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Abstract. High throughput RNA sequencing (RNA-seq) promises to revolutionize our understand-
ing of genes and their role in human disease by characterizing the RNA content of tissues and cells.
The realization of this promise, however, is conditional on the development of e↵ective computational
methods for the identification and quantification of transcripts from incomplete and noisy data. In this
paper, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation
of their abundances. Our probabilistic approach incorporates multiple biological and technical phenom-
ena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and
multi-mapped reads. iReckon utilizes regularized Expectation-Maximization to accurately estimate the
abundances of known and novel isoforms. Our results on simulated and real data demonstrate a supe-
rior ability to discover novel isoforms with a significantly reduced number of false positive predictions,
and our abundance accuracy prediction outmatches that of other state-of-the-art tools. Furthermore
we have applied iReckon to two cancer transcriptome datasets, a triple negative breast cancer patient
sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex
splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in
the MCF7 cell line confirmed all of iReckon’s predictions and also showed strong agreement (r2 = 0.94)
with the predicted abundances.
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1 Introduction

Accurate methods for RNA-seq data analysis are proving essential for characterization of gene regu-
lation and function, as well as understanding development and disease [Kim et al., 2008; Lopezbigas
et al., 2005; Wang et al., 2009]. The plethora of alternative isoforms present for many human genes
significantly extend the repertoire of proteins, and this source of variation has been linked to hu-
man disorders, including cancer [Shah et al., 2012]. The identification of the full set of transcripts
present in a tissue, especially those present at low abundance, remains challenging. Transcriptome
analysis from RNA-seq data typically involves solving two subproblems:

1. Identification of the set of isoforms present in the data, and
2. Estimation of the abundance of these isoforms.

The first problem is challenging due to the incomplete nature of RNA-seq data, with only two
(paired) short reads generated from each fragment of RNA. The second problem is complicated by
the plethora of sequencing biases present within a typical RNA-seq dataset, including base content
and location within the isoform, as well as PCR amplification bias, which results in multiple reads
generated from a single original fragment.

Some of the earlier methods for RNA-seq analysis addressed either the identification or the
quantification problem. For identification, methods such as TopHat [Trapnell et al., 2009] and
MapSplice [Wang et al., 2010] align raw sequencing reads to the genome in ways that allow for
the discovery of novel isoforms and identification of alternative and aberrant splicing events. For
quantification, early methods simply counted the number of fragments mapping to each input
isoform to compute its abundance. However, recent methods have significantly improved on this and
have allowed for the correction of many systematic biases. One such problem is the interdependence
of the assignment of reads to isoforms and the expression of the genes. While the assignment of a
read to an isoform clearly changes the abundance prediction of this isoform, the converse is also
true: the likelihood that a read was drawn from a particular isoform is proportional to its expression.
This problem can be elegantly solved by using the Expectation-Maximization (EM) algorithm as
previously shown in [Nicolae et al., 2011] and [Li et al., 2010]. Here, reads are assigned to isoforms
based on an initial estimate of each isoform’s abundance, and the estimates are recomputed based
on the reads. This process is iterated until it converges. One drawback of the EM-based approaches
is overfitting: all isoforms provided to the program are assigned a (possibly very low) abundance,
even if they are not expressed.

To prevent overfitting, some approaches, like Cu✏inks [Trapnell et al., 2010], rely on parsimony
and identify the minimum set of isoforms necessary to explain the observed read data, and then
reconstruct their abundance. Alternatively, RQuant [Bohnert and Rätsch, 2010] uses regularized
quadratic optimization to correct for various sequencing biases in the more global coverage sig-
nal. One recent approach [Feng et al., 2011] identified the importance of solving the two problems
simultaneously. Indeed, accurate estimation of isoform abundance is extremely di�cult if not all
isoforms are known, as the read pairs generated from unidentified isoforms can a↵ect the quantity
estimation of known ones. Abundance estimation can be used to inform isoform reconstruction: in-
coherent abundances likely indicate that some isoforms were missed by the reconstruction stage. In
this context, IsoInfer/IsoLasso [Li et al., 2011b] was the first tool to simultaneously solve both iden-
tification and quantification problems by computing a large set of possible isoforms and then using
LASSO [Tibshirani, 1996] to select a subset of these that best explain the observed abundances.
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In this paper, we present iReckon: an algorithm for simultaneous isoform reconstruction and
abundance estimation. To our knowledge, our method is the first to combine Maximum Likelihood-
based abundance estimatation with analysis of a large number of feasible isoforms in order to
allow for novel isoform detection. While the large number of parameters would typically lead to
overfitting, our method is based on the regularized EM algorithm [Li et al., 2005] with a novel,
non-linear regularization penalty to eliminate isoforms with marginal support. This allows for the
quantification and discovery of novel isoforms even with very low expression. To speed up this
algorithm we introduce several computational heuristics. Additionally, our method is the first to
directly model several biological and technical phenomena, including the presence of unspliced pre-
mRNA, intron retention, and PCR amplification bias. Figure S1 summarizes the key features of
iReckon, and compares these to other popular tools.

We have evaluated the performance of iReckon using both simulated data, with a known ground
truth, and using several real Illumina RNA-seq datasets, where we explore the methods ability to
recapitulate previously known human transcripts. Additionally we apply our method to two cancer
transcriptomes, and demonstrate its ability to discover complex splicing patterns (confirmed by
QT-PCR) that are missed by other methods. iReckon is available both as a standalone package
(open source) that can be downloaded from http://compbio.cs.toronto.edu/ireckon and as a plugin
for the Savant Genome Browser [Fiume et al., 2012, 2010], which enables running iReckon on
individual genes in real-time.

