Vol. 20 Suppl. 12004, pages i241-i247
DOI: 10.1093/bioinformatics/bth904

-

.,
1ot
| R

Protein names precisely peeled off free text

Sven Mika’-4:3:* and Burkhard Rost’:2

"CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University,
650 West 168th Street BB217, New York, NY 10032, USA, °Columbia University

Center for Computational Biology and Bioinformatics (C2B2), Russ Berrie Pavilion,
1150 St. Nicholas Avenue, New York, NY 10032, USA and SInstitute of Physical
Biochemistry, University Witten/Herdecke, Stockumer Strasse 10, 58448 Witten,

Germany

Received on January 15, 2004; accepted on March 1, 2004

ABSTRACT

Motivation: Automatically identifying protein names from the
scientific literature is a pre-requisite for the increasing demand
in data-mining this wealth of information. Existing approaches
are based on dictionaries, rules and machine-learning. Here,
we introduced a novel system that combines a pre-processing
dictionary- and rule-based filtering step with several separately
trained support vector machines (SVMs) to identify protein
names in the MEDLINE abstracts.

Results: Our new tagging-system NLProt is capable of extract-
ing protein names with a precision (accuracy) of 75% at a recall
(coverage) of 76% after training on a corpus, which was used
before by other groups and contains 200 annotated abstracts.
For our estimate of sustained performance, we considered
partially identified names as false positives. One important
issue frequently ignored in the literature is the redundancy in
evaluation sets. We suggested some guidelines for removing
overly inadequate overlaps between training and testing sets.
Applying these new guidelines, our program appeared to sig-
nificantly out-perform other methods tagging protein names.
NLProt was so successful due to the SVM-building blocks that
succeeded in utilizing the local context of protein names in the
scientific literature. We challenge that our system may consti-
tute the most general and precise method for tagging protein
names.

Availability: http://cubic.bioc.columbia.edu/services/nlprot/
Contact: mika@cubic.bioc.columbia.edu

1 INTRODUCTION

Problemsin extracting protein names The automatic recog-
nition of named entities is a key element for mining free
text. Removing terms such as the names of people, coun-
tries or cities from a newspaper article may render the text
useless. The same is true for protein names in the biomed-
ical literature. Yet, compared with other types of named
entities, the following reasons make it disproportionately

*To whom correspondence should be addressed.

difficult to precisely extract protein names from natural lan-
guage text. Standards and nomenclature-rules as existing for
organic compounds are missing for the vast majority of all
proteins. To make things worse, protein names are often
derived from descriptive terms (signal transducer and activ-
ator of transcription, STAT) and only later become accepted
by the research community through repetition (STAT-4). Pro-
tein names also overlap with gene names (myc-c gene and
myc-c protein), cell cultures (CD4"-cells and CD4 protein),
and may be rather similar to chemical compounds (Caeridin
and Cantharidin). Previously developed methods have been
reported to reach an harmonic average between accuracy and
coverage[Equation (4)] (F-measure) (harmonic mean of pre-
cision and recall) of ~70% (Collier et al., 2000; Hou and
Chen, 2003; Krauthammer et al., 2000; Morgan et al., 2003;
Tsuruokaand Tsujii, 2003). However, very few of these meth-
odsweretested onlarge, curated databases. Given the amount
of scientificliterature, any improvement islikely toimpact the
yield of automatic data-mining approaches considerably. A
sufficiently accurate method extracting protein names could
be exploited to automatically build databases of protein—
protein interactions (Friedman et al., 2001), sub-cellular
localizations (Stapley et al., 2002), gene expression patterns
(Masys et al., 2001) and protein—disease associations, just
to mention a few examples of the possible applications. Our
particular project evolved in context of the need to generate
large datasets with nuclear matrix associated proteins.
Definition of proteinnames Whichwordsor tokensshould
be annotated by the nametag? For exampl e, we havefour ways
to tag the name in the phrase ‘yeast YSY6 protein’: ‘yeast
YSY6 protein’, ‘yeast YSY6', ‘YSY6 protein’ or ‘YSY6'.
This ambiguity implies that annotators may include yeast
today and may exclude it a year later, unless given some
‘annotation rules'. Since we worked with the corpus used
to develop Yapex (Franzen et al., 2002), we adopted their
definition: ‘A protein-name defines a single biological entity
composed of one or more amino acid chains'. This defini-
tion excludes the names of genes, protein families, domains,
fragments and organisms, as well as, unspecific referencesto

