal distribution
error ranking

MANOVA ranking

oundary sharpness Mass shape type Mass shape ty
ass shape type Boundary sharpness Boundary shar
atient’s age Patient’s age Patient’s age
ass homogeneity Mass homogeneity Fat percentage
ass density Mass density Microcalcification
at percentage Fat percentage Mass homogen
icrocalcifications? Microcalcifications? Mass density

or non-linearly separable bimodal normal distribution cases, the o
hape and aliasing of the underlying distributions are considered inst
rue misclassification errors.
ion of patient’s age into the set of input features also prod
ptimal configurations, achieving 89.2% accuracy. Clas
ation results analysis showed that for feature combina
ithout shape type inclusion, the accuracy ranged from

o 91.5%, while for feature combinations that included sh

able 8
rue discrimination efficiency of individual features through LS
lassification

ualitative feature LSMD
(success%− diagnosis)
(%)

ass shape type 93.1
oundary sharpness 86.1
at percentage 74.6
ass density 73.1
ass homogeneity 73.1
atient’s age 68.5
icrocalcifications? 60.8
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Table 9
Success rates of all classifiers against diagnosis prediction, with and without
shape type input

Classifier model Accuracy without shape
type information (%)

Accuracy including
shape type information
(%)

Target: tumor diagnosis
LDA 87.69 93.85
K-NN 91.54 93.08
LSMD 89.23 93.08
MLP 91.54 91.54
RBF 90.77 91.54
C-SVC/RBF 93.85 94.62

type information, the accuracy ranged from 91.5 to 93.1%,
essentially verifying the explicit discriminating value of this
specific feature.

3.2.2. Comparative classifier performance
For a more realistic performance analysis for optimized

feature combinations, a wide range of linear and non-linear
classifiers were used. Linear classifiers included exhaustive
search through all feature subsets for identifying optimal
feature combinations, while NN and SVM classifiers used
full feature sets or optimal feature subsets, already available
through the linear classifiers.Table 9summarizes the highest
accuracy rates achieved by each classifier, with and without
the inclusion of shape type information.

The LDA classifier exhibited an accuracy rate of 87.69%
when using an optimally selected feature set of patent’s age
and tumor’s boundary sharpness. When the shape type feature
was included in the input, the optimal feature set was con-
stituted of the tumor’s boundary sharpness and shape type
features, and the accuracy rates were raised up to 93.85%
It should be noted that this particular accuracy rate was
marginally higher than the statistical dependency of tumor’s
shape type versus its final diagnosis, namely 93.08%, thus
proving the importance of combining several features to con-
struct optimal feature subsets.

Similarly to the LDA, the optimizedK-NN classifier
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is analogous to the suggestive statistical grouping of round
and lobulated cases as probable benign, and micro-lobulated
and stellate cases as probable malignant.

Both the MLP classifier and the RBF neural classifiers
employed full feature sets and optimized size for the hid-
den layer. The MLP classifier yielded an accuracy of 91.54%
when no shape type information was available, using one
or four hidden units and linear activation function. The in-
clusion of the shape type feature did not affect the overall
accuracy rate, although it resulted in many more configura-
tions achieving this maximum efficiency. Similarly, the RBF
classifier achieved an accuracy of 90.77% without shape type
feature inclusion (using eight hidden units) and 91.54% with
shape type feature inclusion (using five hidden units).

The SVM classifier, employed in this study as a repre-
sentative candidate of this family, was theC-SVCmodel
(penalty-drivenSVM classifier) with radial basis kernel func-
tion (RBF). For feature lists with shape type information ex-
cluded, the accuracy rates achieved by the SVM classifier
were 93.85% even when using only the first four features from
the ranking list, namely tumor’s boundary sharpness, patent’s
age, percentage of fat inclusion and tumor homogeneity. For
feature lists including the shape type property, the accuracy
rates achieved by the SVM classifier were 94.62%, conclu-
sively higher than the statistical correlation between shape
type and diagnosis. As expected, the shape type feature was
i el of
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chieved an accuracy rate of 91.54% when using al
vailable features except shape type and 93.08%

ncluding shape type information. In fact, the optimal fea
ubset in the second case was constituted only by the
ype feature itself, essentially implementing the statis
lassifier of grouping round and lobulated cases as pro
enign, and micro-lobulated and stellate cases as pro
alignant. There was no clear indication regarding

verall optimal value for the neighborhood size, altho
ost configurations of high accuracy employed size

hree to eight neighboring samples.
For the LSMD classifier, success rates were simila

heK-NN. Specifically, an accuracy of 89.23% was achie
hen using all the available features except shape type
ation and 93.08% when using the shape type feature as
s in the case ofK-NN, the shape type feature dominated
ptimal feature subset and the resulting classification sc
.

ncluded in all optimal feature subsets achieving this lev
erformance. Although no clear conclusions can be d
egarding the exact choices on the values of SVM para
ersCandσ, analysis of the various SVM configurations h
hown that the values of the penalty factorC, namely betwee
and 10, were inversely proportional to the correspon

alues of function spread parameterσ, namely from 0.1 dow
o 0.01.