2 Results

In this section we first present a brief outline of the iReckon algorithm, with additional details
presented in the Methods section. We then evaluate the performance of iReckon on both simulated
and real RNA-seq data, and compare it to three popular existing algorithms, Cu✏inks [Trapnell
et al., 2010], SLIDE [Li et al., 2011a] and IsoLasso [Li et al., 2011b]. Finally, we use iReckon to
explore the transcriptomes of two breast cancer datasets – a patient sample recently sequenced at
the BC Genome Sciences Centre [Shah et al., 2012] and the MCF7 cell line (Accession number
SRX040504 [Sun et al., 2011]).

2.1 iReckon Algorithm Overview

The iReckon workflow consists of three stages: (1) the identification of all possible isoforms; (2)
realignment of reads to these isoforms, and (3) the reconstruction of abundances of every putative
isoform. iReckon then reports isoforms with positive abundances. These three steps are overviewed
within the next three subsections. Subsequently, we describe a visualization tool for transcriptomics
data that we have developed for use with iReckon or any similar method. The details of the methods
and models are described in the Methods section, as are the running time and memory requirements
of iReckon.

2.1.1 Reconstruction of possible isoforms The first step of iReckon is the identification of
isoforms possibly present within the sequenced sample. While iReckon will accept a set of annota-
tions, we also align all of the reads to the genome using an algorithm that allows for split-mapping.
We used TopHat [Trapnell et al., 2009] for this task, though another tool could be used instead. The
alignments and the known isoforms are used to generate the set of all observed and known splice
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junctions, which in turn are used to construct splicing graphs [Heber et al., 2002] that represent the
isoforms possibly present within the sample. Note that the information about splice junctions can
help us determine most alternative splicing events (exon skipping, alternative donor/acceptor sites,
etc.), except intron retention, which is discussed in Section 4.1. For each graph we then enumerate
all paths from each of the possible transcription start sites to the end sites. Each such path corre-
sponds to an isoform, and we further add isoforms corresponding to pre-mRNA and any putative
intron retention events detected by our intron retention statistical model (see Section 4.1). The
total number of paths through the splicing graph can potentially be extremely large. In such rare
cases, we prioritize the splice sites based on the number of reads split-mapped across each site, and
select up to 100,000 paths through the graph with the highest support.

2.1.2 Re-aligning the reads For each putative isoform, we extract its corresponding DNA
sequence and re-align the paired reads to the set of all possible isoforms. This step allows for the
direct (without splitting) alignment of each read, and allows us to use more sensitive alignment
tools resulting in having more reads correctly aligned. This step also corrects for coverage biases
near exon junctions due to alignment di�culty. Note that each read pair can align not just to
multiple isoforms within a gene, but also to multiple genes. Each pair is assigned an initial a�nity
for each isoform to which it was aligned. This a�nity is based on the alignment score and the
inferred insert length (see Section 4.2 for details).

2.1.3 Isoform selection and abundances estimation Finally, we simultaneously determine
the set of isoforms present in the data and estimate their abundances by using a regularized EM
algorithm on the set of possible isoforms. The standard Expectation-Maximization algorithm itera-
tively estimates the abundance of each isoform based on the read pairs currently assigned to it, and
then reallocates the pairs to isoforms based on both alignment scores and the isoforms’ estimated
expression levels. Because the allocation of reads to isoforms depends on their expression, the pro-
cess needs to be iterated multiple times until it converges. The standard EM algorithm would assign
most isoforms a positive (though possibly very low) abundance. However, this is likely to lead to in-
accuracies, especially in our case, as iReckon considers the space of all possible isoforms, with most
not expected to be present in the sample. To balance between maximizing the likelihood of the data
and the simplicity (number of isoforms) in the model we introduce a regularization penalty. While
the ideal objective would be to directly penalize the number of isoforms (or parameters; L0-norm)
[McLachlan and Peel, 2000], optimizing such an objective is computationally intractable, so the
sum of the parameters (L1-norm, or LASSO) is commonly used as a regularizer. However, as we
explain in Section 4.3 this is not appropriate for abundances, so we introduce a novel regularization
penalty based on a concave function. We also extend the standard EM algorithm to properly handle
PCR duplicates (section 4.4). The isoforms with positive estimated abundances at the convergence
of the regularized EM are considered present in the sample, and are reported by the algorithm.

2.1.4 Visualization We have found visualization of the RNA-seq data essential during the
development of our method and validation of novel isoforms, as well as an e↵ective way to evaluate
the tool’s performance. To enable e↵ective visualization we have developed an RNA-seq analysis
plug-in within the Savant Genome Browser [Fiume et al., 2012, 2010]. The RNA-seq Analyzer plug-
in displays the reads aligned to the genome, computes for each read the probabilities of isoform of
origin (these are visualized by coloring the reads), and visualizes the coverage signal for each isoform.
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Fig. 1: Screen shot of Savant transcriptome analysis plug-in (RNA-seq Analyzer). A: Track for the reference genome.
B: Track visualizing aligned reads, with the color representing their isoform of origin probabilities. C: Known isoforms
annotation from UCSC. D: The estimated coverage signal for the various isoforms detected by iReckon. If two RNA-
seq datasets are loaded one can also view di↵erences between abundances of each isoform in the two datasets. Note
that the blue isoform has an intron retention event (middle). Because this isoform corresponds to a non negligible
fraction of the overall gene expression level, the failure to identify this event may lead to inaccuracy in quantifying
the other isoforms. Additionally, iReckon identifies and quantifies the canonical isoform (in red), the pre-mRNA (in
yellow) and an additional isoform with an alternative donor site (in green). E: An alternative view of the relative
isoform abundances and proportions of reads assigned to each isoform are provided via pie charts. In B and E, black
reads are those that could not be assigned to any detected isoforms.