Bioinformatics 20(Suppl. 1) © Oxford University Press 2004; all rights reserved.

i241

http://cubic.bioc.columbia.edu/services/nlprot/

S.Mika and B.Rost

single protein molecul es (the 49-kDaprotein or the previously
mentioned protein). The reduction allows to directly lookup
database identifiers once a name is identified. Applied to the
example above, the ‘ correct’ taggingis'Y SY6 protein’ yield-
ing the database of protein sequences (Bairoch and Apweiler,
2000) (SWISS-PRQT, accession number P38374).

Coding textual features for machine-learning The two
most commonly used features of a protein name are (1) the
nameitself and (2) its context meaning its surrounding words
or tokens. For machine-learning purposes, these two types of
features can be represented as vectors in which each com-
ponent codes for certain words and their positions within the
name or its environment. For example, given a pre-defined
word list with five words (A B C D E) and the hypothetical
protein name ‘A D B B’, we can represent the name through
a position-unspecific vector by simply counting the occur-
rences of each word in the name (one A, two Bs and one D)
{1,2,0,1,0} . We can include information of position and order
by reserving thefirst five dots (because the word-list contains
five words) for the first word in the name (A), and gener-
aly the n-th five dots for the n-th word. For our example,
this position-specific vector is{ 1,0,0,0,0, 0,0,0,1,0, 0,1,0,0,0,
0,1,0,0,0}. The context, i.e. the words surrounding the name,
can be coded similarly. A possible third feature of a protein
name is the context of the entire document. This feature dif-
fers from the previous two in that it cannot be derived from
the name and its local environment. For example, the phrase
‘protein CD4 was detected in ..." will provide information
for any token CD4 found anywhere in the document. Such
global features improved the taggers Yapex (Franzen et al.,
2002) and KeX (Fukuda et al., 1998) significantly (Hou and
Chen, 2003).

Related work Three types of approaches—dictionary-
rule-based and machine-learning—have previously been
exploited to extract protein namesfrom the literature. Fukuda
et al. (1998) have suggested that even extremely simple rules
can yield F ~96% when tailored to a certain subject, such
as 30 SH3-domain-related articles. A more generally applic-
ablerule-based systemis Yapex (Franzen et al., 2002) with an
estimated F = 67%. Krauthammer et al. (2000) developed
a dictionary-based system that—after translating the input
text into nucleotide sequences—uses fast sequence alignment
method (BLAST) (Altschul et al., 1997; Altschul and Gish,
1996) to find names in a database of protein hames. The
authors considered partial matches as correct (CD4 instead of
CD4 kinase) and reported an F = 75% on aset of two papers.
Hanischet al. (2003) used asemi-automatically generated dic-
tionary in combination with alinear algorithm and reported an
F = 93% without specifying the dataset used for this estim-
ate. Tsuruoka and Tsujii (2003) have implemented a similar
idea using dynamic programming instead of BLAST. After
additionally filtering high-scoring examples through asimple
Bayesian classifier, they report F = 70%. One problem with
dictionary-based systems is the limitation to names that are

present in the dictionary. Collier et al. (2000) and Morgan
et al. (2003) reported levels of F = 76% and F = 75%,
respectively, by using hidden Markov models (HMMs).

In order to automatically extract protein sequences from
MEDLINE abstracts, we needed a method that distinguishes
between protein and gene names. We developed a novel
method combining rules, dictionaries and support vector
machines (SVMs) to specifically identify and tag protein
names from scientific literature. Limited space prevented us
from presenting the data explaining many of the design fea-
tures of the final system that reaches an outstanding level of
performance only through a particular combination of rules,
dictionaries and SVMs.

