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Abstract—This paper consists of an overview on universal
prediction from an information-theoretic perspective. Special
attention is given to the notion of probability assignment under
the self-information loss function, which is directly related to
the theory of universal data compression. Both the probabilistic
setting and the deterministic setting of the universal prediction
problem are described with emphasis on the analogy and the
differences between results in the two settings.
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I. INTRODUCTION

CAN the future of a sequence be predicted based on its
past? If so, how good could this prediction be? These

questions are frequently encountered in many applications.
Generally speaking, one may wonder why should the future
be at all related to the past. Evidently, often there is such
a relation, and if it is known in advance, then it might be
useful for prediction. In reality, however, the knowledge of
this relation or the underlying model is normally unavailable or
inaccurate, and this calls for developing methods of universal
prediction. Roughly speaking, a universal predictor is one that
does not depend on the unknown underlying model and yet
performs essentially as well as if the model were known in
advance.

This is a survey that describes some of the research work on
universal prediction that has been carried out throughout the
years in several scientific disciplines such as information the-
ory, statistics, machine learning, control theory, and operations
research. It should be emphasized, however, that there is no at-
tempt to cover comprehensively the entire volume of work that
has been done in this problem area. Rather, the aim is to point
out a few of the highlights and the principal methodologies
from the authors’ personal information-theoretic perspective.
Also, throughout the paper there are a few new results whose
derivations are given in detail.
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Historically, the information-theoretic approach to predic-
tion dates back to Shannon [104], who related prediction to
entropy and proposed a predictive estimate of the entropy
of the English language. Inspired by Haggelbarger, Shannon
[105] created later a “mind-reading” machine that predicts
human decisions. About that time, Kelly [59] showed the
equivalence between gambling (which, in turn, is definitely a
form of prediction) and information. Following Cover [17],
Rissanen [89], [90], and Rissanen and Langdon [93], it is
well recognized to date that universal prediction is intimately
related to universal lossless source coding. In the last three
decades, starting from the pioneering work of Fittingoff [42]
and Davisson [27], and later Ziv [124], Lempel and Ziv
[68], [125], [126], Rissanen and Langdon [93], Krichevsky
and Trofimov [63], and others, the theory and practice of
universal coding have been greatly advanced. The state-of-
the-art knowledge in this area is sufficiently mature to shed
light on the problem of universal prediction. Specifically,
prediction schemes as well as fundamental performance lim-
its (lower bounds), stemming from those of universal cod-
ing, have been derived. It is the relation between universal
coding and universal prediction that is the main theme of
this paper, from the point of view of both algorithms and
performance bounds.

Let us now describe the prediction problem in general.
An observer sequentially receives a sequence of observations

over some alphabet . At each time
instant , after having seen but not
yet , the observer predicts the next outcome, or more
generally, makes a decision based on the observed past

. Associated with this prediction or decision, and
the actual outcome , there is a loss function that
measures quality. Depending on the particular setting of the
prediction problem, the objective would be to minimize this
instantaneous loss, or its time-average, or the expected value
of either one of these quantities. Obviously, prediction in the
ordinary sense is a special case of this, where is an
estimate of based on and is some
estimation performance criterion, e.g., the Hamming distance
(if is discrete) or the squared error
(if is continuous).

Another special case, which is more general than the above
examples, is based on assigning weights or probabilities to
all possible values of the next outcome. For example, the
weatherman may assess 70% chance of rain tomorrow, in-
stead of making a commitment whether it will rain or not.
This is clearly more informative than the ordinary prediction
described above because it gives an assessment of the degree
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of confidenceor reliability associated with the prediction. In
terms of the above described prediction problem, hereis
a conditional probability assignment of given , i.e., a
nonnegative function that integrates (or sums) to
unity for every . Upon observing , the performance
of is assessed with respect to a suitable loss function
, which should decrease monotonically with the probability

assigned to the actual outcome . A very important
loss function of this kind is theself-information lossfunction,
which is also referred to as thelog–loss function in the
machine-learning literature. For every probability assignment

over and every , this function
is defined as

(1)

where logarithms throughout this paper are taken to the base
unless otherwise specified. For reasons to be discussed in

Section II, the self-information loss function plays a central
role in the literature on prediction and hence also throughout
this survey.

Let us now return to the prediction problem in its general
form. Quite clearly, solutions to this problem are sought
according to the particular assumptions on the data-generating
mechanism and on the exact objectives. Classical statistical
decision theory (see, e.g., [35]) assumes that a known prob-
abilistic source generates the data, and so, a reasonable
objective is to minimize the expected loss. The optimum
strategy then minimizes the expected loss, given the past,
i.e.,

(2)

where random variables are denoted by capital letters. More-
over, under suitable assumptions on stationarity and ergod-
icity, optimum prediction in the expected loss sense,
is optimum also in the sense of minimizing the almost sure
asymptotic time-average of (see, e.g., [4]). Given

, the quantity

is referred to as the conditionalBayes envelopegiven .
For example, if is a binary source, , and
is the Hamming distance, then

if
otherwise

(3)

and the conditional Bayes envelope given is

For

and

If, in addition, the underlying source is known to be
Gaussian (or, if only the class of linear predictors is allowed),

then is well-known to be a linear function of given as
a special case of the causal Wiener filter [119] (see also [86,
Ch. 14-3]). In the self-information loss case,

minimizes , namely,
the best probability assignment is the true one. The conditional
Bayes envelope given , is the (differential) entropy of
given , i.e.,

While classical theory (e.g., Wiener prediction theory) as-
sumes that the source is known, the more realistic and
interesting situation occurs when is either unknown, or
nonexistent. In the second case, there is no probabilistic data-
generating mechanism and the data are considered arbitrary
and deterministic. Both cases fall into the category of the
universal prediction problem, where the former is referred to as
theprobabilistic settingand the latter is called thedeterministic
setting.Let us now elaborate on these two settings.

A. The Probabilistic Setting

In the probabilistic setting the objective is normally to
minimize the expected cumulative loss asymptotically for large

simultaneously for any source in a certain class. A universal
predictor does not depend on, and at the same
time, keeps the difference between

and

(4)

vanishingly small for large . The cumulative Bayes envelope
of (4) represents the performance of the optimal predictor
tuned to . For a stationary and ergodic source, the sequence

has a limit , referred to as theasymptotic
Bayes envelope, that coincides (by the Cesaro theorem [23])
with , which in turn exists by nonincreas-
ing monotonicity. In the self-information loss case, is
the entropy rate of , which means that the goal of universal
prediction is equivalent to that of universal coding.

There are essentially three levels of universality according
to the degree of uncertainty regarding the source.

Universality with Respect to Indexed Classes of Sources:
Suppose that the source is unknown except for being a
member of a certain indexed class , where
is the index set. Most commonly, designates a parameter
vector of a smooth parametric family, e.g., the families of
finite-alphabet memoryless sources,th-order Markov sources,

-state sources, AR Gaussian sources, but other index sets
(e.g., finite sets) are possible as well. There are two interesting
issues here. The first is to devise universal prediction schemes
that asymptotically attain in the above defined sense
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for every , and the second is performance bounds beyond
that apply to any universal predictor. Analogously

to the universal coding terminology, the extra loss beyond
will be referred to as theredundancy.Redundancy

bounds are useful to establish necessary conditions for the
existence of universal schemes as well as limitations on the
rate of convergence. Both are dictated by a certain measure
of the richness of the class . Furthermore, even if
the redundancy bound does not vanish as , and
hence universal schemes in the above defined sense do not
exist, the question of universality can be extended to that
of achieving this bound. For self-information loss prediction,
we will explicitly characterize such bounds, and demonstrate
achievability by certain universal schemes.

Universality with Respect to Very Large Classes of Sources:
Suppose that all we know about the source is that it is
Markov of an unknown finite order, or that it is stationary and
ergodic, or mixing in a certain sense. For such large classes,
quantitative characterizations of uniform redundancy rates do
not exist [60], [106], [107]. Here, one cannot hope for more
thanweak universality, a term mentioned and defined in [27],
which means that universality is attained at a nonuniform
convergence rate. Sometimes even weak universality cannot
be obtained, and in [60] there are necessary and sufficient
conditions for the existence of universal schemes.

Hierarchical Universality: In this level, the goal is to de-
vise universal schemes with respect to a sequence
of index sets of sources, which may (though not necessarily)
have some structure like nesting, i.e., for every
positive integer . Perhaps the most common example is where
for every , is the class of all th-order Markov sources of
a given alphabet. Here the only prior knowledge that one may
have on the source is that its indexbelongs to .
The straightforward approach would be to consideras one
big class and to seek universal schemes with respect to. The
drawback of this approach, however, is that it is pessimistic
in the sense that the convergence rate towards , might
be very slow, if at all existent, because could be a very
rich class. In the above Markov example, while eachfalls
within the category of the first level above, the unionfalls
in the second level. Nonetheless, it turns out that in certain
situations it is possible to achieve redundancy rate that is
essentially as small as if were knowna priori. This gives
rise to an elegant compromise between the two former levels
of universality. It keeps the fast convergence rates of the first
level without sacrificing the generality of the class of sources
of the second level.

B. The Deterministic Setting

In this setting, the observed sequence is not assumed to
be randomly drawn by some probability law, but is rather an
individual, deterministic sequence. There are two difficulties
in defining the universal prediction problem in this context.
The first is associated with setting the desired goal. Formally,
for a given sequence there is always the perfect
prediction function defined as , and so, the
prediction problem seemingly boils down to triviality. The
second difficulty is in the other way around. For a given

deterministic predictor , there is always the adver-
sary sequence where at each time instant, is chosen to
maximize .

The first difficulty is fundamental because it means that
without any limitations on the class of allowed predictors,
there is a severe overfitting effect, which tailors a predictor to
the sequence so strongly, that it becomes, in fact, anticipating
and hence completely misses the essence of prediction as a
causal, sequential mechanism. Therefore, one must limit the
class of allowed predictors in some reasonable
way. For example, could be the class of predictors that
are implementable by finite-state machines (FSM’s) with
states, or Markov-structured predictors of the form

, and so on. Such limitations make sense not
only by virtue of avoiding these trivialities, but also because
they reflect real-life situations of limited resources, like mem-
ory, computational power, and so on. Stated more formally, for
a given class of predictors, we seek a sequential predictor

that is universal in the sense of being independent of
the future, and at the same time, its average loss

is asymptotically the same as

for every . The universal predictor need not be necessarily
in but it must be causal, whereas the reference predictor
in , that minimizes the average loss, may (by definition)
depend on the entire sequence.

The second difficulty mentioned above is alleviated by
allowing randomization. In other words, predictions are gener-
ated at random according to a certain probability distribution
that depends on the past. Note that this is different from the
above discussed case wherewas a probability assignment,
because now the assigned probability distribution is actually
used for randomization.

