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Interactive Exploration of Microarray Gene
Expression Patterns in a Reduced
Dimensional Space
Jatin Misra,1 William Schmitt,1 Daehee Hwang,1 Li-Li Hsiao,2 Steve Gullans,2

George Stephanopoulos,1 and Gregory Stephanopoulos1,3
1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
2Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
02115, USA

The very high dimensional space of gene expression measurements obtained by DNA microarrays impedes the
detection of underlying patterns in gene expression data and the identification of discriminatory genes. In this
paper we show the use of projection methods such as principal components analysis (PCA) to obtain a direct
link between patterns in the genes and patterns in samples. This feature is useful in the initial interactive pattern
exploration of gene expression data and data-driven learning of the nature and types of samples. Using
oligonucleotide microarray measurements of 40 samples from different normal human tissues, we show that
distinct patterns are obtained when the genes are projected on a two-dimensional plane spanned by the loadings
of the two major principal components. These patterns define the particular genes associated with a sample class
(i.e., tissue). When used separately from the other genes, these class-specific (i.e., tissue-specific) genes in turn
define distinct tissue patterns in the projection space spanned by the scores of the two major principal
components. In this study, PCA projection facilitated discriminatory gene selection for different tissues and
identified tissue-specific gene expression signatures for liver, skeletal muscle, and brain samples. Furthermore, it
allowed the classification of nine new samples belonging to these three types using the linear combination of the
expression levels of the tissue-specific genes determined from the first set of samples. The application of the
technique to other published data sets is also discussed.

[Online supplementary material available at www.genome.org.]

DNA microarrays are presently used extensively for genome-
wide gene expression measurements. Large-scale transcrip-
tional studies have catalyzed new discoveries and are gener-
ating important new insights into the behavior and function-
ing of cells (Spellman et al. 1998; Perou et al. 1999; Alizadeh
et al. 2000; Hughes et al. 2000). Class discovery tools have
played a key role in this process. Class discovery methods are
exploratory analysis tools used to organize, learn from, and
discover patterns in the data. Of the various multivariable
techniques available, clustering of genes and samples has
been the most common tool used for the analysis of micro-
array data (Eisen et al. 1998; Spellman et al. 1998; Perou et al.
1999; Tamayo et al. 1999; Alizadeh et al. 2000; Hughes et al.
2000). Before proceeding to cluster, it is often advantageous to
visualize the data to develop an understanding of underlying
structure. This initial exploration is useful in revealing pat-
terns and providing clues for further analysis.

Principal component analysis (PCA) is a linear projection
method that defines a new dimensional space that captures
the maximum information present in the initial data set by
minimizing the error between the original data set and the
reduced dimensional data set. Each principal direction of the
projection space, or principal component (PC), is defined

such as to be orthonormal to all others and to maximize the
information in the data that has not already been captured by
the previous (lower) dimensions. In this way, as the number
of PCs progressively increases, a larger fraction of the total
information content is accounted for. PCA is a linear projec-
tion in the sense that the variables of the projection space
(PCs) are linear combinations of the original variables (i.e.,
the gene expressions). The coefficients of this linear combi-
nation are called loadings and the actual values of the projec-
tion of the samples are called scores. PCA is obtained from a
singular value decomposition of the data, and the loadings are
the entries in the singular vector and are associated with
genes. The scores are contained in the matrix obtained from a
multiplication of the original data matrix with the singular
vectors and are associated with samples. Standard formulas
are available for the determination of the projection variables,
loadings, and captured variability (Dillon and Goldstein
1984), and many applications of PCA have been reported in a
variety of different contexts (Kamimura 1997; Rannar et al.
1998; Alter et al. 2000; Holter et al. 2000).

In this paper we use PCA to analyze a set of microarray
measurements on normal human tissues. Initial projection
onto a lower dimensional space allows for better visualization
of the entire data set. The loadings are subsequently used to
select relevant genes while considering the impact of the re-
moval of irrelevant genes on the patterns observed in the
projection of the samples. This is an alternate approach to the
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problem of selection of relevant genes in the analysis of mi-
croarray data (Golub et al. 1999) and may be used to obtain a
subset of genes that best describe the data. The observation of
clear gene-expression patterns after the removal of irrelevant
genes points to a high degree of structure in the measure-
ments. Exploration of these gene expression patterns further
revealed tissue-specific gene expression signatures. These sig-
natures were further supported by the analysis of additional
tissue samples that had not been used in the initial pattern-
discovery step.