2 SYSTEM AND METHODS
2.1 Resources

Dictionary of protein names To benefit from the advantages
of adictionary with protein names, we compiled alist of com-
monly used synonyms. SWISS-PROT and trandlation of the
EM BL -nucl ectide database coding DNA to protein sequences
(TrEMBL) (Bairochand Apweiler, 2000) collect over onemil-
lion protein sequences along with the most commonly used
names of these proteins (DE field), and the names of related
genes (GN field). We generated alist of all SWISS-PROT +
TrEMBL protein- and gene-names and linked each name to
its associated database identifier. To increase robustness, we
converted names into lower-case characters, converted non-
letter/non-digit characters into spaces and inserted spaces
betweendigitsandletters(2S — 25). Notethat weappliedthe
same conversions to the texts analyzed. We used this ‘ protein
dictionary’ to derive an input value for one of the machine-
learning building blocksin our system (SVM4 in Fig. 2).
Dictionary of common words and chemical compounds
We based our ‘common dictionary’ on the online-version
of the Merriam-Webster (MW) dictionary (http://www.
m-w.com). The entries of thisresource contain part-of-speech
information such as ‘adjective’ or ‘noun’ that was useful
for our filtering procedure (Table 1). To expand this list,
we added medical terms [dictionary of medical terms
(DMT), http://cancerweb.ncl.ac.uk/omd/], species names
(http://us.expasy.org/cgi-bin/speclist), tissue types (http://
us.expasy.org/cgi-bin/lists?tissist), and minerals and for-
mulas (un2sg4.unige.ch/Athena/mineral/min_lists.html). Our
system used this common dictionary for filtering as one of the
first steps in the procedure (Fig. 2). We downloaded a list of
chemical names (http://www.speclab.com) and derived a list
of 130 endings (last four letters). We used thislist by remov-
ing al words from the input text (Table 1) that end in one of
the 130 endings for chemical compounds (*hyde and *enyl).
Trainingcorpus Currently, two datasetsof text with expert
annotated nametags are available, namely the GENIA-corpus
(Kim et al., 2003) and a corpus used for developing Yapex
(Franzen et al., 2002). The GENIA-corpus contains 2000

242

http://www
http://cancerweb.ncl.ac.uk/omd/]
http://us.expasy.org/cgi-bin/speclist
http://
http://www.speclab.com

Protein names precisely peeled off free text

Table 1. Examples of filtering rules

Rule

Text examples

Set of regular expressions

Nameisfollowed by ‘cell(s)’ or ‘cyte(s)’

Name ending similar to chemical compound (list of 130 4-letter endings)
Nameisin common-dictionary

Name seems to be an author

Name isin parentheses following afiltered-out word

Name is number followed by noun in plural form

16S, AGGTGGC, Ca2+, L214A, 26 kDa, mol/L, Asp-15
CD4+T lymphocytes, Sreptococcus mutans cells
polypyrimidine, ether, ethanolamine

interaction, factor, HIV-1, specific, leucocytes

Miller et al., Smith (2002)

CD4+T lymphocytes (CDATL), Inositol-3-phosphate (1P3)
four proteins, three factors

abstractsrelated to transcription factorsin human blood cells.
These abstracts are tagged according to different categor-
ies for named entities (protein molecule, DNA-molecule).
Since the GENIA-corpusis limited to a certain cell-type and
protein family and also lacks the actual tag-class ‘protein-
name’, we could not use it for developing our system (note
for comparisons we did however use it for evaluation). The
Yapex-corpus contains 200 abstracts, obtained by randomly
picking 150 abstracts out of a PubMed [with query: ‘protein
binding (Mesh term) AND interaction AND molecular’ with
the parameters ‘human’ and ‘publication date 1996-2000'].
A total of 50 additional abstracts were taken at random
from the GENIA-corpus. Protein names were tagged for all
200 abstracts. Finally, we a so used the BioCreAtlvE Corpus
(Critical Assessment of Information Extraction Systems in
Biology, http://www.mitre.org/public/biocreative/) with 7500
sentencesfor training and 2500 for testing. These dataare part
of theevaluation of ‘ Task 1A: entity extraction’ inthe BioCre-
AtIVE experiment. According to the BioCreAtIVE criteria, an
entity may also be a gene name.