Analogously to the probabilistic case, here we also dis-
tinguish between three levels of universality, which are now
in accordance to the richness of the class. The first level
corresponds to an indexed class of predictors which is dual
to the above mentioned indexed class of sources. Examples
of this are parametric classes of predictors, like finite-state
machines with a given number of states, fixed-order Markov
predictors, predictors based on neural nets with a given number
of neurons, finite sets of predictors, etc. The second level
corresponds to very large classes like the class of all finite-
state predictors (without specifying the number of states),
operating on infinitely long sequences, etc. Finally, the third
level corresponds to hierarchical universality and parallels that
of the probabilistic setting. The nature of the reported results
is somewhat similar to that of the probabilistic approach, but
there are several important differences in algorithmic aspects
as well as in existence theorems and performance bounds.

The outline of the paper is as follows. Section II is de-
voted to the motivation and the justification for the use of
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the self-information loss function as a performance criterion
in prediction. In Section III, the probabilistic setting will
be discussed with a great emphasis on the self-information
loss case which is fairly well-understood. In Section IV, the
deterministic setting will be described with special attention to
the similarity and the difference from the probabilistic setting.
Section V is devoted to the concept of hierarchical universality
in both settings. Finally, Section VI summarizes the paper
along with some open problems and directions for further
research.

II. THE SELF-INFORMATION LOSS FUNCTION

We mentioned earlier the self-information loss function
and its central role in universal prediction. In this section,
we discuss some motivations and justifications for using this
loss function as a measure of prediction performance. As
explained in Section I, predictive probability assignment for
the next outcome is more general and more informative than
estimating the value of the next outcome, and a reasonable loss
function should be monotonically decreasing with the assigned
probability of the actual outcome. The self-information loss
function, defined in (1), clearly satisfies this requirement, but
it also possesses many other desirable features of fundamental
importance.

The first advantage of the self-information loss function is
technical. It is convenient to work with because the logarithmic
function converts joint probability functions, or equivalently,
products of conditional probabilities into cumulative sums of
loss terms. This suits the framework of the general prediction
problem described above.

But beyond this technical convenience, there is a deeper sig-
nificance. As is well known, the self-information manifests the
degree of uncertainty, or the amount of information treasured
in the occurrence of an event. The conditional self-information
of the future given the past, therefore, reflects the ability to
deduce information from the past into the future with minimum
uncertainty.

Evidently, prediction under the self-information loss func-
tion and lossless source coding are intimately related. This
relation stems from the fact that is
the ideal codelengthof with respect to a probability func-
tion . This codelength can be implemented sequentially
within any desired precision using arithmetic coding [88].
Conversely, any codelength function can be translated into
a probability assignment rule [90], [93], [109], [117]. Another
direct application of self-information loss minimization to the
problem area of prediction, is that of gambling [17], [19], [38].
In this case, represents the distribution of money
invested in each one of the possible values of the next outcome.
The self-information loss function then dictates the exponential
growth rate of the amount of money with time.

The paradigm of predictive probability assignment is also
the basis of Dawid’sprequential principle[31]. However, the
motivation of the prequential principle was not in predic-
tion per se, but rather the use of probability assignment for
testing the validity of statistical models. A good probability
assignment is one that behaves empirically as expected from

the true probabilistic model. For example, if are binary,
then a good sequence of probabilities assigned
to should satisfy

namely, the law of large numbers. As further discussed in
[32]–[34], other requirements are based on the central limit
theorem, the law of iterated logarithm, behavior of confidence
intervals, and so on.

Interestingly, it turns out that predictive probability as-
signment under the self-information loss criterion can be
useful also for the purpose of testing the validity of statis-
tical models as described above. One reason is that when
a certain source governs the data, then it is the true
conditional probability that mini-
mizes . In simpler words, the
maximum achievable assigned probability is also the true
one (a property shared by very specific loss functions, see
[78]). Moreover, by the Shannon–McMillan–Breiman theo-
rem, under certain ergodicity assumptions, this is true not
only in the expected value sense, but also almost surely.
Thus by combining the prequential principle with the Shan-
non–McMillan–Breiman theorem, a good probabilistic model
for the data must minimize

i.e., the average self-information loss.
From another perspective, we observe that any sequential

probability assignment mechanism gives rise to a probability
assignment for the entire observation vectorby

Conversely, any consistent probability assignmentfor
(i.e., that satisfies for all and

), provides a valid sequential probability assignment by

(5)

Therefore, the choice of in self-information loss predic-
tion is completely equivalent to the choice of that assigns
maximum probability to , that is, maximum-likelihood
estimation.

In our discussion thus far, we focused on motivating the
self-information loss function itself. Yet another motivation
for studying universal prediction in the self-information loss
case is that it sheds light on the universal prediction problem
for other loss functions as well. Perhaps the most direct way to
look at self-information loss prediction is as a mechanism that
generates a probability distribution when the underlying source
is unknown or nonexistent. One plausible approach to the pre-
diction problem with a general loss function is then to generate,
at each time instant, a prediction that is a functional of the
self-information-loss conditional probability assignment. For
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example, in the squared-error loss case, a reasonable predictor
would be the conditional mean associated with ,
which hopefully tends to the true conditional probability as
discussed above. As will be seen in the probabilistic setting,
this technique is often successful, whereas in the deterministic
setting, some modification is required.

However, there is another way in which self-information
loss prediction serves as a yardstick to prediction under other
loss functions, and this is the notion ofexponential weighting.
In certain situations, minimization of the cumulative loss

corresponds to maximization of the exponenti-
ated loss , which in turn can
be treated altogether as an auxiliary probability assignment.
In certain important special cases (though not always), the
solution to this probability assignment problem translates back
as a solution to the original problem. We will also see the
usefulness of the exponential weighting technique as a tool
for deriving lower bounds that are induced from corresponding
strong lower bounds of the self-information loss case.

III. T HE PROBABILISTIC SETTING

We begin with the problem of probability assignment for
the next outcome given the past, under the self-information
loss function. As explained above, this problem is completely
equivalent to that of finding a probability assignmentfor
the entire data sequence.

As we mentioned earlier, if the sourcewere known, then
clearly, the optimal that minimizes the above expected self-
information loss would be , i.e., the prediction induced
by the true underlying source

The average cumulative loss would then be the entropy
. If is unknown and we wish

to assign a certain probability distribution that does not
depend upon the unknown, then the extra loss beyond the
entropy is given by

(6)

where is the th-order information divergence (rel-
ative entropy) between and . In the corresponding lossless
compression problem, is the coding redundancy,
i.e., the normalized per-symbol difference between the average
code length and the entropy. Of course, the minimizations of

for two or more sources at the same time might
be contradictory. Thus the problem of universal probability
assignment is that of finding a good compromisethat is
uniformly as “close” as possible, in the information divergence
sense, to every in a given class of sources. We shall elaborate
later on this notion of simultaneous divergence minimization.

As explained in Section I, the theory of universality splits
into several levels according to the degree of uncertainty
regarding the source. We begin with the conceptually simplest
case where the source is known to belong to a given indexed
class of sources where is the index (e.g., a
parameter vector) and is the index set. Since we look at
prediction from the viewpoint of probability assignment and

we start from the self-information loss criterion, our survey in
this part is largely taken from the theory of universal coding.

A. Indexed Classes of Sources

1) The Self-Information Loss Function:We first describe
two common approaches to universal probability assignment
for indexed classes of sources.

The Plug-in Approach versus the Mixture Approach:One
natural approach to universal prediction with respect to an
indexed class of sources is the so-calledplug-in
approach. According to this approach, at every time instant
, the index (or the parameter) is estimated on-line from

(e.g., by using the maximum-likelihood estimator), and
the estimate is then used for prediction as if it
were the true parameter value, i.e., the conditional probability
assigned to is given by .

The plug-in approach may work quite well under certain
regularity conditions. Intuitively, if the estimator is statisti-
cally consistent and is continuous in for every

and , then the estimated probability assignment may
converge to the true conditional probability in the probabilistic
sense. Nonetheless, this convergence property does not always
hold (e.g., when is the center of a Cauchy density estimated
by the sample mean), and even if it does, the rate of conver-
gence might be of crucial importance. Moreover, it is not true,
in general, that better estimation of the conditional probability
necessarily yields better self-information loss performance.
The plug-in approach is, in essence, a heuristic approach
that lacks a well-substantiated, deep theoretical justification
in general.

An alternative approach, henceforth referred to as themix-
ture approach, is based on generating convex combinations
(mixtures) of all sources in the class . Specifi-
cally, given a certain nonnegative weight function that
integrates to unity (and hence can be thought of as a prior
on ), we define the mixture probability mass (or density)
function over -tuples as

(7)

With an appropriate choice of the weight function, the
mixture , as we shall see later, turns out to possess certain
desirable properties which motivate its definition as auniversal
probability measure.This universal measure then induces a
conceptually simple sequential probability assignment mech-
anism defined by

(8)

It is interesting to note [72, Theorem 2] that the above
predictive probability function induced by the mixture of

can also be represented as a mixture of the con-
ditional probability functions , where
the weighting function is given by theposterior probability
density function of given , i.e.,

(9)
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where

(10)

and where the last expression manifests the interpretation of
exponential weightingaccording to the probability assignment
performance (given by ) on data seen thus far:
points in that correspond to good performance in the past are
rewarded exponentially higher weights in prediction of future
outcomes. The exponential weighting is an important concept.
We will further elaborate later on it in a broader context of
lower bounds and algorithms for sequential prediction under
more general loss functions in the probabilistic as well as in
the deterministic setting.

For the class of binary memoryless (Bernoulli) sources with
, the mixture approach, with being

uniform over , leads to the well-known Laplace
prediction [66], [67]. Suppose that contains zeros and

ones, then

(11)

which, in this case, can be thought of also as a plug-in
algorithm because can be interpreted as a
biased version of the maximum-likelihood estimator of. Such
a bias is clearly desirable in a sequential regime because the
naive maximum-likelihood estimator would
assign zero probability to the first occurrence of “” which,
in turn, would result in infinite loss. Also, this bias gives rise
to the plausible symmetry consideration that in the absence
of any data (i.e., ) one would assign equal
probabilities to “ ” and “ .” But this would be also the case
with any estimator of the form ,

. Indeed, other weight functions (from the Dirichlet
family) yield different bias terms and with slight differences
in performance (see also [62]). This discussion carries over
to general finite-alphabet memoryless sources [63] (as will be
discussed later) and to Markov chains [28], [91]. However, it
should be kept in mind that for a general family of sources

, the mixture approach does not necessarily boil
down to a plug-in algorithm as above, and that the choice of
the weight function might have a much more dramatic impact
on performance [76]. In this case, we would like to have some
theoretical guidance regarding the choice of.

This will be accomplished in the forthcoming subsection,
where we establish the theoretical justification of the mixture
approach in a fairly strong sense. Interestingly, in the next
section, it will be motivated also in the deterministic setting,
and for loss functions other than the self-information loss
function.