RESULTS
The data set used in this study comprised expression measure-
ments of 7070 genes made in 40 normal human tissue
samples using Affymetrix GeneChips. The data were gener-
ated at the Brigham and Women’s Hospital (BWH) in Boston
(Hsiao et al. 2001). Samples from several human tissues were
analyzed, here we use the samples from brain, kidney, liver,
lung, esophagus, skeletal muscle, breast, stomach, colon,
blood, spleen, prostate, testes, vulva, proliferative endome-
trium, myometrium, placenta, cervix, and ovary.

PCA Loadings Can Be Used to Filter Irrelevant Genes
The data from the 40 human tissues were first projected using
PCA, which may be used with or without scaling (mean-
centering, or autoscaling, among others). Here, we did not
scale the data, and comparisons with mean-centered results
are provided in Discussion. The first and second PCs account
for ∼70% of the information present in the entire data set. The
score plot of the 40 samples using the entire gene expression
set is shown in Figure 1A. Plotted in Figure 1B are the loadings
for each of the 7070 genes for the first and second PCs. The
loading plot reveals a large number of genes clustered around
the origin, implying that they only marginally impact the
projection onto the first and second PC. Because the relative
magnitude of the loading is a measure of the importance of
the corresponding gene in defining the PC, a small magnitude
implies that the corresponding gene expression does not ma-
terially impact that particular PC. On this basis, a filter that
eliminates genes with loadings below a threshold in all of the
first five PCs was implemented. The decisions that went into
the choice of the threshold are shown in Figure 1E. The
threshold was varied over a large range, and at each threshold
value a record was maintained of the number of genes re-
tained for analysis and the distortions in the score plot due to
the elimination of genes. As the threshold value was gradually
increased, the samples were re-projected using the subset of
genes passing the filter. The distortion from the original score
plot was measured in terms of the squared difference, defined
as the sum of the squares of the difference between the 40
original score values and the 40 score values produced with
the filtered gene set (this is defined mathematically in Meth-
ods). In essence, this squared difference measures the error
between the original projections and the new sample projec-
tions (or the distortion of the original pattern) as more and
more genes are removed. When the threshold value exceeded
0.001, a large fraction of the genes were filtered out, precipi-
tating large distortions in the patterns on the score plot. This
criterion eliminated all but 425 genes with loadings in at least
one of the first five PCs that exceeded the threshold value. A
projection of the samples using only these 425 genes reveals
an almost identical pattern on the score plot with the one
obtained when all 7070 genes were used (Fig. 1C). This sug-

gests that the dramatic reduction from the initial 7070 genes
to the 425 finally retained resulted in a minimal information
loss relevant to the description of the samples in the reduced
space. Thus, a PCA framework may be used to evaluate the
effect of gene removal on expression patterns observed in the
reduced dimensional space.

Identification of Tissue-Specific Gene Expression
Patterns: Correspondence between Score
and Loading Plots
Three linear structures can be identified in the loading plot of
the 425 genes selected by the above analysis, each structure
comprising a set of genes arranged along a particular angle in
Figure 1D. These linear structures suggest a certain degree of
organization in gene expression reflected in the linear rela-
tionships between the loadings of the first and second PCs of
the genes clustered in these structures. An obvious question is
whether there is any correlation among the genes that define
these structures. Figure 2 shows the results of a systematic
exploration of the patterns depicted in Figure 1D. Plotted in
Figure 2A are the angles defined by the X-axis and the points
representing the loadings of the first two PCs for the 425
consequential genes identified above. This histogram defines
three clusters each corresponding to the three structures iden-
tified in Figure 1D. The first, termed structure A, comprises
genes with angles between 1.452–1.469 radians. The second,
structure B, is centered around the second peak, with angles
between �1.222 and �1.205 radians, and the third is a set of
genes between �0.328 and 0.054 radians, called structure C.
The list of genes so selected was further refined to prevent the
inclusion of genes that may have the same angle but are far
removed from the structures in Figure 1D by clustering the
genes on the basis of their distance from the origin (the clus-
tering results are discussed and provided in the Supplemen-
tary Materials available online at www.genome.org). The final
list of selected genes is provided in Table 1.