A local version of iReckon is also implemented within the plugin, and allows isoforms reconstruction
and abundances estimation from the reads’ alignments to a single selected gene. Figure 1 displays
the interface of this plugin, which can be downloaded from http://savantbrowser.com.

2.2 Performance Comparison on Simulated Data

Since there is no ground truth for any real transcriptomic dataset, simulating realistic RNA-seq
data is a standard method for comparing RNA-seq tools. We generated an RNA-seq dataset based
on known human isoforms, while also introducing various alternative splicing events (see Section
4.5) and utilized it to quantify the performance of iReckon and three other programs that perform
both isoform abundance estimation and novel transcript discovery: Cu✏inks, IsoLasso and SLIDE.
We aligned the simulated data with TopHat, gave the four methods the library of all known human
isoforms to use as a guide. To compared the methods we evaluate their recall (TP/(TP + FN);
fraction of true isoforms, known or novel, identified by the method), precision (TP/(TP + FP );
fraction of reported isoforms, known or novel, that are correct), as well as abundances estimation
accuracy. To compute these measures, we consider transcripts with positive abundance reported by
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each method. We separate isoforms into high, medium and low abundance, based on the simulated
isoform abundance as a fraction of the total simulated data (> 10�3, 10�3 > x > 5.10�5 and
< 5.10�5, respectvely). These three classes make up 5%, 69% and 26% of all isoforms. In these
results we did not consider isoforms corresponding to unspliced pre-mRNA as this is only discovered
and estimated by iReckon.

Fig. 2: Ability of the di↵erent methods to discover simulated isoforms. Simulation contains 2533 known isoforms
(provided to the methods) and 1006 novel isoforms (811 exon skips, 195 intron retentions) A Overall precision and
recall for discovering simulated isoforms (known+novel) B Recall for isoforms based on level of expression. The
proportion of known isoforms is hashed, while the solid bars above represent novel isoforms. While Cu✏inks slightly
outperforms iReckon on discovery of known isoforms with high abundance, the results on low abundance isoforms are
reversed, and iReckon outperforms the other methods at identification of all novel isoforms (size of solid sections of
bars). C Precision and recall for discovery of novel isoforms, as well as recall specific to di↵erent types of alternative
splicing simulated.

Figure 2A shows a comparison of the four methods at isoform discovery. iReckon achieves
the highest recall and precision. Figure 2B demonstrates the method’s ability to identify isoforms
depending on their level of expression. While all methods perform better at high abundance isoforms
than low abundance ones, iReckon’s performance degrades the least of the four methods. Notably,
iReckon’s recall for novel low-abundance isoforms is three times that of the other methods (solid
section of the bar). This is likely due to the fact that iReckon uses e�cient regularization, and
isoforms with unambiguous evidence in the data are still reported, even at low abundance. In
contrast, all other methods filter out isoforms using abundance thresholds. To compare the power
of the di↵erent methods at discovering novel isoforms, in Figure 2C, the recall and precision are
computed by only considering novel isoforms (novel simulated and novel found). iReckon’s precision
is around 200% higher and its recall is 50% higher than other methods at identifying novel isoforms
from RNA-seq data.

To evaluate the abundance estimation accuracy of each method we compared the predicted
isoform abundance of each correctly identified isoform to its true (simulated) abundance. We com-
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Fig. 3: Abundance estimation accuracy and isoform detection recall depending on the acceptable error threshold.
A Abundances estimation accuracy for correctly predicted isoforms. The three plots show the fraction of correctly
estimated isoforms depending on the acceptable error rate (isoforms with error above threshold have incorrect abun-
dances) for high, medium and low abundance isoforms. While performance is best for high abundance isoforms for all
methods, iReckon outperforms other methods for all three categories and regardless the error threshold. B Isoform
detection recall depending on the acceptable error rate (isoforms with error above the threshold are considered ”not
predicted”). iReckon outperforms the other methods, especially for low abundance isoforms.

puted, for each isoform, the abundance error as the ratio between the true and predicted abundance
estimates, larger over smaller. Figure 3A demonstrates the abundance estimation accuracy for each
of the four methods depending on the error threshold. Here iReckon clearly outperforms Cu✏inks,
SLIDE and IsoLasso across all three abundance classes, and for all error thresholds. The full data
is presented as scatterplots in Figure S11. In terms of median per-isoform abundance deviation
(deviation = error � 100%), iReckon outperformed the other methods on high, medium, and low
abundance classes with 8%, 14% and 48% median deviation, respectively. Cu✏inks, the second
best method overall, had 18%, 20% and 70% median deviation on the same classes and SLIDE
has a median deviation of 11% on the fewer high abundance isoforms it discovers. iReckon thus
demonstrated a significantly better global accuracy than Cu✏inks (p-value of 8.06 ·10�18, Wilcoxon
signed rank test). Box plots associated with these results are presented in Figure S12.