Minimax and Maximin Universality:We have seen (6)
that the excess loss associated with a given probability as-
signment while the underlying source is is given by

. The first fundamental justification of the mixture
approach (presented in [76]) is the following simple fact: given
an arbitrary probability assignment , there exists another
probability assignment in the convex hull of ,
(that is, a mixture) such that
simultaneously for every . This means that when
seeking a universal probability assignment, there is no loss
of optimality in any reasonable sense, if we confine attention
merely to the convex hull of the class . Nonetheless,
this interesting fact does not tell us how to select the weight
function of the mixture . To this end, we make a few
additional observations.

As mentioned earlier, we wish to find a probability as-
signment that is independent of the unknown, and yet
guarantees a certain level of excess loss beyond the minimum
achievable loss had been knowna priori (i.e., the th-order
entropy ). Referring again to (6), this suggests to solve
the following minimax problem:

(12)

The value of this quantity, after normalizing by, is called the
minimax redundancyand is denoted by in the literature of
universal coding. At first glance, this approach might seem
somewhat pessimistic because it is a worst case approach.
Fortunately enough, in many cases of interest, as

, which means that the minimax asymptotically
achieves the entropy rate, uniformly rapidly in. Moreover,
as we shall see shortly, the minimax approach, in the self-
information loss case, is not at all pessimistic even if
does not tend to zero. Again, in view of the discussion in the
previous paragraph, the minimax-optimal is a mixture of
the sources in the class.

An alternative to the minimax criterion is the maximin
criterion, whose definition has a strong Bayesian flavor that
gives rise to the mixture approach from a seemingly different
point of view. Here is the idea: since is unknown,
let us postulate some prior probability density function
over . The performance of a given probability assignment
would be then judged with respect to the normalized weighted
average redundancy , i.e.,

(13)

It is easy to see that for a given, the that minimizes
is just the defined in (7), and that the resul-

tant average redundancy , is exactly the mutual
information between random variables and

whose joint probability density function is given by
. But is arbitrary and the question

that again arises is what would be an “appropriate” choice of
? Let us adopt again a worst case approach and use the “least

favorable” prior that maximizes , that is, solve
the maximin problem

(14)
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whose value, when normalized by, is referred to as the
maximin redundancyand denoted by . It is important to
note that , which is the supremum of over
all allowable ’s, is given the interpretation of thecapacityof
the “channel” from to , defined by the class of sources.
In this definition, each source is thought of as the
conditional probability function of the “channel output” given
the “channel input” . We will refer to this channel capacity
as thecapacity of the classof sources and will
denote it by . Thus is identical to .

These notions of minimax and maximin universality were
first defined by Davisson [27] in the context of universal
coding (see also [11], [28], [30], [37], [58], and others).
Several years after Davisson’s paper [27] it was observed
(first by Gallager [45], and then independently by Davisson
and Leon-Garcia [29], Ryabko [96], and others) that the
minimax and the maximin solutions are equivalent, i.e.,

. Furthermore, the mixture , where is the
capacity-achieving prior(i.e., ), is both
minimax and maximin optimal. This result is referred to as
the redundancy-capacity theoremof universal coding.

The capacity , therefore, measures the “richness” of the
class of sources. It should be pointed out, though, that
is not very sensitive to “distances” among the sources in the
class, but rather to the effective number of essentially distinct
sources. For example, the source that generates’s only
with probability one is at infinite divergence-distance from the
source that generates’s only. Yet their mixture
(in the level of -tuples) is within normalized divergence of

from both, and so, the capacity of is very
small. It is a remarkable fact that the theory of universal
coding is so intimately related to that of channel capacity.
Moreover, the importance and significance of the redundancy-
capacity theorem are fairly deep also in the broader context of
probability assignment and prediction.

On the face of it, at this point the problem of universal
probability assignment, or equivalently, universal prediction
under the self-information loss function with respect to an
indexed class of sources, is fairly well addressed. Nonetheless,
there are still several important issues to be considered.

The first concern comes from a practical aspect. Explicit
evaluation of the proposed minimax/maximin probability as-
signment is not trivial. First of all, the capacity-achieving prior

is hard to evaluate in general. Furthermore, even when it
can be computed explicitly, the corresponding mixture
as well as the induced conditional probabilities
might still be hard to compute. This is in contrast to the
plug-in approach, which is relatively easy to implement.
Nevertheless, we shall return later to the earlier example of
the mixtures of Bernoulli sources, or more generally, finite-
alphabet memoryless sources, and see that fortunately enough,
some satisfactory approximations are available.

The second technical point has to do with the evaluation of
capacity, or at least, its asymptotic behavior, which is of crucial
importance. As mentioned earlier, the capacity measures the
“complexity” or “richness” of the class of sources, and

if and only if uniform redundancy rates are achievable (i.e.,
strong universality). This means that if the class of sources is

too rich so that does not vanish as grows without bound,
one can no longer hope for uniformly small redundancy rates
[48], [107]. We shall see examples of this later.

Another problem that calls for attention is that the predictor,
or the sequential probability assignment mechanism that we
are proposing here, is not really sequential in the sense that
the horizon must be prescribed in advance. The reason
is that the capacity-achieving prior depends on , in
general. A possible remedy (both to this and to the problem
of computability) is to seek a fixed prior, independent of ,
that achieves capacity at least asymptotically, i.e.,

Fortunately, this is possible in some important examples.
Finally, we mentioned earlier that the minimax approach is

pessimistic in essence, a fact which seems to be of special
concern when does not tend to zero as grows.
The reason is that although for all ,
minimaxity guarantees that the lower bound

(15)

is valid for one source in the class. The maximin point
of view tells us further that this holds true also in the sense
of the weighted average of over with respect to

. Still, the optimality of is on seemingly somewhat
weak grounds. Nonetheless, a closer inspection reveals that
the right-hand side of (15) is essentially a lower bound in a
much stronger sense which will now be discussed.

A Strong Converse Theorem:It turns out that in the self-
information loss case, there is a remarkable “concentration”
phenomenon: It is shown in [76] that

(16)

for every and for -mostvalues of . Here, the term
“ -most” means that the total probability mass of points with
this property, with respect to (or any asymptotically good
approximation of ), tends to unity as . This means
that if the right-hand side of (15) is slightly reduced, namely,
multiplied by a factor , it becomes a lower bound for

-most values of . Referring again to the uniform upper
bound, this means that -most sources in the class lie near the
surface of a “sphere” (in the divergence sense) of radius,
centered at . Considering the fact that we have assumed
virtually nothing about the structure of the class of sources,
this is quite a surprising phenomenon. The roots of this are
explained and discussed in detail in [39] and [76] in relation
to the competitive optimality property of the self-information
function [20] (see also [61]).

There is a technical concern, however: for a class of finite-
alphabet sources and any finite, the capacity-achieving prior
must be discrete with support of at most points in
[44, p. 96, Corollary 3]. Strictly speaking, the measure
then ignores all points outside its support, and the term “-
most sources” is not very meaningful. Again, fortunately
enough, in most of the important examples, one can find
a smooth weight function , which is independent of
and asymptotically achieves capacity. This solves both this
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difficulty and the horizon-dependency problem mentioned
earlier. As an alternative remedy, there is another, more
general version of this strong converse result [39], which
allows for an arbitrary weight function . It tells that is
optimal for -most points in . But note that may
depend on for a general , and so the uniformity property
might be lost.

The above result is, in fact, a stronger version of the
redundancy-capacity theorem, as detailed in [76], and it gener-
alizes the well-known strong converse to the universal coding
theorem due to Rissanen [90] for a smooth parametric family

whose capacity behaves like , where
is dimension of the parameter vector. Rissanen, in his award-

winning paper [90], was the first to show such a strong
converse theorem that applies to most sources at the same
time. The reader is referred to [76] (see also [39]) for detailed
discussion on this theorem and its significance in general, as
well as in the perspective of Rissanen’s work in particular. Let
us now examine a few examples in light of these findings.

Examples: Perhaps the simplest example is the one
where , namely, there are sources

in the class, and the weight function is
represented by a vector of nonnegative
numbers summing to one. In this case, the above described
“concentration” phenomenon becomes even sharper [44,
Theorem 4.5.1], [45] than in the general case because

for every for which . In
other words, -all sources lieexactly on the surface of
the divergence sphere around . If the sources are
easily distinguishable in the sense that one can reliably identify
which one of the sources generated a given vector, then the
redundancy-capacity of the class is nearly , because
the “channel input” can be “decoded” from the “channel
output” with small error probability. In this case,
tends to be uniform over and the best mixture

is essentially a uniform mixture. If the sources are not
easily distinguishable, then the redundancy-capacity is smaller.
This can be thought of as a situation where the “channel” is
more “noisy,” or alternatively, that the effective number of
distinct sources is smaller than. In the extreme case, where

, we have as expected, since we
have, in fact, only one source in the class.

Let us now revisit the Bernoulli example, or more generally,
the class of memoryless sources with a given finite alphabet
of size . This is obviously a parametric class whose natural
parameterization by is given by the letter probabilities
with degrees of freedom. As mentioned earlier, is
discrete in the finite-alphabet case, it depends on the horizon

, and it is difficult to compute. It turns out that for smooth
parametric families with a bounded parameter set, like the
one considered here, there is no much sensitivity to the exact
shape of (used for ) as long as it is bounded away
from zero across . In fact, any such “nice” prior essentially
achieves the leading term of the capacity, which is .
Differences in performance for different choices of are
reflected in higher order terms. Specifically, Clarke and Barron
[15], [16] have derived a very accurate asymptotic formula for

the redundancy associated with a mixture

(17)

where is the determinant of the Fisher information ma-
trix of (see also Takeuchi and Barron [111] for extensions
to more general exponential families). In the maximin setting,
the weighted average of is then asymptotically
maximized (neglecting the term) by a prior that
maximizes the second term above, which is well known as
Jeffreys’ prior [7], [16], [57], [92]

(18)

In our case, is inversely proportional to the square root
of the product of all letter probabilities,

This, in turn, is a special case of the Dirichlet prior [63], whose
general form is proportional to the product of arbitrary fixed
powers of . Dirichlet mixtures and conditional proba-
bilities derived from them have easy closed-form expressions
as well. Generalizing the earlier Bernoulli example to the size-

alphabet parametric family, and using Jeffreys’ prior, we get
the universal probability assignment

(19)

where is the number of occurrences of ,
. The uniform prior that leads to the Laplace estimator

discussed earlier, is yet another special case of the Dirichlet
prior. It should be noted that Jeffreys’ prior asymptotically
achieves capacity and so, it induces an asymptotically maximin
probability assignment. Interestingly, as observed in [122], it is
not asymptotically minimax, and it should be slightly modified
to obtain minimax optimality. These results extend to more
general parametric families under certain regularity conditions
detailed in the above cited papers.