Although the identity of some genes in the above groups
are suggestive of the type of tissue they represent (e.g., the
genes in structure A contain an excess of genes related to the
liver, such as albumins and apolipoproteins), the nature of
each gene group is revealed when score plots are constructed
using only the genes that are specific to the structures of Fig-
ure 1D or 2A. Thus, using only the 24 genes of structure A to
project all the samples yields a score plot (Fig. 2B) that dra-
matically separates the two liver samples in the data set from
all the remaining tissue samples. Similarly, projecting the ex-
pression data of the 19 genes in structure B separates the three
skeletal muscle tissue samples from the remaining tissues
along the first PC (Fig. 2C) and, finally, projection of the
samples using the 86 genes of structure C separates all six
brain samples from the remaining tissues (Fig. 2D).

Inspection of the genes in structure C revealed two broad
classes of genes. One class of genes with low expression levels
was largely related to ribosomal proteins and function; the
other class of genes, with larger and more variable expression,
are primarily brain-tissue-related genes. The loadings of these
genes on the second PC support this observation, so that
genes with high expression levels in the brain samples also
had a high loading magnitude on the second PC, as shown in
Table 1. This is also true of the genes in the other structures.
This fact may be used for class discovery and data-driven
learning and is a result of the observed correspondence be-
tween the score plot and the loading plot. Given the observed
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separation of the six brain samples on the second PC in Figure
2D, a learning approach for samples with unidentified char-
acteristics would have consisted of the following steps: Select

a set of genes with high loadings on the dominant PC, exam-
ine their function, and generate hypotheses as to the nature
of the samples. This is a class-discovery approach, in contrast

Figure 1 Gene selection based on the loadings on the principal components. Graphs A and B show the score plot of the samples and the loading
plot of the genes, respectively, before any filtering is implemented. Graphs C and D show the score and loading plots after the filtering. Graph E
displays quantitatively the decisions that went into the choice of the filtering threshold. It displays the distortion in the observed patterns, as
measured through the squared difference, and the number of genes retained for analysis as the threshold is varied. The chosen filter threshold was
0.001. Filtering reduces the number of genes from 7070 to 425. At the same time, the score plot of the samples remains largely unchanged and
displays the same initial patterns, signifying a minimal loss of information. The loading plot displays strong linear structures of genes. (For more
details about the samples used, see Supplementary Material online at http://www.genome.org.)
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to a classification methodology, which relies on a priori la-
beling of the samples (Golub et al. 1999; Brown et al. 2000).
Here, the methodology allows one to probe the nature of the
sample, and simultaneously identify the genes that contribute
to the differentiation of the sample(s) from the others.

The genes that were not part of these structures were also
analyzed by projecting the samples using these genes; how-
ever, no clustering of samples or any noteworthy separation
was observed.

Validation of Gene Expression Patterns Using
New Samples
Additional samples (three each) from liver, muscle, and brain
were collected in a subsequent experiment, profiled transcrip-
tionally, and analyzed by applying the above projection
methods. Figure 2B shows the projections of the gene expres-
sion data of the new liver samples using the loadings obtained
from the projection of the genes in structure A (this discrimi-

nated the two liver samples from the remaining tissues in the
initial data set). All three liver samples are clearly separated
along the first PC from the nonliver tissues in the initial data
set, underscoring the tissue-specific nature of these genes and
hinting at the construction of a liver axis along the first PC.
The genes distinguishing liver from nonliver tissues, include
albumin and those associated with the coagulation pathway
(e.g., factor IX, antithrombin III, and heparin cofactor),
complement pathway (e.g., C8), lipid process (e.g., apolipo-
proteins), bile metabolism (e.g., fatty acid binding protein 1),
xenobiotic metabolism (e.g., cytochrome P450), and iron ho-
meostasis (e.g., hemopexin), a result which is to be expected
based on the known biology of the liver. An examination of
the 24 genes in this structure revealed that 33% of all gene
pairs had correlation coefficients >0.88 for these five liver
samples. This value of the coefficient is significant at the 95%
confidence level. Thus, a subset of these genes are expressed
proportionately to each other in the liver tissue. For instance,