2.2 Training

Generatingsamples Wesplit each abstract into singletokens
according to the following four rules: (1) convert into lower-
case, (2) separate punctuation characterssuch asdots, commas
and parentheses from the surrounding words by spaces, (3)
spaces separate tokens and (4) dashes (/) and hyphens (-)
do not separate. Since protein names are rarely longer than
five tokens, we generated sample phrases by using 1-5 con-
secutive tokens from the text (A—E in Fig. 1). Additionally,
we used the four tokens before and after this phrase (1-8
in Fig. 1). We refer to the tokens A—E as the ‘center’ and
to tokens 1-8 as the ‘environment’. In order to account for
words at the text borders, we added pseudo words to the
beginning and the end of the input text. An input text of,
e.g. 12 tokens/words, will generate exactly 60 samples of
9-13tokensinlength [(12—5) x 54+54+4+3+2+1 = 60,
where 5 is the maximum number of tokens in the center and
12 isthe length of the text].

Filtering samples Since SVMs get easily confused when
confronted with inconsistent data, every sample hasto passa

environment 1 centre environment 2

a 6-fold decrease in high mobility group protein { HMG) could
(1) (2) (3 (4 (A (B (C) (E) (9 (6) (7)(8)

human Rad51 amino acid residues required for Rad52 binding .

(m (@2 @ 4 (A (E) (3 (6 (7)) (8

Fig. 1. Schemefor text parsing. Two examples of text from aMED-
LINE abstract; we considered the one on the top as ‘true positive',
the other as ‘true negative’ (no protein name). Letters and numbers
in brackets label words. A text sample will only count as ‘true pos-
itive' if the center contains a complete protein name (no fragment).
We divided samples (continuous words) into three parts: the envir-
onment 1 (before the name, words 1-4), the center (words A—E) and
the environment 2 (after the name, words 5-8). Note that the envir-
onment always contains eight tokens (words), whereas we varied
the size of the center from one to five. Regardless of the number of
central words, we referred to the last token as E.

simple filter. Simple filtering rules only apply to the sample
‘centers’ (e.g. regular expressions). Others also consider the
sample ‘environment’ (e.g. ‘cell/cyte’-rule). We used the
common-dictionary and the list of 130 chemical compound
endingsto pre-filter the text (examplesin Table 1).
SVM-architectureand coding SVMs (Cortesand Vapnik,
1995) solve two-class classification problems by finding an
optimally separating hyper-plane with a maximal distance
to the closest data-points (vectors) of each class. The basic
component is an arbitrary kernel function that maps all input
data-points into a multi-dimensional feature space. Typically
used kernel functions are linear, polynomial and radial basis
functions. We used an off-shelf package to implement SVMs
['svm-light’ (Joachims, 1999), http://www.joachims.org].
Our system combined four separate SVMs(Fig. 2): each of the
first three SVMs specializes on a certain part of the samples
(center, environment and overlap between thetwo). Thefourth
SVM combines the output values from the first three with a
score from our protein-dictionary thus generating the final
score for each sample. All four SVMs were trained by using
thelinear kernel function integrated in the svm-light package.
Since the sample centers can overlap (NF kappa B and NF
kappa), we used only the one with the highest score (Fig. 2).

243

http://www.mitre.org/public/biocreative/
http://www.joachims.org]

S.Mika and B.Rost

) Y SVM1 SVM4
'?g{tt't (".:‘-’\.% trained on v trained on
) W names SVM1-3
and
a8 SvM2 dictionary
Il < s . trainedon o
E:> W environment T
> 5 .\
= SVM3 e
" trained on remove
filter both lvoverlap
protein-
name | |names
dictionary Etagged

Fig. 2. Architecture of NLProt. We sliced the input text into single
samples by a diding window approach. These text-continuous
samples of token-words were pre-filtered through dictionaries and
then passed to three SVMs (SVM1-3). Each of these SVMsis spe-
cialized on a certain aspect of the problem: SVM1 focused on the
centers (names), SVM2 on the environments and SVM3 on the over-
lap between the two. Next, we derived a dictionary score (both from
adictionary of protein namesand adictionary of non-protein names),
and fed the output of SVM1-3 in combination with this dictionary
score into SVM4. Finally, we removed all overlaps from the output
of SYM4 (highest score wins).

SvML1for center Thefirst SYM wastrained onthe sample
centers (putative protein names). After splitting all centers
into tokens (A—E), we automatically compiled a list of the
3000 most frequent tokens. A simple function f(¢) returned
unique values between 1 and 3000 for each token ¢ in the list
[f1(z) = 0 for non-frequent tokens]. Each input vector for
SVM1 had 9000 components; the value of component i (s;)
was

1 if (f1(A) =i ANDi < 3001)

1 if (f1(E) = i — 3000 AND 3000 < i < 6001)
s = .