But the main point to be remembered here is that for
parametric classes, the choice ofis not crucial in terms of
performance. This gives rise to the freedom of selecting a prior
from implementational considerations, i.e., the availability of
closed-form expressions for mixtures, namely, conjugate priors
[35]. We have just seen the example of the Dirichlet prior in
classes of memoryless sources. As another example, consider
the case where is a family of Gaussian memoryless
sources with mean and variance . Clearly, with respect
to a Gaussian prior is Gaussian itself in this case. The idea
of conjugate priors carries over in a natural manner to more
general exponential families.

It should be pointed out that there are other recent exten-
sions [51], [53], [54], [74], [83] of the redundancy-capacity
theory to more abstract classes of sources whose capacities
are proportional to , where the number is attributed a
more general notion of dimensionality that is induced by



2132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

the Hellinger distance, the Kullback–Leibler distance, the
Vapnik–Chervonenkis (VC) dimension, etc. Other extensions
to wider classes of sources exhibit different behavior of the
redundancy-capacity [25], [123]. Still, the general underlying
information-theoretic principle remains the same; the richness
of the class is measured by its Shannon capacity. Other exam-
ples of classes of sources that are not necessarily parametric,
are given in [39] and [76].

2) General Loss Functions:It turns out that satisfactory
solutions to the universal prediction problem under the self-
information loss function, may prove useful for more general
loss functions. Intuitively, under suitable continuity conditions,
an optimal predictor with respect to, based on a good
estimator of , should be close to optimum under
the true conditional probability. Generally speaking, since
minimum self-information loss probability assignments are es-
sentially maximum-likelihood estimates (cf. Section II), which
are statistically consistent in most situations, this requirement
is satisfied.

Specifically, in the discrete alphabet case, let denote
the underlying source and consider the universal probability
assignment for which for
all . Using Pinsker’s inequality (see, e.g., [24, Ch. 3,
Problem 17]) and the concavity of the square root function,
we have (20) shown at the bottom of this page. Now, for a
general loss function, let

(21)

where denotes expectation with respect to, and

(22)

where denotes expectation with respect to. Assume that
is nonnegative and bounded by some constant . Then,

by the inequality above, we get

(23)

In words, the optimum predictor with respect to the universal
probability assignment is within close to
optimum simultaneously for every . The important
conclusion from this result is the following:The existence of
universal predictors with uniformly rapidly decaying redun-
dancy rates under the self-information criterion, is a sufficient
condition for the existence of such predictors for general loss
functions.

At this point, two comments are in order: first, the above
assumption on boundedness ofcan be weakened. For ex-
ample, the leftmost side of (23), which can be thought of
as a generalized divergence between and [75], can
often be upper-bounded in terms of the variational distance
between and . We have adopted, however, the bound-
edness assumption to simplify the exposition. The second
comment is that the upper bound of (23) might not be tight
since the true redundancy rate could be faster in certain
situations. For example, minimum mean-square error, fixed-
order, universal linear predictors [26], [90] have redundancy
rates as small as , whereas the above upper bound
gives . The question that arises now is whether
we can provide a more precise characterization of achievable
redundancy rates (tight upper and lower bounds) with respect
to general loss functions.

A natural way to handle this question is to take the mini-
max–maximin approach similarly to the self-information loss

(20)
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case. The minimax predictor is the one that minimizes

(24)

Unfortunately, there is no known closed-form expression for
the minimax predictor for a general loss function. Nonetheless,
game-theoretic arguments tell us that sometimes the minimax
problem is equivalent to the maximin problem. Analogously to
the self-information loss case, the maximin problem is defined
as the supremum of

(25)

over all nonnegative weight functions that integrate to
unity. In general, the minimax and maximin problems are well
known to be equivalent for convex–concave cost functions
[95]. In our case, since (25) is always affine and hence concave
in , the remaining condition is that the set of allowable
predictors is convex, and that is convex
in for every . The latter condition holds, for example,
if , .

The maximin-optimal predictor is clearly the one that mini-
mizes for the worst case choice
of , i.e., the one that maximizes

(26)

In general, the maximizing may not agree with the
capacity-achieving prior that has been defined for the self-
information loss case. Nonetheless, similarly as in (22), these
minimax–maximin considerations again justify the approach
of Bayes-optimal prediction with respect to a mixture of

. It should be pointed out that in certain cases (e.g., the
parametric case), prediction performance is not sensitive to
the exact choice of .

By definition, vanishingly small minimax redundancy rates
guarantee uniform convergence to the Bayes envelope. How-
ever, unlike the self-information loss case, for a general loss
function, there is not necessarily a “concentration phenom-
enon” where -most points of lie at nearly the same
redundancy level. For example, in the Bernoulli case with

being the Hamming distance betweenand [77]
there are only two optimal predictors: one predicts always
“ ” and the other predicts always “,” according to whether

is smaller or larger than . Thus it is easy to
find a zero-redundancy predictor for one half of the sources in
the class, and hence there cannot be a nontrivial lower bound
on the redundancy that applies to most sources. Nevertheless,
by using the concept of exponential weighting, in some cases it
is possible to derive strong lower bounds that hold for-most
points in at the same time.

Specifically, let us assume thatis an estimate of , the
subtraction operation is well-defined, and that the loss
function is of the form , where the function

is monotonically increasing for , monotonically
decreasing for , and . We next derive a lower
bound on

which holds for -most points in , and for any predictor
that does not depend on. This will extend the lower

bound on universal minimum mean-square error prediction of
Gaussian autoregressive moving average (ARMA) processes
given by Rissanen [90].

We assume that is sufficiently “steep” in the sense that
for every , and define the log-moment

generating function

(27)

and

(28)

The function can be interpreted as the (differential)
entropy associated with the probability function

where is tuned so that , being the expectation
operation with respect to . For a given predictor ,
consider the following probability assignment:

(29)

where is a locally bounded away from zero “prior” on
. According to [103], can be approximated as

follows:

(30)

where is a small remainder term. If
for all , then following the strong converse of the self-
information loss case (16), we have that for-most points
of

(31)
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for every and all sufficiently large . Since is
concave , interchanging the order between the expectation
operator and the function would not decrease the expression
on the right-hand side of the first line of (31), and so

(32)

for every , sufficiently large, and -most . Since
is monotonically nondecreasing, this gives a lower bound on

The above lower bound is not always tight. Evidently,
tightness depends on whether the above definedalso satis-
fies the reverse inequality in (31) for some predictor. This,
in turn, is the case whenever the self-information lower
bound is achievable by universalpredictive coding, which
models the prediction error as a memo-
ryless process with being the marginal for some .
Referring to the case where , the above bound
is nontrivial if , the entropy rate of

. When this is the case, our lower bound suggests a
converse to the previous statement on conditions for uni-
form redundancy rates:The existence of universal predictors
with uniformly rapidly decaying redundancy rates under the
self-information criterion (i.e., ), is a necessary
condition for the existence of such predictors for general
loss functions.In summary, under suitable regularity con-
ditions, there is a uniform redundancy rate for a general
, if and only if there is one for the self-information loss

function. Furthermore, even if , there is
another requirement for the bound to be nontrivial, which
is . Indeed, in the Bernoulli case, where it is
possible to achieve zero redundancy for half of the sources
(as mentioned earlier), and the bound becomes
meaningless.

Let us consider an important example where the above
bound is useful. For , is the zero-mean Gaussian
density function with variance . Therefore, the log-
moment generating function is given by , and
the differential entropy is . Thus we have

(33)

If is the class of Gaussian ARMA(, ) sources with
driving noise of variance , then

and , and we further obtain

(34)

This bound has been obtained by Rissanen [90], and it is
known to be tight at least in the autoregressive case [26].
Another example of a class of Gaussian sources is the one
where , being zero-mean independent and
identically distributed (i.i.d.) Gaussian noise with power,
and is a deterministic signal with power,

limited to and relative bandwidth (normalized by) limited
to . Here again,

for every , but now

the capacity of the band-limited Gaussian channel, which gives

(35)

As for achievability of the above bound, recall that the
corresponding universal probability assignment problem is
solved by the mixture with respect to the capacity-
achieving input which is Gaussian, and therefore itself
is Gaussian. When is in turn factored to a product
of , each one of these conditional densities is
again a Gaussian density, whose exponent depends only on

, where is a linear predictor, and the
asymptotic variance is given by

being the power spectral density of the capacity-
achieving input process. It can be shown (using techniques
similarly as in [41]) that this Bayesian linear predictor
asymptotically attains the above bound.
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Another approach to derivation of lower bounds on perfor-
mance of universal schemes has been proposed in the broader
context of the multi-armed bandit problem [1], [2], [64],
[108]. In this line of work, tight upper and lower bounds on
redundancy rates have been given for a class ofuniformly good
schemes in the sense of adapting to the underlying source.
However, these results are confined to the case whereis a
finite set.

B. Very Large Classes of Sources

So far we have discussed classes of sources where there
exists a uniform redundancy rate, which is given in terms of
the capacity , at least in the self-information loss case. The
capacity may or may not tend to zero as , but even if
it does not, the predictive self-information performance, or
the compression ratio of the corresponding universal code,

, might still be less than (where
is the alphabet size) for all , provided that is
sufficiently large. This means thatsomedegree of compression
(or nonuniform probability assignment) is still achievable for
all sources at the same time, although there is no longer hope
to approach the entropy for every.

In this section, we focus on much wider classes of sources
where even this property does no longer exist. These classes
are so rich that, in the self-information loss case, for every
finite and every predictive probability assignment, there
exists a source in the class such that

In other words, there is a total “breakdown” in terms of self-
information loss performance, and similar behavior with other
loss functions. This happens, for instance, with the class of all
stationary and ergodic sources [56], [106], [107] the class of all
finite-order Markov sources (without limiting the order), and
many other classes that can be represented as infinite unions
of nested index sets . Nonetheless, universal
schemes that approach the entropy rate, or more generally,
the asymptotic Bayes envelope, may still exist if we do not
insist on uniform redundancy rates. In other words,weakly
universalschemes [27] are sometimes available. For example,
the Lempel–Ziv algorithm (and hence also the predictive
probability assignment that it induces [65]) is weakly universal
over the class of all stationary and ergodic sources with a given
finite alphabet [126]. Necessary and sufficient conditions for
the existence of weak universality can be found in [60].

One straightforward observation that we can now make from
an analysis similar to that of (23), is that a sufficient condition
for the existence of a weakly universal predictor for a general
(bounded) loss function is the existence of such predictor
for probability assignment in the self-information case. Thus
the predictive probability assignment with respect to the self-
information loss function is again of crucial importance. In
view of this fact, the fundamental problem, in this context, is
that of estimating conditional probabilities.