Figure 2 Identification of tissue-specific genes and validation using new samples. (A) Histogram of the angles between the X-axis and the points
defined by the two principal loadings of each gene shown in Fig. 1D. Three main features, corresponding to the linear structures shown in Fig.
1D can be discerned and are labeled as A, B, and C. (B) PCA projection of all samples using the genes in structure A. The samples in the initial data
set are represented by red circles and the new samples by blue asterisks. The two liver samples in the initial data set (Li-1 and Li-2) and the new
liver samples (NLi-1, NLi-2, and NLi-3) are separated from the other samples, all of which cluster at the origin. (C) Projection of all samples using
the genes in structure B. The muscle samples in the initial data set (Mu-1, Mu-2, and Mu-3) are separated from the other samples along PC1. All
the other tissue samples cluster at the origin. The new muscle samples are also separated when projected using these genes (NMu-1, NMu-2, and
NMu-3). (D) Projection of all samples using the genes in structure C. The six brain samples in the initial data set and the three new brain samples
are separated from the other samples.
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Table 1. List of Genes Identified by Angle Selection

Gene ID Ratio of means Loading Gene description

Liver-specific signature PC1

M36803 213.5 0.3293 hemopexin
J02843 337.8 0.3284 cytochrome P450IIE1 (ethanol-inducible)
X53595 344.5 0.318 �-2-glycoprotein I (apolipoprotein H)
HG2841-HT2970 197.3 0.3175 albumin 5
HG2841-HT2969 161.5 0.3042 albumin, 3
M13149 131.5 0.2592 histidine-rich glycoprotein
M10050 291.6 0.2533 liver fatty acid binding protein (FABP)
X03168 2313.7 0.2242 S-prot
D14446 148.2 0.2113 HFREP-1
M16961 161.2 0.2067 �-2 HS-glycoprotein � and � chain
X51441 342.2 0.1958 serum amyloid A (SAA) protein clone pAS3-�
HG1827-HT1856 284.2 0.1956 cytochrome P450, subfamily Iic
L00190 254.4 0.1614 D29832, M21642 and others
M58600 1225.6 0.1523 heparin cofactor II (HCF2)
M21642 183.9 0.1265 (dysfunctional) antithrombin III (ATIII) Utah
M19828 1577.6 0.1064 apolipoprotein B-100 (apoB)
M11567 3034.8 0.1059 angiogenin and three Alu repetitive sequences
X14690 222.4 0.1045 plasma inter-�-trypsin inhibitor heavy chain H(3)
M21642 128.9 0.096 (dysfunctional) antithrombin III (ATIII) Utah
M20786 248.8 0.0929 �-2-plasmin inhibitor
M11321 317.2 0.0881 group-specific component vitamin D-binding protein
U08006 146.8 0.0855 complement 8 � subunit (C8A)
J03474 132.6 0.0778 transcription factor SP1
S48983 358.8 0.0771 SAA4 (serum amyloid A)

Muscle-specific signature PC1

X00371 545 0.3348 myoglobin
M33772 1527.7 0.3083 fast skeletal muscle troponin C
Z20656 2992.5 0.287 cardiac �-myosin heavy chain
M21494 410.4 0.2863 muscle creatine kinase (CKMM)
U96094 363.6 0.279 sarcolipin (SLN)
J04760 701.8 0.2658 slow-twitch skeletal troponin I (TNN1)
M83308 5723.7 0.2651 mitochondrial cytochrome-c oxidase subunit VIa (COX6A)
X06825 452.3 0.2444 skeletal �-tropomyosin
L21715 851.7 0.2257 troponin I fast-twitch isom
M21665 488.5 0.2184 �-myosin heavy chain
M19309 1149.9 0.2099 slow skeletal muscle troponin T, clone H22h
X90568 3169.9 0.2077 titin protein (clone hh1-hh4)
S73840 350.5 0.2022 type Hx myosin heavy chain
M20543 993.2 0.1917 skeletal �-actin
X16504 1016.3 0.168 X51957 and others
M20642 747.2 0.15 alkali myosin light chain 1
U35637 386.9 0.1345 nebulin/U35637
M29458 564.4 0.1056 carbonic anhydrase III
M86407 759.1 0.0813 � actinin 3 (ACTN3)