Figure 3B shows each method’s recall based on the abundance estimation error. In this case an
isoform is not considered predicted correctly if its abundance is mis-estimated beyond the given
error threshold. Here iReckon also greatly outperforms the other methods, both due to its better
overall recall and higher abundance accuracy.
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2.3 Performance Comparison with Illumina BodyMap2 RNA-seq Data

To further test the ability of iReckon to identify novel isoforms in real RNA-seq data we used
an Illumina BodyMap2 muscle transcriptome dataset (NCBI SRA Accession ERR030876), which
consisted of ⇠ 82 · 106 pairs of 50 bp-long reads. Starting with the 36796 RefSeq human transcripts
we left out 7842 random isoforms, to be used for testing, while the remaining 28242 isoforms were
provided to the RNA-seq analysis methods. While there are novel isoforms which are present in any
tissue, overall we expect a large fraction of true transcripts within the RNA pool to be known. To
evaluate each of the methods we computed precision as the ratio of the previously known isoforms
identified by each tool to all of its predictions, and recall as the fraction of the left-out isoforms
that were predicted as present by each method. The results are summarized in Figure 4A.

Fig. 4: A The precision of the four methods at identifying known genes and their recall for discovering novel (hidden)
isoforms from Illumina RNA-seq data. B Histogram of the abundances of hidden isoforms (re-)discovered by each
method. The X axis units are log (RPKM).

Overall, Cu✏inks and SLIDE respectively identified 69186 and 19602 isoforms from the RNA-
seq data, of which 17072 and 5137 were known human transcripts (precision= 0.25 and 0.26).
IsoLasso identified 81086 transcripts of which only 4514 were known, corresponding to a precision
of 0.06. iReckon, demonstrated the highest precision (0.58), identifying 26848 isoforms, of which
15623 were known. The 8554 isoforms that were not provided to the tools were then used to evaluate
the recall of various algorithms at predicting novel isoforms. Note that we do not expect all of these
7842 to be expressed within this sample, however an overall higher recall (at equal precision) is
indicative of better performance. iReckon identified 827 of these isoforms (recall=0.11) as present
in the sample, followed by Cu✏inks with 771 (recall=0.10), IsoLasso with 443 (recall=0.06) and
SLIDE with 207(recall=0.03). To further understand the types of isoforms that are rediscovered
by each method, we plotted the number of rediscovered isoforms at each abundance level (Figure
4B). While the distributions are overall similar, iReckon has the highest number of low abundance
isoforms, including being the only method that predicts more than a handful of novel isoforms with
RPKM < 10�2, and three times as many isoforms with RPKM < 10�1 as any other method.

Currently, iReckon does not predict novel start/end sites for isoforms; however it can accept a set
of known start/end sites as additional input. To evaluate the extent to which adding the ability to
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predict novel start/end sites may improve performance, we used the isoform start and end points
that were predicted by Cu✏inks as input to iReckon. Using this data iReckon reported 29527
isoforms of which 16031 are known (precision=0.54), while rediscovering 1084 left-out isoforms
(recall=0.14).

2.4 Applications of iReckon to Cancer Transcriptomes

After validating the performance of iReckon on both simulated and real data, we used it to evaluate
the splicing patterns in two cancer transcriptomes, especially to validate the method’s ability to
identify intron retention events. The two transcriptomes we consider are a Triple-Negative Breast
Cancer (TNBC) patient sample recently sequenced at the BC Genome Sciences Centre [Shah et al.,
2012] and the MCF7 cell line (NCBI SRA Accession SRX040504 [Sun et al., 2011]). For compar-
ative purposes we also ran iReckon on additional datasets from the Illumina BodyMap2 dataset,
including muscle, brain, leukocytes, and breast. First, we evaluated the total amount of expressed
pre-mRNA and intron retention identified in the various datasets, as well as the total number of
novel isoforms (Table 1). While the total amount of intron retention or number of novel isoforms
does not vary in a consistent fashion, the total amount of pre-mRNA observed was higher in the
cancer transcriptome than in healthy tissues. This is generally supported by previous literature
indicating overall ine�cient splicing in some subtypes of cancer [Yoshida et al., 2011], however
variation in experimental protocols, cell sub-types, and inter-individual variation cannot be easily
excluded either.

muscle brain leukocytes breast TNBC MCF7
Pre-mRNA 3392 6101 2855 5131 7556 7777
Intron Retention 7469 10552 10791 8443 9858 9227
# Novel Isoforms 15598 23606 14027 20131 18685 24787

Table 1: Expression of pre-mRNA and isoforms with retained introns, as well as the number of novel transcripts in
Illumina BodyMap2 healthy muscle, brain, leukocyte, and breast tissues, as well as a Triple-Negative Breast Cancer
biopsy and the MCF7 cell line. The expression units are RPKM.

In the following sections we consider two intron retention events that have previously been
reported in the cancer transcriptomes: the last intron of the NPC2 gene in the MCF7 cell line
[Singh et al., 2011], and the 7th intron of the TP53 in the Triple-Negative Breast Cancer sample
[Shah et al., 2012].

2.4.1 MCF7 Transcriptome In the study of [Singh et al., 2011], the authors identified and
validated an intron retention event as well as an exon skipping event in the NPC2 gene. Running
iReckon on this dataset we were able to detect both of these events, each of which is present in
high abundance. RNA-seq reads alignment visualization with Savant and iReckon plugin (Figure
5) confirms the findings. Furthermore, iReckon identified two additional alternative donor sites,
leading to two novel isoforms: one alternative site within the exon, and one in the downstream
intron. Using the visualization plugin we also detected a previously unknown Single Nucleotide
Variant (SNV) in the first nucleotide of the intron’s donor site, changing the canonical GT to AT.
Neither the intron retention, the exon skipping, or the two alternative donor sites were present in
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Fig. 5: Screen shot of Savant displaying a segment of the NPC2 gene in the MCF7 dataset. The red isoform is the
exon skipping, the blue is the intron retention, while green and yellow are isoforms containing the two alternative
donor sites. The purple isoform with low expression is the pre-mRNA.