Cover [18] has raised the question whether it is possible to
produce consistent estimates of conditional probabilities with

almost surely as

. Bailey [6] gave a negative answer to this question (see
also Ryabko [98, Proposition 3]), but pointed out a positive
result (Orenstein [85]) to a similar question. It states that for a
two-sided stationary binary process, it is possible to estimate
the value of strongly consistently
as . The proposed estimates are based on finite-order
Markov approximations where the order depends on the data
itself. A similar estimator for turns out to
converge to the true value in the sense, which is weaker
than the almost sure sense. This estimator has been shown by
Bailey [6] to give

almost surely as . Algoet [3] gave an extension of
Orenstein’s results to more general alphabets, which was later
simplified by Morvai et al. [80]. In a more recent paper,
Morvai et al. [81] have simplified the estimator (which is
based on empirical averages) for the finite-alphabet case, at
the expense of losing the strong consistency property. Their
estimator is consistent in the self-information sense, i.e., for
every stationary

(36)

which implies consistency in the sense.
Another line of research work concentrates on the square-

error loss function. Since the minimum mean-square-error
predictor for a known source is the conditional mean

most of the work in this direction focuses on consistent esti-
mation of the conditional mean. For Gaussian processes with
unknown covariance function, Davisson [26] has shown that
a th-order linear predictor, based on empirical covariances
gives asymptotic cumulative mean-square error that behaves
like , where is the residual error of
optimal th-order linear prediction with known covariances.
Thus by letting grow sufficiently slowly with time, the
conditional mean, given the infinite past, can be eventually
attained. For general stationary processes, Scarpellini [102]
used sample averages with certain spacing between time
instants in order to estimate where

is a fixed time instant. Modha and Masry [79]
considered mixing processes and proposed an estimator based
on slow increase of the prediction memory, using complexity
regularization methods. The limitation of their method is that it
depends on knowledge of the mixing rate. Meir [73] proposed
a complexity regularization method in the same spirit, where
for a given complexity, the class of allowable predictors is
limited by a finite Vapnik–Chervonenkis (VC) dimension.

Finally, for a general loss function, Algoet [4] (see also [5]
for the special case of log-optimum investment) has proved
strong ergodic theorems on the cumulative loss. First, for a
known stationary and ergodic source, it is shown that the
strategy that minimizes the conditional mean of given
the past, is also optimal in the almost sure (and) limit of the
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time-average loss. When is unknown, empirical estimates
of the conditional probability are provided. By plugging in
these estimates instead of the true, universal schemes are
obtained with the same ergodic property as above.

IV. THE DETERMINISTIC SETTING

In the traditional, probabilistic setting of prediction, that
was described in the previous section, one assumes that the
data are generated by a mechanism that can be characterized
in statistical terms, such as a memoryless source, Markov
source, or more generally, an arbitrary stationary and ergodic
source. As we have seen, the observer estimates on-line either
explicitly (plug-in approach) or implicitly (mixture approach)
the conditional probability of the next outcome given the past,
and then uses this estimate for prediction of future outcomes.

But when it comes to the deterministic setting of indi-
vidual data sequences, the underlying philosophy must be
substantially different. There is no longer an assumption of
an ensemble of sequences generated by an underlying proba-
bilistic mechanism, but rather only one arbitrary, deterministic,
individual sequence. What is the best prediction strategy that
one can possibly use for this fixed sequence?

We realize that, as stated, this question is completely trivial
and meaningless. As explained in Section I, formally, for any
sequence, there is a perfect predictor that suffers zero loss
along this particular sequence. But at the same time, this
particular predictor might be extremely bad for many other
sequences. Evidently, we are over-tailoring a predictor to one
particular sequence, and there is no hope to track the strategy
of this predictor in the sequential regime that is inherent to
the task of prediction. The root of this “overfitting” effect lies
in the fact that we allowed, in the above discussion, too much
freedom in the choice of the predictor. Loosely speaking, so
much freedom that the amount of information treasured in the
choiceof this predictor is as large as the amount of information
conveyed by the sequence itself! Roughly speaking, in these
situations the algorithm “learns the data by heart” instead of
performing the task we expect. The unavoidable conclusion is
that we must limit the freedom of the choice of predictors to
a certain class. This limited class of allowable predictors will
be henceforth referred to as thecomparison class(or target
class) and will be denoted by .

We would like to have asingle universal predictor that
competes with the best predictor in, simultaneously for
every , in the sense that

is asymptotically the same as

The universal predictor need not be necessarily inbut it
must be the same predictor for every, whereas the choice of
the reference predictor in , that minimizes the average loss,
may depend (by definition) on the entire sequence. The
difference between the performance of the sequential universal
predictor and the best predictor in for actually manifests

our regret, because the choice of this optimal predictor is the
best we could have done in retrospect withinhad we known
the entire sequence in advance.

Loosely speaking, there is a fairly strong duality between
the probabilistic and the deterministic setting. While in the
former, we make certain assumptions and limitations on the
data sequences that we are likely to encounter, but no prior
limitations on the class of prediction algorithms, in the latter,
it is the other way around. Yet, the deterministic setting is
frequently considered stronger and more appealing, because
the underlying model seems to be better connected to practical
situations: There is no (known) probabilistic mechanism that
generates the data, but on the other hand, our algorithmic
resources are, after all, limited.

Perhaps one of the facts that shed even more light on this
duality between the probabilistic and the deterministic setting,
is that quite frequently, the comparison classis defined as a
collection of predictors that are obtained as optimal solutions
for a certain class of sources in the parallel probabilistic
setting. For example, fixed predictors, where is a
constant independently of , are optimal for memoryless
stationary sources, linear predictors are sufficient for the
Gaussian case, Markov predictors are adequate for Markov
processes, and so on. In these cases, there is a remarkable
degree of duality and analogy between results obtained in
the deterministic setting and those of the corresponding prob-
abilistic setting, notwithstanding the considerable difference
between the two concepts. Specifically, many of the results
of the individual-sequence setting are completely analogous
to their probabilistic counterparts, where the probabilistic
source is replaced by the empirical measure extracted from the
individual sequence with respect to certain sufficient statistics
that are induced by . Indeed, the structure of this section is
similar to that of the previous section, so as to manifest this
analogy. Nonetheless, there are still certain aspects in which
the two scenarios diverge from each other, as we shall see later.

Similarly as in the previous section, our emphasis here is on
the information-theoretic point of view, and as such, it again
largely focuses on the self-information loss function.

A. Indexed Comparison Classes

In analogy to the indexed class of sources, that was exten-
sively discussed in the previous section on the probabilistic
setting, there has been considerable attention in the literature
to the dual comparison classes in the deterministic setting. An
indexed comparison class of predictors is a classthat can
be represented as , where designates the index
and is the index set. Similarly as in Section III-A, the index
set could be a finite set ( —positive integer),
where may or may not grow with , a countably infinite
set, a continuum, e.g., a compact subset of the real-line or a
higher dimensional Euclidean space (whenis a parameter of
a smooth parametric class), or some combination of these. As
was already noted above, in many cases,could be defined as
the optimum predictor for a certain member of an indexed
class of sources (cf. Section III-A).

1) Self-Information Loss:In analogy to Section III, let us
consider first the self-information loss function, or equiv-
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alently, the probability assignment problem for individual
sequences. In other words, our goal is to sequentially assign
a universal probability mass function

(37)

to the observed sequence, so that would be
essentially as small as

for every sequence , uniformly if possible.
Shtarkov [109] has demonstrated that this is indeed possible

by minimizing over the quantity

(38)

Specifically, the minimax-optimal probability assignment is
attained by the normalized maximum-likelihood function

(39)

where is a normalization factor, i.e.,

(40)

Indeed, it is readily seen that, by definition of

(41)

and so, the universal probability function essentially
assigns uniformly as high probabilities as those assigned by
the best member in the comparison class, provided that
does not grow exponentially rapidly with.

If, for example, is the class of finite-alphabet memory-
less probability assignments (i.e., ) with

designating the vector of free letter probabilities,
then it is easy to show (e.g., by using the method of types
[24]) that grows asymptotically in proportion to and
thus (38) behaves like . This in turn is the same
behavior that was obtained for smooth parametric families in
the probabilistic setting.

The number is therefore given the
interpretation of the deterministic analog to the minimax
redundancy-capacity , where the maximization of redun-
dancy over in the probabilistic setting is now replaced by
maximization over all possible sequences. Intuitively,
is another measure for the richness of the comparison class of
predictors, in addition to the capacity of the probabilistic
setting. Moreover, it turns out that there are relations between
these two quantities. To demonstrate this relation between
and the operational notion of capacity as the maximum reliable
transmission rate, we note that when , the
quantity can be interpreted as where is the

probability of correct decision of an -hypotheses testing
problem involving the sources

that are induced by the predictors, with a uniform prior on.
This is true because

(42)

This means that if the sources are “far apart” and distin-
guishable with high probability, then the minimax redundancy
is essentially (compare with the first example in Section
III). If is countably infinite or a continuum, then any finite
subset of gives a lower bound on
in the above manner. As grows, normally decreases, but
the product can be kept large at least as long asis
smaller than so as to “transmit” at a rate below capacity,
which allows for keeping close to unity. But the maximum
achievable product might be achieved at rates beyond
capacity.

It is easy to show directly that is never smaller than
for the same class of sources or probability assignments

indexed by . This implies that a necessary condition for the
existence of minimax universality in the deterministic setting
is the existence of the parallel property in the dual probabilistic
setting. In the smooth parametric case bothand behave
like . More precisely (see, e.g., Rissanen [92])

(43)

whereas

(44)

It turns out, however, that richer indexed classes may exhibit
a considerably larger gap between these two quantities (see,
e.g., the example of arbitrarily varying sources in [76]).

The main drawback of the maximum-likelihood (ML) prob-
ability assignment is obviously on the practical side: not
only is hard to compute in general, but more importantly, it
is again horizon-dependent, i.e., the sequence lengthmust be
prescribed. To alleviate this difficulty, the maximum-likelihood

can be exponentially approximated by
a mixture using Laplace integration [67]. Specifically, for
the case of stationary memoryless probability assignments,
Shtarkov [109] proposed, following Krichevsky and Trofimov
[63], the Dirichlet- (Jeffreys’ prior) mixture, which
leads to the purely sequential probability assignment

(45)

where is the number of occurrences of the letterin
. We have mentioned earlier, in Section III, the family of

sequential probability assignments that arise from Dirichlet
weighting in general. But the interesting property of the
Dirichlet- (in addition to being Jeffreys’ prior for
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this family), is that it is asymptotically as good as the ML
probability assignment. Specifically, with defined
as above

(46)

where only the constant here is larger than the one obtained
by .

Further refinements and extensions of this result have been
recently carried out, e.g., in [92] and [121]. Specifically,
Xie and Barron [121] introduce also the dual notion of the
maximin redundancy (or regret) whose value coincides with

as well, and show that Jeffreys’ mixture is asymptotically
maximin with asymptotically constant regret for sequences
whose empirical pmf’s are internal to the simplex. Similarly
as in the probabilistic setting, it is not asymptotically minimax
though because of problematic sequences on the boundary of
the simplex. Nevertheless, a slight modification of Jeffreys’
mixture (which again, depends on and hence makes it
again horizon-dependent), is both asymptotically minimax and
maximin.