Brain-specific signature PC2

S72043 90.4306 0.4026 GIF (growth inhibitory factor)
M13577 686.2963 0.3566 myelin basic protein (MBP)
S40719 20.5566 0.2755 glial fibrillary acidic protein
HG1877-HT1917 82.2133 0.1778 myelin basic protein
X99076 49.5985 0.1633 NRGN
U48437 23.3006 0.1404 amyloid precursor-like protein 1
J04615 5.9926 0.1292 lupus autoantigen (small nuclear ribonuclepoprotein snRNP SM-D)
D21267 184.849 0.1252 highly expressed protein
L07807 30.2311 0.1162 dynamin
HG3437-HT3628 27.4526 0.1159 myelin proteolipid protein
L10373 18.2544 0.1123 (clone CCG-B7) sequence
M16364 9.3301 0.1071 creatine kinase-B
M98539 3.7109 0.0912 prostaglandin D2 synthase
U44839 3.1469 0.089 putative ubiquitin C-terminal hydrolase (UHX1)
D63851 10.9002 0.0863 unc-18 homolog
Y09836 16.17 0.0838 unknown protein
M37457 9.0757 0.0805 Na+, K+, ATPase catalytic subunit alpha-III isoform
M25667 27.35 0.0779 neuronal growth protein 43 (GAP-43)
D78577 6.3676 0.0779 DNA for 14-3-3 protein eta chain

(Table continued on the following page.)

Misra et al.

1116 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on December 30, 2011 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


it is known that apolipoprot H binds to negatively charged
heparin and the heparin cofactor and antithrombin III are
serine proteases that inhibit the coagulation pathway (Mc-
Nally et al. 1994; Vander et al. 1994).

The loadings of the 19 genes in structure B were similarly
used to project the three new skeletal muscle samples; the
results are shown in Figure 2C. Similar to the liver samples,
the first PC clearly separates the new skeletal muscle samples
and acts like a muscle axis. The genes include those associated
with the cytoskeleton (e.g., actin, �1, actinin �3, and nebu-
lin), contraction (e.g., tropomyosin, troponin, myosin), glu-
cose metabolism (e.g., enolase 3�), CO2 metabolism (e.g., car-
bonic anhydrase III), and energy transduction (e.g., creatine
kinase). Particularly, actinin �3 is known to have expression
limited to skeletal muscle (North et al. 1999), and carbonic
anhydrase III is strictly present at high levels in skeletal
muscle and much lower levels in cardiac and smooth muscle
(Lloyd et al.. 1986). About 74% of all gene pairs, after dis-
counting ones with the same genes, had a correlation coeffi-
cient >0.811, the 95% confidence level with the given num-
ber of samples. This rather striking degree of linear correlation
implies that these genes are expressed proportionately in skel-
etal muscle samples and may be coordinately regulated. For
example, whereas both actin and myosin provide force for
muscle contraction, troponin, a regulatory protein, prevents
actin and myosin interaction in resting muscle tissue. And,
tropomyosin, an actin filament-binding protein is required
for the interaction of actin and troponin. It is also known that
titin maintains resting tension in skeletal muscle (Vander et
al. 1994).

Finally, the 86 genes in structure C were used to project
the new brain samples, and as Figure 2D shows, the new brain
samples are clearly separated from the other nonbrain
samples and fall in the same region as the brain samples of the
initial set. The genes include those associated with myelin
structure (e.g., myelin basic protein), astrocytic differentia-
tion (e.g., glial fibrillary acidic protein), synaptic reorganiza-
tion (e.g., calmodulin, neurogranin, and GAP-43), and neu-
rotransmission (e.g., glutamate receptor). Of note, many
genes with no known functions are also reported here to be
specific for the brain samples.

The use of projection methods to analyze the effect of
these genes on the samples also led to the automatic construc-
tion of a reduced-dimension classifier space for the liver,

muscle, and brain tissues. As shown here, new samples may be
projected onto this space and the score value used to classify
the tissue sample.

