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ABSTRACT
Molecular portraits, such as mRNA expression or DNA
methylation patterns, have been shown to be strongly
correlated with phenotypical parameters. These molecular
patterns can be revealed routinely on a genomic scale.
However, class prediction based on these patterns is
an under-determined problem, due to the extreme high
dimensionality of the data compared to the usually small
number of available samples. This makes a reduction of
the data dimensionality necessary. Here we demonstrate
how phenotypic classes can be predicted by combining
feature selection and discriminant analysis. By comparing
several feature selection methods we show that the right
dimension reduction strategy is of crucial importance
for the classification performance. The techniques are
demonstrated by methylation pattern based discrimination
between acute lymphoblastic leukemia and acute myeloid
leukemia.
Contact: Fabian.Model@epigenomics.com

INTRODUCTION
In recent years there has been a large interest in the anal-
ysis of mRNA expression by using microarrays (Lockhart
& Winzeler, 2000). This technology allows to look at thou-
sands of genes, see how they are expressed as proteins and
gain insight into cellular processes. An important and sci-
entifically interesting application of this technology is the
classification of tissue types, especially the prediction of
tumor classes (Golub et al., 1999; Ben-Dor et al., 2001;
Weston et al., 2001).

However, there are some practical problems with the
large scale analysis of mRNA based microarrays. They are
primarily impeded by the instability of mRNA (Emmert-
Buck et al., 2000). Also sample preparation is complicated
by the fact that expression changes occur within minutes
following certain triggers. The inability to resolve the in-
dividual contributions of such influences on an expression
profile, and difficulties with quantifying the gradual nature
of the occurring changes complicates data analysis.

An alternative approach is to look at DNA methylation

(Adorján et al., 2001). Methylation is a modification of
cytosine, which occurs either with or without a methyl
group attached. This methylation of cytosine can only ap-
pear together with guanine as CpG. The methylated CpG
can be seen as a 5th base and is one of the major fac-
tors responsible for expression regulation (Robertson &
Wolffe, 2000). Here we demonstrate that cancer classifica-
tion based solely on DNA methylation analysis is possible
and that results comparable to mRNA expression can be
achieved.

In order to perform a methylation based prediction we
use the well known support vector machine algorithm
(Vapnik, 1998; Christianini & Shawe-Taylor, 2000). This
algorithm has shown outstanding performance in several
areas of application and has already been successfully
used to classify mRNA expression data (Ben-Dor et al.,
2001; Weston et al., 2001; Brown et al., 2000; Gaaster-
land & Bekiranov, 2000). The major problem of all
classification algorithms for methylation and expression
data analysis alike is the high dimension of input space
compared to the small number of available samples.
Although the support vector machine is designed to
overcome this problem it still suffers from these extreme
conditions. Therefore feature selection is of crucial im-
portance for good performance (Blum & Langley, 1997;
Weston et al., 2001; Ben-Dor et al., 2001) and we give
special consideration to it by comparing several methods
on our methylation data.

The data set (Adorján et al., 2001) consists of cell
lines and primary tissue obtained from patients with acute
lymphoblastic leukemia (ALL) or acute myeloid leukemia
(AML). A total of 17 ALL and 8 AML samples were
included. The methylation status of these samples was
evaluated at 81 CpG dinucleotide positions located in
CpG rich regions of the promoters, intronic and coding
sequences of 11 genes. These were randomly selected
from a panel of genes representing different pathways
associated with tumor genesis. Two of the 11 selected
genes are located on the X-chromosome.

The rest of the paper is organized as follows. In
Section 2, we give a short description of the process
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used for generating the methylation data. Especially
we demonstrate how the process can be validated and
calibrated. In Section 3, we give a short introduction to
the support vector machine and describe our experimental
setting. In Section 4, we address the problem of feature
selection by introducing and comparing several methods.
Finally we conclude in Section 5 with a discussion of
the potential impact of methylation analysis and future
directions.