Finally, Weinberger, Merhav, and Feder [117] have studied
the problem of universal probability assignment for individual
sequences under the self-information loss function with respect
to the comparison class of all probability assignments that are
implementable by finite-state machines with a fixed number of
states. There are no such accurate formulas therein regarding
the higher order redundancy terms. However, it is shown that
the behavior is not only minimax over all sequences,
but moreover, it is a tight lower bound formostsequences of
mosttypesdefined with respect to those finite-state probability
assignments. This result parallels the-almost everywhere
optimality of universal probability assignments in the proba-
bilistic setting (cf. Section III). In this context, it is interesting
to note, as shown in [117], that in contrast to the probabilistic
setting, the plug-in approach fails, in general, when it comes to
individual sequences. We will elaborate on these results further
in Section V in the context of hierarchical comparison classes.

2) General Loss Functions:The problem of universal
sequential prediction or decision-making for individual
sequences under general loss functions, is definitely a much
wider problem area than that of the special case of probability
assignment under the self-information loss function that we
discussed thus far in this section. In fact, most of the classical
work in this problem area, in various scientific disciplines, has
concentrated primarily on the case ofconstantpredictors, i.e.,
predictors for which each yields a certain fixed prediction,
regardless of the observed past. For example,, for a certain
value of , may suggest to predictalways “ ” as the next
outcome of a binary sequence, or, it may always assign a
probability of for the next outcome being “.” This is
seemingly not a very interesting comparison class because
past information is entirely ignored.

Nonetheless, the motivation for carefully studying this sim-
ple comparison class is that it is fundamental for exam-
ining comparison classes of more sophisticated predictors.
For example, a first-order Markov predictor, characterized by

, can be thought of (in the binary
case) as a combination of two fixed predictors operating,
respectively, on two subsequences of: the one correspond-
ing to all time instants that follow , and the
other—where . Having made this observation, the
problem then boils down back to that of constant predictors.

One example, which is still closely related to the self-
information, is that of portfolio selection for optimal invest-
ment in the stock market [3]–[5], [21]. In this model, the goal
is to maximize the asymptotic exponential growth rate of the
capital, where the current investment strategy depends on the
past. The corresponding loss function, in our framework, is
then , with both and being -
dimensional vectors of nonnegative components, where in
the former these components sum to unity. The vector
represents the return per monetary unit in several investment
opportunities (stocks), whereas the vectorcharacterizes the
fraction of the current capital allocated to each stock. Cover
[21] and Cover and Ordentlich [22] have used techniques
similar to those of the self-information loss described above,
to develop a sequential investment algorithm and related it
again to universal coding with results of a similar flavor.
Again, their universal sequential strategy competes with the
best constant investment strategy. These results can be viewed
as an extension of the self-information loss because the latter
is actually a special case where the vectoris always all-
zero except for one component (corresponding to the current
alphabet letter), which is .

3) The Sequential-Compound Decision Problem:Other ex-
amples of loss functions are not so closely related to that of
the self-information loss, and consequently, the techniques and
the results are considerably different. The comparison class of
constant strategies for more general loss functions has been
studied in a somewhat more general setting, referred to as the
sequential-compound decision problem, which was first pre-
sented by Robbins [94] and has been thoroughly investigated
later by many researchers from disciplines of mathematical
statistics, game theory, and control theory (see, e.g., [8],
[9], [49], [50], and [112]). Perhaps the most fundamental
findings of the compound sequential decision problem are
summarized in the theory of Bayes decision rules, that includes
the notion of Bayes envelope(that is, the best achievable
target performance as a functional of the empirical pmf of the
sequence) and an analysis of its basic properties. This in turn
has been combined with approachability–excludability theory,
that provides simple necessary and sufficient conditions under
which one player (in our case, the predictor) of a repeated zero-
sum game can reach a certain performance level (in our case,
the Bayes envelope) for every strategy of the opponent player
(in our case, Nature that chooses an adversary sequence).

The sequential compound decision problem is more general
than our setting in the sense that the observer is assumed to
access only noisy versions of the sequence, yet the loss
function to be minimized is still associated with the clean se-
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quence (e.g., the expected cumulative loss, or its probabilistic
limit with respect to the ensemble of noise processes). Hannan
[49] has taken a game-theoretic approach to develop upper
bounds on the decay rate on the regret, showing a convergence
rate of in the finite-alphabet, finite-strategy space
case, and a rate of in the continuous case,
provided that the loss-minimizing strategyas a functional of
the underlying empirical pmf of , that is, theBayes response,
satisfies a Lipschitz condition of order . Thus for ,
which is normally the case, this means a convergence rate of

, similarly to the self-information loss case that we
have seen above.

One of the essential ideas underlying the analysis tech-
niques, is the following simple “sandwich” argument (see, e.g.,
[75]): It is easy to show that

i.e., the Bayesian envelope, is upper- and lower-bounded by
the average loss associated with two strategies. The current
strategy for the upper bound is optimal within for the data
seen thus far , and for the lower bound, it is an (imagined)
strategy that is allowed to accessfor this optimization within

. Thus the strategy of the lower bound sees merely one more
outcome than that of the upper bound. When the comparison
class is that of constant strategies, the Bayes envelope depends
on the sequence only through its empirical pmf, and this
additional observation perturbs the current empirical pmf by
a term proportional to . Therefore, under the appropriate
smoothness conditions ( above), the instantaneous losses
of the upper and lower bound differ also by a quantity that
scales proportionally to , which when averaged over the
integers , gives . A fortiori, the difference
between the upper bound and the Bayes envelope, i.e., the
regret, cannot exceed .

In some important special cases, however, the loss function
and the Bayes response are discontinuous. This happens, for
example, in prediction of binary sequences under the criterion
of relative frequency of mispredicted outcomes, where the
Bayes response with respect to the class of constant predictors
is binary itself and it depends on whether the relative frequency
of zeros is below or above . In this case, randomization
of the sequential prediction strategy around the discontinuity
point (see, e.g., [40], [99], and [100]) is necessary in order
to achieve the target performance for problematic sequences
whose empirical pmf’s visit infinitely often (as ) these
discontinuity points. The cost of this randomization, however,
is a considerable slowdown in the rate of convergence towards
the Bayes envelope. In the above binary case, for example,
the rate of convergence is , whereas in the parallel
probabilistic setting, where such a randomization is not needed
(cf. Section III), it is as fast as .

Van Ryzin [112] has shown that even in the former case
of smooth loss functions, the convergence rate can be more
tightly upper-bounded by under certain regularity
conditions on the channel through which the observer receives
the noisy measurements. Gilliland [46] further investigated

convergence rates for the special case of the square loss
function under various sets of assumptions.
Several later papers [82], [113] deal with the more general
case where the comparison class consists of Markov strategies,
whose importance will be emphasized later.

On-Line Prediction Using Expert Advice:A completely
different point of view has been taken more recently, primarily
by learning theorists in their studies of a paradigm referred to
ason-line prediction using expert advice(see, e.g., [12], [13],
[36], [43], [69], [84], and [115]). In the previously defined
terminology, the basic assumption is that the comparison
class consists of finitely many predictors , referred
to as experts.There are absolutely no assumptions on any
structure or relationships among these experts. The goal is
to devise a sequential universal prediction algorithm that
performs essentially as well as the best of these experts along
every individual sequence.

We have actually examined earlier this scenario in the
context of the self-information loss function and a finite
index set , where our conclusion was that
the necessary minimax price of universality need not exceed

in the worst case, namely, when the probability
assignments correspond to distinguishable sources. Inter-
estingly, this behavior essentially continues to take place for
general (but sufficiently regular) loss functions. Vovk [115]
and Littlestone and Warmuth [70] proposed independently
a sequential prediction algorithm, whose regret with respect
to the best expert never exceeds , where is a
constant that depends solely on the loss function. At the
heart of this algorithm, there is a remarkable similarity to
the mixture approach, or, more concretely, the notion of
exponential weighting that was discussed in Section III in the
special case of the self-information loss.

Here is the idea: let be a given constant (to be chosen
later) and consider the weighted average of , i.e.,

(47)

where is the prediction of theth expert at time, and
is theweightassigned to this expert at this time. The weights,
at each time instant, are nonnegative numbers summing to
unity. Intuitively, we would like to assign higher weights
to experts who were proven better in the past. Therefore, a
reasonable thing to do, following (10), is to assign to each
expert a weight that is proportional to

where for the summation will be defined as zero (i.e.,
uniform initial weighting). Now, if we are fortunate enough
that there exists a strategysuch that for every

(48)

then it is easy to see that this strategy will serve our purpose.
This is true because the above condition suggests the following
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conceptually simple algorithm:

0) Initialization: Set for and
then .

1) Prediction: Choose a prediction at time that satisfies
(48).

2) Update: Upon receiving , update the weight function
according to

(49)

3) Iteration: Increment and go to 1).

It follows immediately from the definition of the algorithm
that the exponent of the cumulative loss associated with
satisfies

(50)

and so

(51)

Thus the crucial question that remains to be addressed is
regarding the conditions under which (48) is satisfied. To
put this question in perspective, first, observe that for the
self-information loss function and , the functions

are probability measures of-tuples. Therefore, their weighted
average (mixture) is itself a probability measure and as such,
can be represented by

for a certain , which is the probability assignment cor-
responding to the finite mixture. However, in general, the
function may not be closed to convex combinations.
Fortunately, it is shown that under fairly mild regularity con-
ditions (see [52], [115], and [116] for details), it is guaranteed
that (48) always holds provided thatis chosen to be at most

and that , in which case the regret can be made as
small as . Many of the important loss functions, like
the self-information loss and the square-error loss, satisfy these
conditions. For example, if the function is concave

in for every (which is the case in linear prediction and
squared-error loss under some conditions [110]), namely,

(52)

then it is clear that the weighted average of the experts’
predictions will be a suitable solution. Unfortunately, there are
also other important loss functions (like the loss function,

) for which . This means that for these
loss functions, the regret does not behave like ,
but rather decays at a slower rate with, e.g., like .
These cases should be handled separately.

What makes this algorithm even more interesting is the
fact that it turns out to be minimax-optimal in the sense that

is also an asymptotic lower bound on the maximum
regret. Unfortunately, the weak point of this lower bound is
that this maximum is taken not only over all sequences ,
but also over all possible sets of experts! The algorithm is,
therefore, asymptotically optimal in an extremely pessimistic
sense, which is of special concern whenis large. What is
left to be desired then is a stronger bound that depends on the
relationships among the experts. As an extreme example, if all
experts are identical then there is in fact only one expert, not

, and we would expect to obtain zero regret. Intuitively, we
would like the formal number of experts to be replaced by
some notion of an “effective” number of distinct experts, in
analogy and as an extension of the role played by capacity
or by in the self-information loss case. To the best of our
knowledge, to date, there are no reported results of this kind
in the literature except for Cesa-Bianchi and Lugosi [14] who
characterized the minimax regret along with upper and lower
bounds for binary sequences and the Hamming loss function,
but without any constructive algorithm yet.