Application to Other Data Sets
Figure 3 shows the result of the application of the current
methodology to the gene expression data on lymphoid ma-
lignancies (Alizadeh et al. 2000). Expression phenotype of 62
samples of diffuse large B-cell lymphoma (DLBCL), follicular
lymphoma (FL), and chronic lymphotic leukemia (CLL) were
measured on 17,856 cDNA clones. A simple projection reveals
the presence of two clusters and one intervening group of
samples. Querying the nature of these samples reveals an al-
most perfect segmentation of the samples in a PC space that
comprises a mere 35% of the information in the data. Imple-
menting the thresholding procedure allows for the identifica-
tion of 401 consequential genes, which maintain the patterns
in the data with minimal distortion. No outstanding struc-
tures suggest themselves in the loading plot. The observation
of linear structures is a unique characteristic of each data set
and will not necessarily occur in all cases. In this particular
case, just the thresholding procedure is sufficient to allow for
segmentation of the samples and identification of consequen-
tial genes.

DISCUSSION
We have shown the utility of PCA as an initial step in the
analysis of microarray data to extract and examine gene ex-
pression patterns. Previous work has applied a similar ap-
proach (singular value decomposition) to construct linear
combinations of gene expressions (called characteristic
modes, or eigengenes) from microarray measurements of
time-series samples (Alter et al. 2000; Holter et al. 2000). Here,
we extend the application of PCA to the analysis of nontime
series data and the data-driven learning and sample classifi-
cation problem. The reason for the broad applicability of the
PCA lies in its strong, yet flexible, mathematical structure and
the correspondence between the score plot and the loading
plot. This latter feature is exploited in the interactive meth-
odology presented for the elimination of redundant variables
or genes. This method is general and may be applied to any
data set.

Our methodology facilitated the identification of strong

Table 1. (Continued)

Gene ID Ratio of means Loading Gene description

L20814 68.1413 0.0735 glutamate receptor 2 (HBGR2)
J04046 6.4909 0.0729 calmodulin
X04741 137.5351 0.0719 protein product (PGP) 95
L37033 6.0028 0.071 FK-506 binding protein homolog (FKBP38)
M11749 11.5785 0.0669 Thy-1 glycoprot
D82343 140.3644 0.0649 AMY
S82024 47.6237 0.06 SCG10 (neuron-specific growth-associated protein/stathmin homolog)
D49958 29.5755 0.0571 membrane glycoprotein M6
M65066 15.0292 0.0541 cAMP-dependent protein kinase regulatory subunit RI-�
D87465 9.7149 0.0532 KIAA0275
X86809 4.3215 0.0524 major astrocytic phosphoprotein PEA-15

The genes are sorted by their loadings on the projection space (PC), which separates the specific tissue. Also provided is the ratio of the mean
of the gene expression in the specific tissue sample to the mean of the gene expression in all the other tissues. Genes with large values of the
ratio tend to have large PC loadings. In the case of the brain-specific signature, only the top 30 genes as ranked by their loads on PC 2 are
provided. A complete list of genes is in Supplementary Materials.
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underlying structures in the data. The identification of such
structures is uniquely dependent on the data and is not gen-
erally guaranteed. For example, the expression data on leuke-

mia samples (Golub et al. 1999) was similarly analyzed; how-
ever, no evident patterns presented themselves, although dif-
fuse structures containing some discriminatory information

Figure 3 Projection of the lymphoma samples using the principal component analysis. The projection already reveals a fairly clear separation of
the three classes in the data. The thresholding procedure allows for the identification of 401 genes from ∼850 cDNA clones, which are sufficient
to describe the patterns observed. (A, B) The score and the loading plot prior to thresholding. (C, D) The score and loading plot post-thresholding.
(E) The effect of thresholding on the number of genes retained and the squared difference. The chosen threshold, 0.002, is the point beyond which
the squared difference explodes.
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could be observed at higher, less informative PCs (data not
shown). This may be due to the fact that the PCA attempts to
maximize the variation that it captures in the data. In cases
where the discriminatory information is not the most impor-
tant type of variation (perhaps due to the presence of a large
number of nondiscriminatory genes), the above analysis will
not yield discriminatory patterns between two classes of tis-
sues/sample. When discriminatory genes are preselected by
applying a t-test on preclassified samples and used for projec-
tion, clear separations are obtained between acute myeloid
leukemia (AML) and acute lymphoid leukemia (ALL) classes.