1 if (f1(BIC|D) = i — 6000 AND 6000 < i)

0

elseVi € {1,...,9000},
@

where f1(A) wasthe valuefor thefirst center-token A, f1(E)
that for the last center-token E and f1(B or C or D) that
for the middle (Fig. 1). Note that for centers containing five
tokens (weused all possihilitiesfrom 1to 5 tokens) up to three
componentsof s between sgoo1 and sgopp May be non-zero. For
the example protein name A D B B (Introduction) and alist of
fivewords (A B C D E) instead of 3000, the input for SYM1
becomes {1,0,0,0,0, 0,1,0,0,0, 0,1,0,1,0} where the first five
components represent theword A in the name, the central five
the word B and the last five the words D B. Note that we took
the idea of stressing the first and last word of a name from

Tsuruokaand Tsujii (2003). Note: we chose the number 3000
because that yielded a good performance for a single SVM.
We did not fully optimize this number.

SYM2 for environment The second SVM was trained
on the environment using a sliding window of eight tokens
(tokens 1-8in Fig. 1). Asfor SYM1, we compiled the 3000
most frequent tokens and defined a function f2(¢) mapping
all tokens ¢ to values 1-3000. The 12000 input components
for SYM2 were

0.25 if (f2(1)=i AND i <3001)

050 if (f2(2)=i AND i <3001)

0.75 if (f2(3)=i AND i <3001)

1.00 if (f2(4) =i — 3000 AND 3001 < i < 6001)
si = 41.00 if (f2(5) =i — 6000 AND 6000 < i < 9001) ,

0.75 if (f2(6) =i — 9000 AND 9000 < i)

050 if (f2(7)=i — 9000 AND 9000 < i)

0.25 if (f2(8) =i — 9000 AND 9000 < i)

000 eseVi e {1,...,12000},

2

where f1(A) wasthevaluefor thefirst center-token A, f1(E)
that for the last center-token E and f1(B or C or D) that
for the middle (Fig. 1). Note that for centers containing five
tokens (we used all possibilities from 1 to 5 tokens) up to
three components of s between sgoo1 and sgoop May be non-
zero. For the example protein name A D B B (Introduction)
and alist of fivewords (A B C D E) instead of 3000, the input
for SYM1becomes{1,0,0,0,0,0,1,0,0,0, 0,1,0,1,0} wherethe
first five components represent the word A in the name, the
central five the word B and the last five the words D B. Note
that we took the idea of stressing the first and last word of a
name from (Tsuruoka and Tsujii, 2003). Note: we chose the
number 3000 because that yielded a good performance for a
single SVM. We did not fully optimize this number.

SVYM3 for overlap Both SVM1 and SVM2 have their
‘blind spots’ (SVM1 on the environment, SVM2 on the cen-
ter). We accounted for this by training SYM3 on the overlap
between the two. In particular, we considered tokens 4, A, E
and5inFigure 1 asthe overlap. Asfor SYM1and SVM2, we
used the 3000 most frequent tokens, defined afunction f3(z)
that mapped all tokens ¢ onto values 1-3000 and cal culated
the components i (s;) by:

1 if (f3(4) =i AND i < 3001)

if (f3(A) =i — 3000 AND 3000 < i < 6001)
if (f3(E) =i — 6000 AND 6000 < i < 9001) .
if (£3(5) =i AND 9000 < i)

dseVi e {1,...,12000}

[I R I

©)

SvVM4for combination Thelast SVM (SVM4) wastrained
on the outputs of SYM1, SYM2 and SVM3. As a fourth

i244

Protein names precisely peeled off free text

input feature, we derived a score from the protein-dictionary
(Fig. 2). Thisscore was either the length of the center string if
this string was in the protein-dictionary, and O if not. Longer
names found in the protein-dictionary are weighted higher
than shorter ones, because shorter names (oct or rna) are more
likely non-specific for protein names.