Another drawback is associated with the algorithm itself. To
use this algorithm in practice, one should actually implement
in parallel the prediction algorithms proposed by allexperts,
which might be computationally demanding for large. This
is in contrast to the situation in certain special cases, e.g.,
when the experts correspond to all finite-state machines with
a given number of states [38], [40], [75], [126]. In these cases,
there is no explicit implementation of all finite-state machines
in parallel.

In spite of these shortcomings, the problem of on-line pre-
diction with expert advice has attracted fairly much attention
over the last few years and there are quite a few reported
extensions, modifications, and other variations on the theme
(see, e.g., [10] for a summary of recent work in on-line
learning). One extension that would be especially interesting is
to tie it with the setting of the compound sequential decision
problem in the sense that the predictor accesses only noisy
observations, whereas the loss function remains in terms of the
clean outcomes. Clearly, the above weighting algorithm, in its
present form, is not directly implementable since there is no
perfect feedback on the loss associated with past expert advice.

B. Very Large Comparison Classes

We end this section with a natural analog to the case of very
large classes of sources in the probabilistic setting, namely,
very large comparison classes of predictors for which there
are normally no uniform redundancy rates.

In the general level, consider a nested infinite sequence of
index sets , and their union .
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Strictly speaking, is itself an index set, whose members
are of the form , where is the smallest integer such
that . However, the basic property that makesherein
different than the index sets of Section IV-A is that it is so rich,
that for every finite sequence , the minimum cumulative loss
over all predictors indexed by is zero. In other words, there is
too much freedom within , and we are confronting again the
undesirable overfitting effect discussed earlier. This happens
in many important examples, e.g., whenconsists of the class
of all finite-state predictors with an undetermined (but finite)
number of states, or the class of all Markov predictors, or
even more specifically, all linear predictors with an unspecified
finite order, etc. Quite clearly, in all these situations, there are
enough degrees of freedom to tailor a perfect predictor for any
finite sequence , and thus our earlier definition (cf. Section
IV-A) of the target performance becomes
meaningless.

We are lead then to the conclusion that we must modify
the definition of the target performance. The key principle for
doing this is to keep an asymptotic regime of . To fix
ideas, consider an infinite sequence where

always designates the firstoutcomes of . First, similarly
as in Section IV-A, let us define

(53)

where it is assumed that each is an index set of the type
discussed in Section IV-A. As for asymptotics, we let first
grow without bound, and define

(54)

where the operation manifests a worst case approach:
since the sequence is not necessarily ergodic, i.e., the limit
may not exist, one must worry about the worst performance
level obtained infinitely often along. Finally, we define our
target performance as

(55)

where now the limit clearly exists since is a
monotonically nonincreasing sequence whose elements are
obtained from minimizations over increasing sets of predictors.
Since the limit is taken first, the asymptotic regime
here indeed meets the above mentioned requirement that

. The problem is now to devise a universal prediction
algorithm that asymptotically achieves .

One of the most popular applications of this general scenario
is the one where consists of all strategies that are imple-
mentable by finite-state machines, which means that each

corresponds to the class of finite-state machines
with no more than states. Specifically, each member of
is defined by two functions and . The function , referred to
as thenext-state function, describes the evolution of the state
of the machine, , according to the recursion

(56)

where the initial state is fixed. The function describes the
strategy at time , which depends only on by

(57)

The idea behind this model is that the state variablerepre-
sents the limited information that the machine can “memorize”
from the past for the purpose of choosing the current
strategy. An important special case of a finite-state machine
with states is that of ath-order Markov machine (also
called finite-memory machine), where .

Ziv and Lempel described, in their famous paper [126],
a target performance in this spirit in the context of data
compression of individual sequences using finite-state ma-
chines. The best compression ratio obtained by finite-
state encoders over infinitely long individual sequences (in
the above defined sense) has been referred to as thefinite-
state compressibilityof , and the well-known Lempel–Ziv
algorithm (LZ’78) has been shown to achieve the finite-state
compressibility for every sequence. In a later paper [127], Ziv
and Lempel extended this definition to compression of two-
dimensional arrays (images), where the additional ingredient
is in defining also a scanning strategy.

In [38], results in the same spirit have been obtained for
sequential gambling over individual sequences, where again
the comparison class is that of gambling strategies that are
implementable by finite-state machines. Since the gambling
problem is completely analogous to that of data compression,
or more precisely, probability assignment under the self-
information loss function (see also [117] discussed in Section
IV-A), the results therein are largely similar to those of Ziv
and Lempel [126]. The formal setting of [38], however, is
somewhat more compliant than [126] to our general definition
of cumulative loss minimization, where each loss term depends
on one outcome only.

The results of [38] in turn provided the trigger to a later
work [40], where the comparison class of finite-state predictors
for binary sequences was studied under the Hamming loss
function, defined as if , and
otherwise. In other words, in this case, is simply
an estimate of the value of the next outcome, and the
performance measure is the relative frequency of prediction
errors. Analogously to [126], the quantity , in this special
case, is called thefinite-state predictabilityof . Similarly,
when is further confined to the class ofth-order Markov
predictors, then the correspondingly defined is called the
Markov predictabilityof . There are two main conclusions
pointed out in [40].

The first is that the finite-state predictability and the Markov
predictability are always equivalent, which means that it is
sufficient to confine attention to Markov predictors in order
to achieve the finite-state predictability. It is worthwhile to
note that in the probabilistic setting, such a result would have
been expected under certain mixing conditions because the
effect of the remote past fades away as time evolves, and only
the immediate past (that is stored as the state of a Markov
predictor) should be essential. Yet, when it comes to individual
sequences this finding is not at all trivial since the sequence
is arbitrary and there is no parallel assumption on mixing
or fading memory. The proof of this result stems from pure
information-theoretic considerations.

The second conclusion, which is largely based on the first
one, is on the algorithmic side. It turns out that a prediction
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strategy that corresponds to probability assignments based on
the incremental parsing procedure of the LZ algorithm (see
also [65] and [114]) asymptotically achieves the finite-state
predictability. The incremental parsing procedure sequentially
parses a sequence into distinct phrases, where each new phrase
is the shortest string that is not identical to any previously
parsed phrase. The reason is that the incremental parsing
procedure works like a Markov predictor of time-varying
order , where in the long run, is very large most
of the time because the phrases become longer and longer.
Consequently, the Markov predictability, and hence also the
finite-state predictability, are eventually attained. But the deep
point here lies in the simple fact that the incremental parsing
algorithm, which was originally developed as a building
block of a compression algorithm, serves also as the engine
of a probability-assignment mechanism, which is useful for
prediction.

This gives rise to the idea that this probability assignment
induces a universal probability measure in the context of
individual sequences. Loosely speaking, it means that the
universal probability measure is proportional to ,
where LZ is the LZ codeword length for [38], [65].
This in turn can be thought of as an extension of Shtarkov’s
ML probability assignment because is well known
[87] to be an upper bound (within vanishingly small terms) of

, where the maximum is taken over all finite-state
sources with a fixed number of states.

The problem of [40] was later extended [75] in several
directions simultaneously: the alphabet of and the loss
function were assumed to be more general. Also, classes of
predictors other than that of deterministic finite-state predic-
tors were considered, e.g., randomized finite-state predictors
(where the next-state function is randomized), families of
linear predictors, etc. Many of the results of [40] turn out
to carry over to this more general case.

Finally, one additional result of [75, Theorem 3] (see,
also [126]) relates the individual-sequence setting back
to the probabilistic setting. It tells us that under suitable
regularity conditions, for a stationary and ergodic process

the quantity defined
with respect to finite-state or Markov predictors, agrees
almost surely with the probabilistic performance measure

. One special case of this
result [126] is that the finite-state compressibility is almost
surely equal to the entropy rate of a stationary and ergodic
source. Another important example corresponds to the case
where is the class of all linear predictors of order,
and hence is the linear predictability. In the stationary
and ergodic case, the above cited result suggests that with
probability one, coincides with the variance
of the innovation process (that is, the residual linear prediction
error) given by

where is the power spectral density of the process.
While the duality between certain classes of sources and the

corresponding classes of predictors was quite straightforward

in relatively small indexed (parametric) classes, the above
result establishes a parallel duality between the very large class
of stationary and ergodic sources and the very large class of
finite-state predictors or Markov predictors.

V. HIERARCHICAL UNIVERSALITY

So far we have focused on two substantially different
situations of universal prediction, both of which take place
in the probabilistic setting as well as in the deterministic
setting: Universality with respect to an indexed class,1 which
is relatively “small,” as opposed to universality with respect to
a very large class, where no uniform redundancy rates exist.
These two extreme situations reflect the interplay between
two conflicting goals, namely, fast decay of redundancy rates
on the one hand, and universality with respect to classes as
wide and general as possible, on the other. For example, the
Lempel–Ziv algorithm for data compression (or for predictive
probability assignment) is universal for all stationary and
ergodic sources, but when a memoryless source is encountered,
this algorithm gives a redundancy rate that might be much
slower than that of a universal scheme which is tailored to the
class of memoryless sources; see [71], [87], and [101].

Our basic assumption throughout this section is that the
large class of sources (in the probabilistic setting) or
predictors (in the deterministic setting) can be represented
as a countable union of a sequence of index sets ,
which may, but not necessarily, have a certain structure, such
as nestedness . In the probabilistic setting,
perhaps the first example that naturally comes into one’s mind
is where each is the class of discreteth-order Markov
sources, and hence the unionis the large class of all finite-
order Markov sources. Furthermore, in the finite-alphabet case,
if we slightly extend this class and take its “closure” with
respect to the information divergence “distance” measure, it
would include the class of all stationary sources. This is
because every stationary source can be approximated, in the
divergence sense, by a sequence of Markov sources of growing
order [44, Theorem 3.5.1, p. 57], [47, Theorem 2.6.2, p. 52]. A
few other examples of hierarchical probabilistic models are the
following: i) finite-state sources with deterministic/randomized
next-state functions, ii) tree sources (FSMX), iii) noisy ver-
sions of signals that are representable by countable families of
basis functions, iv) arbitrarily varying sources [76], v) sources
with countable alphabets (referred to as sequences of classes of
growing alphabets), and vi) piecewise-stationary memoryless
sources. Most of these examples have dual comparison classes
in the deterministic setting.