MICROARRAY-BASED METHYLATION
ANALYSIS
In order to allow sequence specific distinction of methy-
lated from unmethylated states of CpG dinucleotides by
hybridization analyses, total DNA from all samples was
bisulphite treated converting all unmethylated cytosines
to uracil whereas methylated cytosines were conserved
(Frommer et al., 1992). Regions of interest were then
amplified by PCR using fluorescently labeled primers
converting originally unmethylated CpG dinucleotides to
TG and conserving originally methylated CpG sites. PCR
primers were designed complementary to DNA segments
containing no CpG dinucleotides. This allowed unbiased
amplification of both methylated and unmethylated alleles
in one reaction. All PCR products performed on an indi-
vidual sample were mixed and hybridized to glass slides
carrying for each CpG position a pair of immobilized
oligonucleotides. Each of these detection oligonucleotides
was designed to hybridize to the bisulphite converted
sequence around one CpG site which was either originally
unmethylated (TG) or methylated (CG). Hybridization
conditions were selected to allow the detection of the
single nucleotide differences between the TG and CG
variants. Ratios for the two signals were calculated based
on comparison of intensity of the fluorescent signals.

The sensitivity of the method for detection of methy-
lation changes was determined using artificially up- and
down methylated DNA fragments mixed at different ra-
tios. For each of those mixtures, a series of experiments
was conducted to define the range of CG/TG ratios that
corresponds to varying degrees of methylation at each of
the CpG sites tested. In Fig. 1a results for two CpG posi-
tions located in exon 14 of the human factor VIII gene are
shown as examples. For the mixtures of 3:0, 2:1, 1:2 and
0:3 the degree of methylation of the individual CpG sites
could safely be distinguished.

To verify the detection of methylation changes in the
real data set two X-chromosomal genes were included
in the gene set. Because one of the two X-chromosomes
in females becomes inactivated by methylation we can
expect a higher degree of methylation of X-chromosomal
genes in females compared to males. In Fig. 1b CpGs
are ranked according to the significance of the differ-

ence between male and female methylation levels. As
expected, the X-chromosomal genes (ELK1, AR) show a
significantly higher methylation for females. This clearly
demonstrates that the method really detects changes in
methylation.

SUPPORT VECTOR MACHINES
In our case, the task of cancer classification consists
of constructing a machine that can predict the leukemia
subtype (ALL or AML) from a patients methylation
pattern. For every patient sample this pattern is given as
a vector of average† log CG

T G ratios at 81 CpG positions.
Based on a given set of training examples X = {xi : xi ∈
Rn} with known diagnosis Y = {yi : yi ∈ {AL L, AM L}}
a discriminant function f : Rn → {AL L, AM L}, where
n is the number of CpGs, has to be learned. The number of
misclassifications of f on the training set {X, Y } is called
training error and is usually minimised by the learning
machine during the training phase. However, what is of
practical interest is the capability to predict the class of
previously unseen samples, the so called generalisation
performance of the learning machine. This performance
is usually estimated by the test error, which is the number
of misclassifications on an independent test set {X ′, Y ′}.

The major problem of training a learning machine with
good generalisation performance is to find a discriminant
function f which on the one hand is complex enough to
capture the essential properties of the data distribution,
but which on the other hand avoids over-fitting the
data. The Support Vector Machine (SVM) tries to solve
this problem by constructing a linear discriminant that
separates the training data and maximises the distance
to the nearest points of the training set. This maximum
margin separating hyperplane minimises the ratio between
the radius of the minimum enclosing sphere of the training
set and the margin between hyperplane and training
points. This corresponds to minimising the so called radius
margin bound on the expected probability of a test error
and promises good generalisation performance (Vapnik,
1998).

Of course there are more complex classification prob-
lems, where the dependence between class labels yi

and features xi is not linear and the training set can
not be separated by a hyperplane. In order to allow for
non-linear discriminant functions the input space can be
non-linearly mapped into a potentially higher dimensional
feature space by a mapping function � : xi 	→ �(xi).
Because the SVM algorithm in its dual formulation
uses only the inner product between elements of the
input space, the knowledge of the kernel function
k(xi , x j) = 〈�(xi) ·�(x j )〉 is sufficient to train the SVM.