the triple negative breast cancer datasets or in the Illumina healthy breast dataset, and none of the
events were found in the NCBI EST library. Thus, it is likely that the disruption of the canonical
donor site of the last intron of the NPC2 gene results in several types of non-canonical splicing,
including:

1. Intron entirely retained, resulting in an aberrant isoform.
2. Use of an alternative intra-exonic donor site 9 nucleotides upstream, resulting in the deletion

of three amino acids from the coding region.
3. Use of an alternative donor site 16 nucleotides downstream, resulting in an out-of-frame aberrant

isoform.
4. The skipping of the whole exon preceding the disrupted donor site, indicating that the splic-

ing machinery failed because of unsuccessful exon recognition, rather than intron recognition
[Berget, 1995]. The resulting mRNA product is also out-of-frame.

Table 2 presents the abundances of each of these isoforms, as well as the number of reads that
can be uniquely assigned to each isoform.

To validate iReckon’s results we performed QT-PCR with primers designed to detect each of the
four isoforms (as well as the canonical one). All four isoforms were confirmed by QT-PCR, while
the abundances observed closely matched those predicted by iReckon (see Table 2; r2 = 0.94). The
homozygous SNP that we detected disrupting the donor splice site (Figure 5) was also confirmed
by Sanger sequencing. For comparative purposes we also ran Cu✏inks and IsoLasso on this dataset

10

 Cold Spring Harbor Laboratory Press on November 30, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


iReckon Results Relative Abundances

Isoform Abundance(RPKM) Evidence iReckon QT-PCR Cu✏inks isoLasso

Intron 4 retention 47.9 > 200 38% 37% 0% 30%
Exon 4 skipping 51.7 120 41% 35% 37% 70%
Alternative donor site within exon 4 6.3 19 5% 13% 0% 0%
Alternative donor site within intron 4 20.1 41 16% 15% 63% 0%
Canonical (NM 006432) 0 0 0% 0% 0% 0%

Table 2: Summary of detected isoforms of NPC2 in the MCF7 dataset. Evidence is the number of read pairs (not
counting duplicates) uniquely mappable to the corresponding isoform and no other found isoform. The four last
columns are the relative abundances within NPC2 gene measured by iReckon, QT-PCR, Cu✏inks, and IsoLasso.

(we encountered technical issues with SLIDE), and note that each of these methods missed 2 out
of 4 novel isoforms (and predicted no additional ones).

2.4.2 TNBC Transcriptome While the MCF7 cell line consists exclusively of tumour cells, the
TNBC transcriptome was taken from a patient biopsy, and thus consists of a mixture of healthy and
tumour material. Previously, [Shah et al., 2012] uncovered a mutation in the acceptor site of intron
7 of TP53, mutating the canonical AG to GG, and observed a correlated increase in the retention
of the subsequent intron (computed using Miso [Katz et al., 2010]). The initial interpretation was
that the mutation led to missplicing of the intron, leading to its retention.

We evaluated this dataset with iReckon, and surprisingly did not predict the retention of intron
7. Instead, our method reported a significant presence of pre-mRNA, an alternative acceptor site
used 19bp downstream, as well as complete skipping of exon 8. All three of these events were found
only in the TNBC dataset, and not in the healthy Illumina BodyMap2 breast or the MCF7 sample.
These isoforms are shown in Figure 6.

These results show that the consequences of a mutated acceptor site disruption are more complex
than simply retaining the intron, and include:

1. An alternative intra-exonic acceptor site 19 nucleotides downstream of the canonnical site being
used, creating an out of frame aberrant isoform.

2. The acceptor site of the next intron being used, resulting in exon skipping. The skipped exon
length is not a multiple of 3 and creates an out of frame aberrant isoform.

3. The entire splicing mechanism becomes disrupted or slowed, resulting in the large abundance of
partially spliced pre-mRNA with all four final introns retained in the transcript. If we consider
the isoform corresponding to pre-mRNA and divide it into three segments, corresponding to
intons 1-6, intron 7, and introns 8-10 the abundance estimates for these are 0.3, 2.4, and 2.5
RPKM, respectively. The coverage of the last four introns is thus consistent with disruption of
splicing after the mutation, rather than the retention of a single intron.

Table 3 summarizes the abundances of these isoforms and the number of reads unambiguously
mapped to each. All three events were only seen in the TNBC dataset with this specific mutation,
and not in healthy breast or the MCF7 cell line. We expect TP53 mutations in TNBC to be early
events in the evolutionary history of the tumour and therefore be present in all (or the majority of)
cells, however the presence of multiple isoforms could result from either multiple aberrant transcripts
within each cell, or the presence of multiple clonal populations in the sample. The relative quantity
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Fig. 6: Savant screen shot showing healthy breast (from Illumina BodyMap2) and triple negative breast cancer RNA-
seq data. The third and fourth tracks display the aligned reads from healthy and cancer tissue respectively, with the
colors representing the isoform of origin.The red isoform is the canonical annotated isoform. Its presence may be due
to healthy cells biopsied together with the tumour. The green isoform is the pre-mRNA (or partially spliced RNA),
the blue contains the alternative acceptor site and the yellow one skips the next exon (to the left since the transcript
is on the reverse strand). We can also see the SNV that disrupted the acceptor site of the intron.

of TP53 pre-mRNA was higher in TNBC than in healthy breast and MCF7 (5.7% versus 0.9% and
1.6% of the gene expression, respectively). Finally both the alternative acceptor site and the exon
skipping event have not been previously reported in the NCBI EST library.