2.3 Testing

Evaluating performance Adequately estimating the per-
formance of tagging methods on new datais not trivid; it is
especially difficult for dictionary- and rule-based methodsthat
may be limited to the data used for development and testing.
Furthermore, tagging names is a time-demanding, expertise-
required task; consequently, datasets are often small. The
GENIA-corpus(Kimet al., 2003) addressed the number prob-
lem. Unfortunately, at the expense of resolution namesare not
tagged in the GENIA-corpus. Franzen et al. (2002) carefully
marked 200 abstracts to develop Yapex. We used that corpus,
and—in contrast to Franzen et al.—cross-validated our eval-
uation by using 180 abstracts to train the first three SVMs,
15 to train the fourth and 5 to test. Then we rotated through
all abstracts, such that we used each abstract exactly once for
testing (40-fold cross-validation). In other words, none of the
abstractsfor which we reported the results had ever been used
for devel opment. We used the harmonic mean (F-measure) of
accuracy (precision) and coverage (recall) that are commonly
used in the field to evaluate our results. With TP labeling true
positives, FP the false positives and FN the false negatives,
the measures were

TP TP 2. ACC- COV
ACC=—|cOV = |p=2 2 0
TP+ FP TP+ FN ACC + COV
4

Strict and sloppy mode (Franzen et al., 2002) distinguish
classes of correct identifications: ‘strict’ refers to names that
are entirely correct (right: protein kinase ¢, wrong: pro-
tein kinase), ‘doppy’ to partialy identified names (right:
kinase/c/protein, wrong: ismb). Evaluating the performance
in the ‘doppy-mode’ obviously inadequately favors meth-
ods that over-predict names and their length. In the extreme,
identifying the entire abstract as ‘the name' would yield
F = 100%. Therefore, we mainly used the strict mode in
our evaluation, except for comparisons.

Reducing redundancy The recent explosion of biological
data has revealed how important it is to reduce bias from
datasets to analyze data and to develop prediction meth-
ods. Measures for sequence-similarity, such as percentage
sequence-identity, BLAST E-values(Altschul et al., 1997) or
thehomol ogy derived sequencestructuresof proteins (HSSP)-
value (Mika and Rost, 2003; Sander and Schneider, 1991)
capture some aspects of bias. Surprisingly, previous work on
name tagging did not address the problem of bias. Here, we
reduced bias through three rules. First, we ignored names
identical between testing and training set (neither counted as
true nor as false). Second, we ignored multiple occurrences

Table 2. Performance of NLProt?

Method Testing Number of Bias? Accuracy Coverage F
corpus protein (%) (%) (%)
names

NLProt Yapex 1938 Yes 75 76 75
NLProt GENIA 20778 Yes 63 81 71
NLProt Recent166 1349 Yes 70 85 77
NLProt Yapex101 1938 Yes 76 78 77
Yapex Yapex101 1938 Yes 67
NLProt BioCreAtlvE 11871 Yes 73 75 74
NLProt Yapex 1109 No 61 59 60
NLProt GENIA 4104 No 48 60 53

All results are valid for cross-validated testing sets, except those with Yapex101. Data-
sets; 200/101 abstracts from Yapex (Franzen et al., 2002), 2000 abstracts from GENIA
[Kim et al. (2003), marked in light gray since tagging was not explicitly carried out
on protein names], 10 000 sentences from the BioCreAtlIVvE experiment (marked in dark
gray sincetagging explicitly includes a so gene namesasvalid entries); the 166 abstracts
‘recent’ were annotated by us after completion of the method. Performance measures
as defined in Equation (4) (values for ‘strict’ mode, e.g. wrong: protein kinase; right:
protein kinase C).

of the same name if correctly identified (note: the same
name may still contribute many times to our FN count).
Third, in order to test the success of our machine-learning
component, we removed all names in the test set from our
protein-dictionary. For comparisons, we reported results with
and without applying these rules (Table 2).