† Every hybridization experiment was at least 3 times repeated and the results
averaged.
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Fig. 1. Validation of measurements. a) Quantification of methylation measurements for two CpG dinucleotides. A series of hybridizations was
performed with mixtures of artificially up- and down-methylated DNA fragments of the factor VIII exon 14 gene. Down- and up-methylated
DNA fragments were mixed at ratios: 0:3, 1:2, 2:1, 3:0, representing a methylation status of 100 %, 66 %, 33 % and 0 %, respectively. For
the 4 kinds of compounds 59, 36, 40, 63 identical slides were made. The log-ratio of the CG and the TG detection oligomer hybridization
intensity was calculated and then averaged for experimental subgroups each containing 3 identical experiments. The distribution function of
the CG:TG ratios shows that measurement values of the different mixtures are well separated and therefore allow a high resolution detection
of the methylation level of a single CpG. b) Gender separation. The 20 CpG sites with the most significant difference between female and
male samples are shown. Only non cell line leukemia and healthy control samples were used. As expected the absolute majority of the
significant CpG dinucleotides come from the two X-chromosome genes (ELK1, AR). High probability of methylation corresponds to black,
uncertainty to grey and low probability to white. The labels on the left side of the plot are gene and CpG identifiers. The bottom to top ranking
of the CpGs is according to the significance of the difference between the means of the two groups, estimated by a two sample t-test. Each
row corresponds to a single CpG and each column to the methylation levels of one sample.

It is not necessary to explicitly know the mapping � and
a non-linear SVM can be trained efficiently by computing
only the kernel function. Here we will only use the linear
kernel k(xi , x j) = 〈xi · x j 〉 and the quadratic kernel

k(xi , x j) = (〈xi · x j〉 + 1
)2

.
In the next section we will compare SVMs trained on

different feature sets. In order to evaluate the prediction
performance of these SVMs we used a cross-validation
method (Bishop, 1995). For each classification task, the
samples were partitioned into 8 groups of approximately
equal size. Then the SVM predicted the class for the
test samples in one group after it had been trained using
the 7 other groups. The number of misclassifications was
counted over 8 runs of the SVM algorithm for all possible
choices of the test group. To obtain a reliable estimate
for the test error the number of misclassifications were
averaged over 50 different partitionings of the samples
into 8 groups.

FEATURE SELECTION
The simplest way for applying a SVM to our methylation
data is to use every CpG position as a separate dimension,
not making any assumption about the interdependence
of CpG sites from the same gene. On the leukemia
subclassification task the SVM with linear kernel trained
on this 81 dimensional input space had an average test
error of 16%. Using a quadratic kernel did not significantly
improve the results (see Tab. 1). An obvious explanation
for this relatively poor performance is that we have only
25 data points (even less in the training set) in a 81
dimensional space. Finding a separating hyperplane under
these conditions is a heavily under-determined problem.
And as it turns out, the SVM technique of maximising
the margin is not sufficient to find the solution with
optimal generalisation properties. It is necessary to reduce
the dimensionality of the input space while retaining the
relevant information for classification. This should be
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Table 1. Performance of different feature selection methods. † The SVM was trained on all 81 features.

Training Error Test Error Training Error Test Error
2 Features 2 Features 5 Features 5 Features

Linear Kernel
Fisher Criterion 0.01 0.05 0.00 0.03
Golub’s Method 0.01 0.05 0.00 0.04
t-Test 0.05 0.13 0.00 0.08
Backward Elimination 0.02 0.17 0.00 0.05
PCA 0.13 0.21 0.05 0.28

No Feature Selection† 0.00 0.16

Quadratic Kernel
Fisher Criterion 0.00 0.06 0.00 0.03
Golub’s Method 0.00 0.06 0.00 0.05
t-Test 0.04 0.14 0.00 0.07
Backward Elimination 0.00 0.12 0.00 0.05
PCA 0.10 0.30 0.00 0.31
Exhaustive Search 0.00 0.06 - -

No Feature Selection† 0.00 0.15

possible because it can be expected that only a minority of
CpG positions has any connection with the two subtypes
of leukemia.

Principle Component Analysis
The probably most popular method for dimension re-
duction is principle component analysis (PCA) (Bishop,
1995). For a given training set X , PCA constructs a
set of orthogonal vectors (principle components) which
correspond to the directions of maximum variance. The
projection of X onto the first k principle components
gives the 2-norm optimal representation of X in a k-
dimensional orthogonal subspace. Because this projection
does not explicitly use the class information Y , PCA is an
unsupervised learning technique.