Isoform Abundance(RPKM) Evidence Gene proportion

pre-mRNA(partially spliced) 0.8 > 100 5.7%
Alternative acceptor site within exon 8 2.2 18 15.2%
Exon 8 skipping 0.9 5 5.9%
Canonical(NM 000546) 10.6 25 73.1%

Table 3: Detected isoforms of gene TP53 in a TNBC dataset. Evidence is the number of read pairs (not counting
duplicates) uniquely mappable to the corresponding isoform and no other found isoform.

3 Discussion

In this paper we introduce iReckon, a method for simultaneous isoform discovery and abundance
estimation. iReckon models important biological phenomena such as intron retention and the pres-
ence of pre-mRNA. Our method generates a large set of possible isoforms, and then utilizes a
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regularized Expectation-Maximization algorithm to select expressed isoforms from these. Due to
this particular approach, and to the modeling of several RNA-seq artifacts (multi-mapping reads,
PCR duplicates, biases) and biological mechanisms (pre-mRNA, intron retention), iReckon outper-
forms three popular current methods, Cu✏inks, IsoLasso and SLIDE, at both the identification
of novel isoforms and the estimation of isoform abundances. We utilized iReckon to analyze the
complexity of splicing profiles generated by the disruption of two canonical splice sites in a Triple-
Negative Breast Cancer patient biopsy sample and the MCF7 cell line. In particular, we observed
three or more di↵erent aberrant isoforms generated for both genes considered. The observed com-
plexity of the splicing landscape raise important questions about the mechanisms involved, and
may lead to a better understanding of the underlying biology. The ability of iReckon to identify
intron retention and pre-mRNA abundance may allow for novel biological discovery, for example
the pre-mRNA signal can be used to discern splicing order, as introns that are spliced-out later will
be over-represented in the pre-mRNA. Similarly, the analysis of intron retention can help uncover
somatic mutations in cancer by identifying genes prone to aberrant splicing.

Finally we want to note that while iReckon outperforms other tools, there is still significant
room for improvement. Even with simulated data, the top competing methods achieved overall
recall of 62%, compared to 74% for iReckon; however the numbers dropped significantly when
one considers only novel isoforms, to 41% and 58%, respectively. Thus, nearly half of all novel
isoforms are not being identified. Several steps can be taken to further improve the performance
iReckon. Perhaps the most important one is incorporation of sequencing biases, including those
based on sequence content (e.g. GC rate) and location of a read within an isoform. Additional
improvements can be achieved by directly modeling a wider variety of biological events. One such
event, which may prove to be especially challenging, is the identification and abundance estimation
of fusion genes. The performance of iReckon will also improve with development of better split-
read mapping algorithms. Many of iReckon’s false negative isoforms in the simulation experiments
(especially unidentified exon-skipping) were caused by splice junctions undiscovered by the initial
alignment step.

4 Methods

4.1 Isoforms Reconstruction Model Extensions

In addition to modeling novel isoforms via paths in the splicing graph, as described in the Results
section, iReckon also allows for two additional types of isoforms: pre-mRNA, and isoforms with a
retained intron.

4.1.1 Incorporating pre-mRNA In real RNA-seq data we observed that ⇠ 1 � 30% of the
RNA content for each gene can be due to unspliced pre-mRNA. While the exact percentage will
vary due to gene regulation and sequence content, it is clear that treating pre-mRNA as noise
can bias the results by leading to overestimation of isoform abundances (since some of the reads
originally coming from pre-mRNA will be assigned to other isoforms), and further complicate
isoform reconstruction due to reads mapping across splice sites and into introns. To address this
problem we add the complete pre-mRNA as a potential isoform for each gene predicted from the
original reconstruction. This (unspliced) isoform’s abundance is computed in the exact same manner
as that of all other isoforms. Because these isoforms are only reported by our method we do not
consider these when evaluating the accuracy of the various tools.

13

 Cold Spring Harbor Laboratory Press on November 30, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


4.1.2 Intron retention model Incomplete pre-mRNA splicing can lead to intron retention
events, where certain introns remain within mRNA that has undergone splicing. Transcripts with
unspliced introns may a↵ect cell function due to malformed proteins or haploinsu�ciency. Such
intron retention events have been shown to play a role in certain cancers [He et al., 2009; Kim
et al., 2008; Skotheim and Nees, 2007]. Note that intron retention cannot be accurately estimated if
we do not take pre-mRNA into account, as reads from introns can be explained by either un-spliced
mRNA or intron retention.

We consider the null hypothesisH0, that there is no intron retention, and all reads within introns
come from unspliced pre-mRNA. To compute the p-value we start by estimating the pre-mRNA
abundance as the average coverage of introns. The isoform coverage signal at a nucleotide can be
modelled by a Poisson(�) distribution with the Poisson parameter being the average coverage (read
locations are often modelled as Poisson variables, and the sum of Poisson variables, is also Poisson).
We compute the � parameter for the pre-mRNA of each gene, and reject the null hypothesis and
detect an intron retention if an intron’s coverage is statistically unlikely to be generated from
the pre-mRNA (p-value < 10�4). Intron retention is a relatively rare event, so to reduce the
computational complexity iReckon considers only the one intron with the lowest p-value retained
per gene. If we detect intron retention within a gene, we generate, for each isoform, a novel putative
isoform with the corresponding intron retained within the mRNA and pass all these isoforms to
the regularized EM algorithm.