. Discussion

Results from statistical significance analysis revea
igh correlation between most of the qualitative feature

he annotation list and the final diagnosis. Morpholog
hape type of the tumor’s outline exhibits the highest
endency in relation to the diagnosis, yielding the spe

eature as adequate to provide discrimination capabilit
orrectly classifying benign and malignant cases with
ess rates up to 93%. Several other features, such as
oundary sharpness, tumor homogeneity, as well as pat
ge, have proven as important clinical aspects of the ex
valuation. All the features contained in the annotation
xhibited some degree of correlation to the diagnosis,
ualifying them as plausible for automatic diagnosis syst
lthough in most cases optimal combinations of severa

ures have to be used, instead of single features.
The discriminating value of each individual feat

as confirmed by several statistical significance pro
ies, includingT-test, F-test, MANOVA, bimodal norma
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distribution error estimation and mean value significance
range, as well as real classification runs using a typical
LSMD classification scheme. Although the feature ranking
lists, created using the results of these analysis methods, dif-
fer slightly on the exact ordering of the features, some basic
conclusions could be drawn with regard to the overall quality
of each individual feature. Specifically, the morphological
shape type of the tumor, namely its classification in one of the
round, lobulated, micro-lobulated or stellate categories, has
been established as the most important feature. Round and
lobulated cases have been proven highly correlated to benig-
nancy, while micro-lobulated and stellate cases have shown
high correlation to malignancy, asTables 3 and 4show. For
combined features configurations, optimized sets containing
the shape type feature exhibited 3 to 4% higher success rates
than the ones without it, when used in real classification
schemes of both linear and non-linear models. Subsequently,
tumor boundary sharpness or fuzziness was clearly sugges-
tive to benign or malignant tumors respectively, asTable 8
shows. Another important feature was the overall density of
the tissue that constitutes the tumor, as dense tissue samples
of abnormal physiology are typically related to malignant
growth rate of the cells in those areas[2,7]. Tumor’s homo-
geneity and percentage of fat inclusion were also important
when combined together or with some other feature of high
discriminative quality, although none of them could provide
h age
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diagnosis, the performance of all classifiers was evaluated
separately when including or excluding the shape type, which
was the most dominant feature in the set. For feature sets with-
out any shape type information inclusion, optimizedK-NN
classifier achieved the best results over LDA and LSMD alter-
natives. Similar feature sets containing the shape type feature
produced results with no significant preference towards any
of these three classifiers. These results were closely matched
or exceeded by several MLP and RBF NN configurations,
especially in the case of excluding shape type information.
Although the best accuracy rates in some cases were pro-
duced by linear, instead of non-linear, classifiers, it should
be noted that NN classifiers used only complete feature sets
or feature combinations already calculated as optimal for lin-
ear equivalents. Both MLP and RBF models required a larger
number of hidden units when shape type information was ex-
cluded, while the inclusion of the specific feature essentially
simplified the discrimination process and thus concluded in
topologies with lesser hidden units. The overall performance
of MLP architectures was marginally higher than RBF equiv-
alents, employing much smaller hidden layers and greater
degrees of generalization.

The SVM classification schemes yielded overall maxi-
mum accuracy rates, both when the shape type feature was
excluded or included in the input vector, higher than the corre-
sponding maximum rates of any other linear or NN alternative
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All features, except patient’s age and tumor’s shape
efer directly or indirectly to textural properties of the tum
rea as it appears in the mammographic image. Howeve
hape type was evaluated as the most important feature
ained in the annotation list. This means that, in order to
fully automated diagnosis system that is based on obje

eature measurements of various textural properties, se
f these features have to be optimally combined. In any
oth morphological and textural features can be formu

nto a well-defined set of extraction functions, capabl
mplementing objective estimators of various morpholog
nd textural properties of each tumor, as it appears in
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imation of the correct radiologic diagnosis as an adjunct
o the physician and the in future a complementary sy
ombined with a CAD.

With regard to best classifier performance, the efficie
f non-linear architectures over linear equivalents was pr

n almost all cases. Regarding the prediction of the
nvestigated in this study. Thus, a representative applic
f advanced SVM models, compared to several linear
N classification schemes, is suggestive to their super

n classification problems that exhibit high degree of n
inearity in the training datasets.

. Conclusion

The problem of identifying image features characteri
he overall morphology and fine-scaled structural prope
f the tissue in mammographic tumors, as well as exte
linical data, was investigated using objective statistical a
sis and pattern recognition approaches. Therefore, alth
he initial descriptive data were qualitative in nature, the tr
ation into quantitative values and their thorough proces
ia advanced pattern analysis algorithms, produced obje
valuations and discriminating power estimations of their
fficiency.

All the selected features have shown some degre
ependency to the final diagnosis, while some of th
uch as morphological shape type, provided discrimina
evels high enough to be used even individually for tu
lassification schemes. Optimal feature sets, employ
dvanced non-linear classification architectures, like S
lassifiers, provided accuracy rates up to almost 95%,
roving their efficiency and making such systems plau

or clinical application. All features investigated in t
tudy, except patient’s age, are related to morpholo
nd textural properties on the mammographic image i
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therefore a completely automated diagnosis system, using
the same content-rich descriptive features, is feasible.

Statistical and classification analysis results have shown
that, although the selected feature sets were in fact content-
rich with regard to their diagnostic value, the diagnostic
process itself remains a complex and demanding task. The
high degree of non-linearity employed in the discrimination
of the input data with regard to diagnosis prediction sug-
gests that automatic diagnosis systems should implement
powerful pattern recognition models of non-linear and
highly adaptive architecture. Future work should be focused
on designing specialized image processing algorithms
for efficient automatic extraction of morphological and
textural features, combined with robust implementations of
advanced classification architectures, such as SVMs. Au-
tomated diagnosis of breast mammographic abnormalities,
combined with CAD systems, which indicate suspicious
lesions in mammograms, will be a very powerful tool in the
hands of the mammographic departments and the reporting
physicians, especially the less experienced ones.
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