In view of the discussion in the above two paragraphs, a
natural question that arises, at this point, is the following: can
one devise a universal predictor that enjoys both the benefits
of a small indexed class and a large class? In other words,
we would like to have, if possible, a universal predictor with
respect to the large class, but with the additional property that it
also performs essentially as well as the best universal predictor

1Since this refers to both the probabilistic and the deterministic setting, the
term “class” here corresponds both to a class of sources in the probabilistic
setting, and a comparison class of predictors in the deterministic setting.
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within every given indexed subclass of . In the probabilis-
tic setting, this means that if we are so fortunate that the source
happens to be a member of a relatively small indexed class
(e.g., a memoryless source), then the redundancy, or the regret,
would be essentially the same as that of the best universal
predictor for this smaller class. In the analog deterministic
setting, we would like the universal predictor of this large
class to behave similarly as the best universal predictor within
a certain indexed comparison subclass. Note that the above
question is meaningful even if is merely a finite (rather than
a countably infinite) union of . The reason is that the
uniform redundancy rate of, that is, the redundancy-capacity,
denoted by in the self-information loss case, might still
be larger than that of any subset . Therefore, even in
this case, treating just as one big class might not be the
best thing to do.

In the probabilistic setting, Ryabko [97] was the first to
address this interesting question for the above described
nested sequence of classes of Markov sources, and for the
self-information loss (universal coding). Generally speaking,
Ryabko’s idea is to apply the following conceptually simple
two-part code, referred to as atwice-universalcode. The first
part of the code is a codeword for an integerwhose length
is , and the second part is a
universal code with respect to , where is chosen so as to
minimize the total codeword length. Clearly, this code attains
redundancy of

(58)

which obviously never exceeds for the
true value of . Since behaves like in
the Markov case, the additional term does not affect
the rate of convergence within each . Thus although there
cannot be uniform redundancy rates simultaneously over the
entire class of Markov sources there is still asymptotically
optimal behavior within every .

An alternative to this two-part code, which cannot be
transformed easily into a prediction scheme, is the mixture
approach. Specifically, for the problem of prediction with
self-information loss, the suggested solution is based on a
probability assignment formed by two-stage mixture, first
within each , and then over the integers [98].
The first observation is that the mixture approach, with appro-
priately chosen weight functions, is no worse than the above
two-part scheme. To see this, let us assume that
satisfy Kraft’s inequality with equality (otherwise, they can be
improved), and consider the two-stage mixture

(59)

where is the capacity-achieving prior of . Then

(60)

where the left-most side corresponds to the performance of
the mixture approach and the right-most side corresponds to
the performance of the two-part scheme with an optimum
mixture within each class. The message here is that for every
individual sequence, the mixture approach is no worse than the
two-part approach. In [117] this point is further explored and
developed for several examples of hierarchical classes (finite-
state machines and others) in view of the fact that the first
term of the right-most side above is also a lower bound for
“most” sequences in a fairly strong sense (cf. Section III). Of
course, the last chain of inequalities continues to hold after
taking expectations in the probabilistic setting.

It turns out though, that in the probabilistic setting the
mixture approach is not only no worse than the two-part
approach, but moreover, it is an optimal approach in a much
sharper and deeper sense. As an extension to the result of

-almost everywhere optimality of (cf. Section II), the
following holds for hierarchies of classes [39, Theorem 3]: the
two-stage mixture with arbitrary weight functions
within the classes, and , , over
the positive integers, simultaneously minimizes in essence
redundancy for -most points in of -most classes .
If, in addition, is the capacity-achieving prior for all
, then this minimum redundancy can be decomposed into a

sum of two terms, the first of which is , the capacity
within the underlying class , and the second is an extra
redundancy term that reflects the additional cost of universality
with respect to the unknown. The latter term is always upper-
bounded by . However, if we further
assume that the classes are “easily distinguishable” in the sense
that there exists a good (model order) estimator forwith
small average error probability [39, Theorem 4], then
is an asymptotically tight bound. This means that in the case
of distinguishable classes, is the optimal
performance even at the level of the higher order term ,
which might be considerably larger for large. However, if
the classes are not easily distinguishable, the mixture approach
yields a smaller second-order redundancy term whereas the
two-part coding approach continues to give . Some
guidelines regarding the choice of(or, equivalently, )
are given in [39]. It should be noted that for any monotone
nonincreasing sequence of probabilities, for all
, namely, , and so is

optimum redundancy in the distinguishable case, as it can be
asymptotically attained by a universal code for the integers.

From the viewpoint of sequential predictive probability as-
signment, however, both the two-part method and the method
of mixtures are not directly implementable because in the
former, the minimizing depends on the entire , and in the
latter, may depend on . A possible alternative to the
nonsequential minimization overcould be on-line estimation
of and plug-in. An algorithm in this spirit has been proposed
by Weinberger, Rissanen, and Feder [118] for hierarchies of
tree sources in the probabilistic setting, where the estimator of

(which is associated the context, in this case) was based
on algorithm Context. Fortunately, the probability of error
in estimating decays sufficiently rapidly, so as to leave
the leading redundancy term unaffected. In the deterministic
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setting, however, it can be shown [117] that the method based
on the plug-in estimate of does not work, i.e., there are
sequences for which the resulting “redundancy” is higher than
achieved when the class is known in advance.

The mixture approach, however, is useful in both the
probabilistic setting and the deterministic setting, giving us
yet another reason to prefer it. To overcome the problem
mentioned above, namely, the fact that the weights of the
mixture over the index depend on the horizon, we use fixed-
weight functions. Fortunately, as mentioned in Section II, in
many cases are replaceable by mixture weights that do not
depend on and yet asymptotically achieve capacity.

At this point it is necessary to address a major practical
concern: is it computationally feasible to implement the two-
stage mixture probability assignment? More specifically, we
have seen (Sections III and IV) that in some important
examples the mixture within a single indexed class is easily
implementable, but is it still reasonably easy to implement
the second-stage mixture among (possibly infinitely) many
classes. Unfortunately, there is no positive answer to this
question in the general level. Nonetheless, Willems, Shtarkov,
and Tjalkens, in their award-winning paper [120] provided a
positive answer to this question for finite hierarchies of classes
of tree sources, using an efficient recursive method, referred to
as context-tree weighting.Their method is optimal for every
individual sequence in the sense of (60). For hierarchies of
countably infinitely many classes, however, the implemen-
tation issue is still unresolved. In [117] several examples
are demonstrated where the countably infinite mixture over

actually collapses to a finite one. This happens because
the contributions of mixtures corresponding to allbeyond
a certain threshold turn out to be identical and then
can be merged with the combined weight . The
problem is, though, that normally grows with , and so,
the computational burden of computing mixtures at every
time instant becomes explosively large as time elapses.

So far, we have discussed hierarchical universal prediction
solely under the self-information loss function. What can be
said about other loss functions? Apparently, we can deduce
from the self-information loss function to other loss functions
in the same way that this has been done in Sections III and
IV. Beyond that, we are not aware of much reported work
on this topic. We will mention only two directions that have
been pursued explicitly. The first one is by Helmbold and
Schapire [55], who have combined the exponential weighting
mechanism of on-line prediction using expert advice [115]
(with respect to the absolute error loss function) together with
the context-tree weighting algorithm of Willems, Shtarkov,
and Tjalkens [120] for competing with the best pruning of
a decision tree.

Other recent work is in hierarchical linear prediction for
individual sequences under the square error loss function
[41], [110]. In these papers, the linear prediction problem is
transformed into a Gaussian sequential probability assignment
problem. The universal assignment is obtained by a two-stage
mixture, over the linear prediction coefficients and over the
model order. For the mixture over the parameters, a Gaussian
prior is used, and the mixture can be evaluated analytically.

The probability assignment attained by the mixture does not
correspond directly to a universal predictor, but fortunately,
such correspondence can be made for a certain range of
values of the predicted sequence. Thus by a proper choice
of prior, the predictor can be scaled to any finite range of
the sequence values. In addition, the mixture over the model
order is performed in a computationally efficient way, since
using lattice filters, all possible linear predictors with model
order up to some largest order can be weighted in an
efficient recursive procedure whose complexity is not larger
than that for a conventional linear predictor of the model
order . It was also noted, following [75], that a plug-in
estimator of the parameter (resulting from the recursive least
squares (RLS) algorithm) leads to universal prediction albeit
at a slower rate than the mixture approach. The resulting
universal linear predictor has been implemented and tested
experimentally in several practical communication and signal
processing problems [110].

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, an attempt has been made to provide an
overview on the current state-of-the-art in the problem area of
universal prediction. As explained in Section I, it is definitely
not, and not meant to be, a full encyclopedic survey of all
scientific work that has ever been done on this topic. The aim
was to mention several important concepts from the authors’
point of view. Let us summarize some of these concepts very
briefly.

We have seen that the problem of universal prediction has
been studied extensively both in the probabilistic and the
deterministic setting. There are many common features shared
by these two settings. First of all, in both of them the self-
information loss case plays a central role, which stems from
several facts. i) It is an important loss function on its own
right for reasons that were explained in Section II. One of the
main reasons is that we view the prediction problem as one
of probability assignment, and as such, the self-information
loss function arises in a very natural manner. ii) In the self-
information loss case the theory is fairly mature and well
understood. iii) Results (both lower bounds and algorithms) for
other loss functions can be obtained from the self-information
loss function. The second common feature of the proba-
bilistic and the deterministic settings is in the large degree
of parallelism between the theories of universal prediction:
universality with respect to small indexed classes, universality
with respect to very large classes, and hierarchical universality,
which actually bridges them. There is also a remarkable degree
of analogy between the quantitative results obtained in both
settings in some cases. One of the fundamental connections is
that for stationary and ergodic sequences, the best attainable
performance level of the deterministic definition agrees almost
surely with its probabilistic counterpart.

However, there are a few differences as well: sometimes
minimax redundancy rates of the deterministic setting are
different from those of the probabilistic setting. The plug-in
approach for predictive probability assignment works well in
many instances of the probabilistic setting, but it is normally
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not a good approach in the deterministic setting. The minimax
redundancy of the deterministic setting is different from that
of the probabilistic setting. Randomization is sometimes nec-
essary in the deterministic setting, but not in the probabilistic
setting.

Perhaps one of the interesting messages is that although the
term “probability assignment” originally comes from the prob-
abilistic world, it is still meaningful in the pure deterministic
setting as well. This fact is far from being trivial. Moreover,
there are very efficient algorithmic tools for obtaining good
probability assignments, and one of them is the incremental
parsing procedure of the Lempel–Ziv algorithm.

We also see a few more theoretical problems which might
be interesting to consider for future research. Some of them
have been mentioned in the body of the paper.

• Develop a more solid and general theory of universal
prediction for general loss functions, in parallel and ex-
tension of the theory of the self-information loss function.
Derive tighter and stronger lower bounds for general
loss functions both in the probabilistic setting and in the
deterministic setting. For example, in the framework of
prediction using expert advice, take into account relations
among the experts rather than assuming the worst set of
experts.

• Extend results on universal prediction with respect to the
comparison class of finite-state machines to the case noisy
observations.

• Impose limitations on the resources of the universal
sequential predictor. For example, if the comparison class
is that of finite-state predictors, how many states should
the universal predictor have to guarantee redundancy
below a certain level?

Some of these challenges have defied the best efforts of many
researchers so far. Others are yet to be explored.
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