3 RESULTS AND DISCUSSION

NLProt with dictionary reached F = 75% Our system cor-
rectly identified 76% of the namestagged in the Yapex-corpus
(coverage/recal), and 75% of the names that we identified
were correct (accuracy/precision); the corresponding F was
75% [Equation (4), Table 2]. Removing SYM1 (trained on
the centers, i.e. names) dropped F to 69%; removing SVM2
(context) dropped F to 63% (note that for both scenarios,
we also removed SVM 3 handling the overlap between SVM 1
and SVYM?2). For comparison to the work from Franzen et al.
(2002), we reproduced their evaluation by training on the
first 99 and testing on the remaining 101 abstracts from the
Yapex-corpus. The resulting—incorrect—estimate for F was
77%. For the ‘Sloppy-mode’ (partial recognition of names),
our system reached FF = 85%. Both these higher num-
bers clearly over-estimated performance, we only compiled
them for comparisons. Using the GENIA-corpus for training
and testing, i.e. considering tags for protein_molecule as the
protein name, our system reached F = 71% with a rather
high coverage, and a much lower accuracy (supposedly since
protein_molecule tags entities other than the name). When
explicitly trained on a corpus that includes gene names as
valid entities (BioCreAtIvE corpus), NLProt appearsto reach
its average performance. Thus, our method could easily be
generalized to dightly different tasks.

1245

S.Mika and B.Rost

NLProt without dictionary and without bias reached F =
60% When reducing bias, i.e. testing how well the system
handles novel names, the system reached F = 60%; leaving
out only the dictionary (rule 3), which yielded F = 72%.
This implied that the dictionary was not the most import-
ant component. Applying the same bias-reduction rules to
the GENIA-corpus, F dropped to 53% (Table 2). Again, the
coverage was considerably higher than the accuracy due to
the inadequacy of the GENIA-tagging for our purposes. Note
that by definition, all dictionary-based methods would yield
F = 0% on thistest!

NLProt rather competitive in comparison with other
systems The only two methods that were reported to reach
performance levels similar to our method used HMMs at
F = 75% [Morgan et al. (2003) without cross-validation and
based on automatically annotated abstracts as ‘ standard-of-
truth’] and at F = 73% [Collier et al. (2000) cross-validated
on 100 abstracts]. The only system that we could com-
pare on identical datasets was Yapex (Franzen et al., 2002),
when applying the same train/test conditions as the authors
(Yapex101 in Table 2). Our system reached an F-measure
10 percentage points above that for Yapex. The best per-
formance for a dictionary-based system was reported to be
F = 75% (Krauthammer et al., 2000); however, this estim-
ate originated from a very small dataset (two review papers).
Furthermore, when applying our bias-reduction rules to the
evaluation procedure NLProt still reached F = 60%. This
lower limit of F = 60% was striking given that it applied
for situations in which all the names correctly identified were
neither in the dictionary nor in the training set, i.e. the sys-
tem had learned to correctly discover names it had never
encountered. The only two papers that report results on data
entirely unknown to the system are an HMM-based tagger
reaching F = 33% (Morganet al., 2003), and the system com-
bining dictionaries with BLAST searches reaching F = 4%
for unknown samples (Krauthammer et al., 2000).

Limitations and extensions Due to the nature of our
training-corpora, our final system is specialized on mam-
malian proteins. It remains unclear, how accurately NLProt
identifiesnamesfrom organismssuch as Drosophilafor which
the naming appears optimized to fool text-mining methods
by choosing protein names similar to common words (white,
bizarre, wing). In contrast, the conventions observed in organ-
isms such as yeast appear to be ideal for our name-tagging
method. While we anticipate that a larger training corpus
may improve performance, this speculation also remains as
a speculation.

Estimatesvalidinreal life? After completion of our work,
we applied NLProt to the 166 abstracts published in Cell
and EMBO Journal over the last 60 days (November 2003—
January 2004). Although this test did not reduce redundancy
and benefited from the protein-name dictionary, it provided
a snapshot of what to expect in ‘rea life’. NLProt reached
70% accuracy at 85% coverage (F = 77%, Table 2). This

sustained high-level performance on data that we had never
used convinced us that NLProt isready to roll.

ACKNOWLEDGEMENTS

Thanks to Jinfeng Liu and Megan Restuccia (Columbia)
for computer assistance; to Marco Punta and Ragjesh Nair
(Columbia) for valuable insights and fun discussions. This
work was supported by the grants RO1-GM63029-01 from
the National Institutes of Health (NIH), RO1-LM07329-01
from the Nationa Library of Medicine (NLM) and DBI-
0131168 from the National Science Foundation (NSF). Last,
not least, thanks to Amos Bairoch (SIB, Geneva), Rolf
Apweiler (EBI, Hinxton), Phil Bourne (UCSD), Michael
Ashburner (Cambridge) and their crewsfor maintaining excel-
lent databases, and to all experimentalists who enabled this
work by making their data publicly available.