Several genes in the tissue-specific signatures identified
here are justifiable with respect to known biology regarding
the particular tissue. In the case of the liver and muscle
samples, coordinate expression of some of these genes may
also be biologically explained. Elucidation of the function
and role of the other genes observed in these tissue-specific
signatures must await further experiments.

In the current study, the data was not mean-centered.
Mean-centering is geometrically equivalent to shifting the
origin of the PCA coordinate system to the centroid of the
data, a procedure which may or may not yield different re-
sults. For the purposes of comparison, the data was mean-
centered and then analyzed as described above. The structures
for the liver and muscle samples were identified in the first
and second PC, whereas the identification of the brain struc-
ture required the inclusion of the third PC. The list of genes
identified overlapped strongly with the one presented here.
This raises our confidence in the significance of the genes
identified but also underscores the fact that different process-
ing methods will give rise to a slightly different list of genes;
it may be best to adopt several processing methods and
choose a common subset of genes.

Projection methods shift the focus of analysis from indi-
vidual genes to the combined quantitative effect of several
consequential genes. Here, due to the strong structures ob-
served in the data, such a combination led to the construction
of reduced dimension classifiers for the liver, muscle, and
brain tissues. If the sole objective of the analysis is to yield a
classifier, then other projection methods, such as Fisher dis-
criminant analysis (Stephanopoulos et al. 2002), are more ap-
propriate and rigorous. If the objective is data exploration, the
PCA is better applied, because few a priori assumptions, such
as sample class type, are made. Overall, due to their data re-
duction properties and their flexibility in dealing with large
data sets, projection methods are an important class of tools
for the analysis of microarray data.

METHODS

Data Treatment
Each array from the BWH data was scaled to a target intensity
of 100. All negative expression values were reduced to zero for
the purpose of analysis. For treatment of the lymphoma data,
see Alizadeh et al. (2000). In the lymphoma data set, genes
that had missing values for the 62 experiments were removed
from the analysis. This gave an initial starting number of 854
cDNA clones.

Principal Components Analysis
Singular value decomposition is used to calculate the princi-
pal components of a data matrix (Dillon and Goldstein 1984).
Any data matrix X with S samples (tissues) on the rows and V

variables (genes) on the columns may be decomposed as fol-
lows:

X
�sxv�

= U
�sxR�

T
�RxR�

L�
�Rxv�

(1)

where T is a diagonal matrix with values that have the singu-
lar values of matrix X. The singular values of X are the square
roots of the nonzero eigenvalues of square matrix X�X, as well
as XX� (X� being the transpose of X). The columns of U and L
contain the eigenvectors of XX� and X�X, respectively. R, the
maximum number of independent dimensions, is determined
by the rank of the matrix X.

The loadings of the genes, or their coefficients in the
linear combination that forms the principal component, is
given by the column vectors of matrix L. The magnitude of a
gene loading is a measure of its importance in defining the
principal component. The scores of the samples, or the pro-
jections of the samples on the principal components, are
given by

Sc = X L (2)

The amount of information in the data that the first r prin-
cipal components capture may be quantified as

% information captured by the first r components (out of R
total) =

�
i=1

r

SVi
2

�
i=1

R

SVi
2

(3)

where SVi is the ith singular value.
The filter on the loadings was implemented by dividing

each loading by the sum of the magnitudes of all the other
loadings for that PC and then by rejecting all genes with a
loading less than the threshold value. The distortion of pat-
terns in the score plot due to the removal of genes in this
thresholding procedure was measured by the sum of the
squares of the difference between the 40 original score values
and the 40 score values produced with the filtered gene set.
Mathematically,

SD = �
s=1

40

�
i=1

5

�ys,i,f − ys,i,o�
2 (4)

where SD is the squared difference, ys,i,o is the score value of
the sth sample on the ith PC in the projection using all the
7070 genes, whereas ys,i,f is the score value of the s

th sample on
the ith PC obtained when a filtered gene set is used.
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