4.2 Alignments and Resulting Optimizations

After constructing the set of all possible isoforms, we store their sequences in a transcriptome
reference file (as opposed to a genome reference). We then use BWA [Li and Durbin, 2009] to align
all the reads to the transcriptome and from the possible alignments we can compute read-isoform
a�nities for the nth read pair and the ith isoform as

A
n,i

= Q(n, i) · L(length(n, i)) (1)

where Q(n, i) is the mapping probability of the nth pair to the ith isoform computed from the
alignment scores, L is the probability density function of the fragment length distribution within
our RNA-seq experiment, and length(n, i) is the length of the fragment corresponding to the nth

read pair if it originated from the ith isoform. These a�nities are related to the compatibilities of
[Li et al., 2010; Nicolae et al., 2011]. The probability that the nth read pair, which aligns to the set
of isoforms S

n

, comes from the specific isoform of index i, of normalized abundance ✓
i

is computed
as:

P (Z
n,i

= 1) =
A

n,i

· ✓
iP

j2Sn
A

n,j

· ✓
j

(2)

Z
ni

is an indicator latent variable that is one if read pair n was generated from isoform i, and zero
otherwise, and its expected value is E[Z

ni

] = P (Z
n,i

= 1).
Additionally, to improve the running time of the subsequent step, we separate all isoforms into

independent groups, such that no read is mapped to isoforms in more than one group. Each of these
groups can be processed separately by the regularized EM algorithm presented next, allowing for
simple parallelizations and reducing memory usage. To further optimize the algorithm we cluster
the reads by their a�nity signature. All the reads that align to the same subset of isoforms with
very similar relative read-isoform a�nities are clustered together, and assigned to isoforms as a
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single entity, so that our algorithm only considers the a�nities and cardinality of each cluster,
instead of evaluating each read independently. We use a simple greedy clustering algorithm that
unifies all pairs within a fixed distance of the center of the cluster. This heuristic has no observed
influence over the performance of iReckon (recall, precision, quantification accuracy), while greatly
improving its speed and reducing its memory usage. For clarity of presentation we consider each
read pair separately in the formulae below.

4.3 Regularized EM Algorithm

Our method is an extension of previous EM-based approaches for transcript quantification [Li
et al., 2010; Nicolae et al., 2011]. The likelihood function for transcript abundance estimation with
multi-mapped reads is very similar to the one introduced by [Li et al., 2010]:

logP (r, z |✓) =
NX

n=1

MX

i=1

z
n,i

· log(✓i
l
i

· P (r
n

|iso = i)) . (3)

Here r = (r1, r2, . . . , rN ) is the set of read-pairs and l = (l1, l2, . . . , lM ), ✓ = (✓1, ✓2, . . . , ✓M ) are
respectively the lengths and abundances of the isoforms. z

n,i

is the value of the Z
n,i

latent indicator
variable (see Equation 2). Finally, P (r

n

|iso = i) is the probability that the read r
n

is sampled from
isoform i, and is constant with respect to the abundances ✓.

As discussed previously, this algorithm may su↵er from over-fitting. Because not all isoforms
are expressed in a given sample this problem is present even if only known isoforms are considered
[Nicolae et al., 2011], and is exacerbated if the algorithm considers putative novel isoforms, most of
which are likely to be false positives [Feng et al., 2011]. Additional (unmodelled) biases and noise
in RNA-seq data further confound this, as extraneous predictors (isoforms) will be used to fit the
noise and biases to increase the overall likelihood. Because our algorithm considers all plausible
isoforms it becomes crucial to introduce e�cient regularization to remove false positive isoforms by
driving their expression to zero.

While the L1 penalty is commonly used as a solution to overfitting (e.g. [Tibshirani, 1996]), it
is not appropriate for abundance estimation. Because isoform abundances (in RPKM) are similar
to normalized frequencies, they have positivity constraints as well as a fixed sum (see definition of
RPKM):

X

i

✓
i

· l
i

= C , 0  ✓
i

8i . (4)

The constant C is discussed in Section 5 of the Supplement. The regularization term minimized by
LASSO is the sum of the abundances. However this term is tightly constrained, because abundances
are very similar to frequencies. This type of regularization is not adequate in the hyperplane of the
✓ variables (described by the constraints). In order to reduce the number of non-zero abundances
and thus avoid overfitting we use a non-linear function of the abundances in the penalty term.
We have chosen the regularization penalty �� · e

P
i

4p
✓i for its e�ciency in giving sparse solutions

(the fourth root is steep near zero), and fast convergence speed. The specific shape of the function
heavily penalizes low abundance isoforms, while the penalty for high abundance ones is lower.
Adding regularization to the EM algorithm requires changes to the M step, as we can no longer
directly solve the maximization problem. Hence we use an LBFGS [Zhu et al., 1997] optimization
algorithm for the M step, and because the objective function is no longer concave we utilize random
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restarts to allow the EM algorithm to more fully explore the search space. The regularization rate
� is set so that most readpairs have a�nity to an isoform with positive abundance. To do so, we
iteratively increase lambda using progressively smaller steps until growing it any further would
result in > 0.01% of all reads not beinged assigned to an expressed isoform. We compared the
performance using our regularization term, LASSO, and not doing regularization at all, and show
that LASSO is inappropriate, while our method outperforms not doing regularization for most
genes (see Section 3 of the Supplement).