REFERENCES

Altschul,S. and Gish,W. (1996) Local alignment statistics. Methods
Enzymoal., 266, 460-480.

Altschul,S., Madden,T., Shaffer,A., Zhang,J., Zhang,Z., Miller,W.
and Lipman,D. (1997) Gapped Blast and PSI-Blast: a new gen-
eration of protein database search programs. Nucleic Acids Res.,
25, 3389-3402.

Bairoch,A. and Apweiler,R. (2000) The Swiss-Prot protein sequence
database and its supplement TrEMBL in 2000. Nucleic Acids Res.,
28, 45-48.

Collier,N., Nobata,C. and Tsujii,J. (2000) Extracting the names of
genes and gene products with a Hidden Markov Model. Pro-
ceedings of the 18th International Conference on Computational
Linguistics (COLING 2000) Saarbriicken, Germany, 31 July—4
August. Morgan Kaufmann Publishers, pp. 201-207.

Cortes,C. and Vapnik,V. (1995) Support Vector Networks. Machine
Learning, 20, 273-297.

Franzen,K., Eriksson,G., Olsson,F.,, Asker,L ., Liden,P. and Coster,J.
(2002) Protein names and how to find them. Int. J. Med. Inf., 67,
49-61.

Friedman,C., KraP, YuH., Krauthammer,M. and Rzhetsky,A.
(2001) GENIES: a natural-language processing system for the
extraction of molecular pathwaysfrom journal articles. Bioinform-
atics, 17, S74-S82.

FukudaK., Tsunoda,T., TamuraA. and Takagi,T. (1998) Toward
information extraction: identifying protein names from biol ogical
papers. Pac. Symp. Biocomput., 707-718.

Hanisch,D., Fluck,J., Mevissen,H. and Zimmer,R. (2003) Playing
Biology’sname game: identifying protein namesin scientific text.
Pac. Symp. Biocompuit., 403-414.

Hou,W. and Chen,H. (2003) Enhancing performance of protein
name recognizers using collocation. ACL-03 Workshop on Nat-
ural Language Processing in Biomedicine, Sapporo Convention
Center, Sapporo, Japan, 11 July. Association for Computational
Linguistics (ACL), pp. 25-32.

Joachims,T. (1999) Making large-Scale SVM Learning Practical.
Advances in Kernel Methods—Support \ector Learning.
MIT-Press.

1246

Protein names precisely peeled off free text

Kim,J.D., Ohta,T., Tateisi,Y. and Tsujii,J. (2003) GENIA corpus—a
semantically annotated corpusfor bio-textmining. Bioinformatics,
19(Suppl. 1), 1180-1182.

Krauthammer,M., Rzhetsky,A., Morozov,P. and Friedman,C. (2000)
Using BLAST for identifying gene and protein names in journal
articles. Gene, 259, 245-252.

Masys,D., Welsh,J., Lynn Fink,J.M.G., Klacansky,|. and Corbeil, J.
(2001) Use of keyword hierarchies to interpret gene expression
patterns. Bioinformatics, 17, 319-326.

Mika,S. and Rost,B. (2003) UniqueProt: creating representative
protein sequence sets. Nucleic Acids Res., 31, 3789-3791.

Morgan,A., Hirschman,L., Yeh,A. and Colosimo,M. (2003) Gene
name extraction using FlyBase resources. ACL-03 Workshop
on Natural Language Processing in Biomedicine, Sapporo

Convention Center, Sapporo, Japan, 11 July. Association for
Computational Linguistics (ACL), pp. 1-8.

Sander,C. and Schneider,R. (1991) Database of homology-derived
structures and the structural meaning of sequence alignments.
Prot. Struct. Func. Genet., 9, 56-68.

Stapley,B., Kelley,L. and Sternberg,M. (2002) Predicting the sub-
cellular location of proteins from text using support vector
machines. Pac. Symp. Biocomput., 374-385.

Tsuruoka,Y. and Tsujii,J. (2003) Boosting precision and recall
of dictionary-based protein name recognition. ACL-03
Workshop on Natural Language Processing in Biomedi-
cine, Sapporo Convention Center, Sapporo, Japan, 11
July. Association for Computational Linguistics (ACL),
pp. 41-48.

1247