The log-likelihood function that we optimize through the regularized EM algorithm is:

Objective(✓) = logP (r, z |✓) � � · e
P

i
4p
✓i + coherenceScore(✓) (5)

where the first term is the data log-likelihood described above (with modifications to account for
PCR Duplicates, described in Section 4.4) and the second term is the regularization penalty. The
third term (coherence score) is described fully in Section 4 of the Supplement. It is an additional
parameter that allows the algorithm to further di↵erentiate between multiple solutions with nearly
identical likelihoods (see Lacroix et al. [2008] for a full description of the isoform reconstruction
ambiguity problem). Because the regularization term deforms the final solution (abundances tends
to become lower), our implementation contains a second step where we re-run the EM algorithm
without regularization using only the isoforms with positive abundance in the optimal solution of
Equation 5.

4.4 Accounting for PCR Duplicates

Multiple rounds of PCR during the RNA-seq experiment can lead to multiple identical read pairs
being generated from the same fragment. Either systematically removing or keeping all duplicates
will bias the results. For example, in highly expressed genes the observed duplicate reads may be
natural duplicates (read pairs with identical locations generated from independent fragments), and
removing them will cause under-estimation of abundances. We estimate, for each read, its likelihood
of being a PCR duplicate, and use this probability in the objective function of the EM algorithm
presented earlier (Equation 3).

First, we compute for each isoform the number of expected natural duplicates. Given an isoform
with a known length l and abundance a, one can estimate the number of read pairs w that will
be generated from this isoform. We treat w as the number of samples (fragments) drawn from
the isoform. We estimate the probability p

f

of a specific fragment f based on the isoform length,
the fragments lengths distribution, and any biases (normalizing so that the probabilities of the
di↵erent possible fragments sum to 1). The number of occurrences X

f

of that particular fragment
f is modelled by a binomial distribution B(w, p

f

) which can be approximated by the Poisson(w·p
f

)
distribution since w is usually large (> 20) and p

f

is very small (< 0.01). The number of duplicates
of f is represented by the random variable Y

f

= max{0, X
f

� 1} corresponding to one “original
read” and X

f

� 1 copies. Y
f

has the expected value

E[Y
f

] = p
f

· w + e�pf ·w � 1 (6)

The derivation of this equation is presented in the Supplement. The total expected number of
natural duplicates is the sum of the expectations over the possible fragments:

Nb Natural =
lX

s=1

X

f2Fs

E[Y
f

] (7)

16

 Cold Spring Harbor Laboratory Press on November 30, 2012 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


where F
s

is the set of fragments starting at position s that can possibly be originated from the
studied isoform.

For each read r
n

we now calculate the probability P (d
n

= 1), d
n

being the indicator variable
which is zero when the read is a PCR duplicate. For the ith isoform, let Nb Copies

i

be the observed
number of duplicates and Nb Natural

i

the number of expected natural duplicates (computed in
Equation 7). Then

P (d
n

= 1) =

8
>>>>><

>>>>>:

min{
P

i2Sn
E[Zni]·Nb NaturaliP

i2Sn
E[Zni]·Nb Copiesi

, 1} if the nth read is a copy

1 if the nth read is unique

(8)

where S
n

is the set of isoforms the read r
n

aligns to, and E[Z
ni

] is the alignment probability based
on Equation 2. The EM likelihood function presented earlier (Equation 3) can thus be updated to
properly account for PCR duplicates by adding the indicator variable d

n

:

logP (r, z, d |✓) =
X

n,i

d
n

· z
ni

· log(✓i
l
i

· P (r
n

|iso = i)) . (9)

Because small changes in abundances do not significantly a↵ect duplicate estimation we do not
need to update the E[d

n

] probabilities at every iteration of the EM algorithm. For e�ciency we
update these only when the abundances have changed significantly from their previous values.

4.5 RNA-seq Data Simulation

To simulate a realistic dataset with known ground truth we randomly selected 75% of the multi-
exonic isoforms of the UCSC refGene dataset to study and, for each of these, generated a set of
alternative splicing events: exon skipping and intron retention. Each exon had 10% chance to be
skipped and the skipping could be extended to the following exons with 30% probability per-exon,
while each intron was retained with 1.8% probability. These probabilities were adjusted based on the
number of exons in the gene and based on the number of alternative isoforms already simulated.
We then selected multiple random subsets of all events to be implanted in the original isoform.
Finally, we add to this set of isoforms the pre-mRNAs of all studied genes.

This set of isoforms is then given to FluxSimulator [FluxProject, 2011], which randomly orders
these and picks an abundance for each following a mixed power/exponontial law. The parameters
from the law were chosen so that the range of the isoforms’ expression is 104 (the highest abundance
over the lowest). While FluxSimulator assigned a random abundance to the pre-mRNA, we adjusted
this to 10% of the initial value, to correspond to the expected low abundance of such isoforms.
FluxSimulator was then used to simulate RNA-seq read pairs from these isoforms in a manner
that reproduces in silico the experimental pipelines for RNA-seq, making the simulated datasets
as realistic as possible.

The results presented here are obtained from a simulation with 1615 genes, 8 million read pairs
and 3539 isoforms of which 30% are novel (pre-mRNAs are not counted). We also conducted three
additional simulations with slightly di↵erent parameters (number of reads, proportion of novel
isoforms, etc.), but no significant change was observed in the results of the comparison between
iReckon and the other methods (data not shown).
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4.6 Program Performance

iReckon required 22 hours to complete on the Illumina BodyMap2 muscle dataset (contains⇠ 82·106
pairs of 50 bp-long reads), using an 8-core machine with 32GB RAM (the actual memory usage
maxed at approximately 9GB), and 80GB of local storage. The largest component of the running
time (10 hours) is the alignment of reads to isoforms using BWA.
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