In order to reduce the dimension of the input space for
the SVM we performed a PCA on the combined training
and test set {X, X ′} and projected both sets on the first
k principle components. This gives considerably better
results than performing PCA only on the training set X
and is justified by the fact that no label information is
used. However, the generalisation results for k = 2 and
k = 5, as shown in Tab. 1, were even worse than for
the SVM without feature selection. The reason for this
is that PCA does not necessarily extract features that are
important for the discrimination between ALL and AML.
It first picks the features with the highest variance, which
are in this case discriminating between cell lines and
primary patient tissue (see Fig. 2a), i.e. subgroups that
are not relevant to the classification task. As is shown in

Fig. 3, features carrying information about the leukemia
subclasses appear only from the 9th principle component
on. The generalisation performance including the 9th
component is significantly better than for a SVM without
feature selection. However, it seems clear that a supervised
feature selection method, which takes the class labels of
the training set into account, should be more reliable and
give better generalisation.

Fisher Criterion and t-Test
A classical measure to asses the degree of separation
between two classes is given by the Fisher criterion
(Bishop, 1995). In our case it gives the discriminative
power of the kth CpG as

J (k) = (µAL L
k − µAM L

k )2

σ AL L
k

2 + σ AM L
k

2
,

where µ
AL L/AM L
k is the mean and σ

AL L/AM L
k is the

standard deviation of all xi
k with yi = AL L/AM L. The

Fisher criterion gives a high ranking for CpGs where the
two classes are far apart compared to the within class
variances. Fig. 2b shows the methylation profiles of the
best 20 CpGs according to the Fisher criterion. The very
similar criterion

G(k) = |µAL L
k − µAM L

k |
σ AL L

k + σ AM L
k

was used by Golub and coworkers for their ALL/AML
classification based on mRNA expression data (Golub
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Fig. 2. Feature selection methods. a) Principle component analysis. The whole data set was projected onto its first 2 principle components.
Circles represent cell lines, triangles primary patient tissue. Filled circles or triangles are AML, empty ones ALL samples. b) Fisher criterion.
The 20 highest ranking CpG sites according to the Fisher criterion are shown. The highest ranking features are on the bottom of the plot.
High probability of methylation corresponds to black, uncertainty to grey and low probability to white. c) Two sample t-test. d) Backward
elimination.

et al., 1999). Its relation to the Fisher criterion is given
by

G2(k) = J (k)

(
1 + 2σ AL L

k σ AM L
k

σ AL L
k

2 + σ AM L
k

2

)−1

,

which shows the preference of Golub’s ranking for
features with different within class variances compared to
the Fisher criterion.

Another approach to rank CpGs by their discriminative
power is to use a test statistic for computing the signif-
icance of class differences. Here we assumed a normal
distribution of the methylation levels of a CpG position
within a class and used a two sample t-test to rank the
CpGs according to the significance of the difference
between the class means (Mendenhall & Sincich, 1995).
Fig. 2c shows the ranking, which is very similar to the
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Fisher criterion because a large mean difference and a
small within class variance are the important factors for
both methods.

In order to improve classification performance we
trained SVMs on the k highest ranking CpGs according
to the Fisher criterion, Golub’s method or t-test. Fig. 4
shows a trained SVM on the best two CpGs from the
Fisher criterion. The test errors for k = 2 and k = 5 are
given in Tab. 1. The results show a dramatic improvement
of generalisation performance. Using the Fisher criterion
for feature selection and k = 5 CpGs the test error
was decreased to 3% compared to 16% for the SVM
without feature selection. Fig. 3 shows the dependence of
generalisation performance from the selected dimension
k and indicates that especially the Fisher criterion gives
dimension independent good generalisation for reasonable
small k. The performance of Golub’s ranking method was
equal or slightly inferior to the Fisher criterion on our
data set, whereas the t-test performance was considerably
worse for small feature numbers.

Although the described CpG ranking methods give
very good generalisation, they have some potential draw-
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Fig. 4. Support Vector Machine on two best features of the Fisher
criterion. The plot shows a SVM trained on the two highest ranking
CpG sites according to the Fisher criterion with all ALL and AML
samples used as training data. The black points are AML, the grey
ones ALL samples. Circled points are the support vectors defining
the white borderline between the areas of AML and ALL prediction.
The grey value of the background corresponds to the prediction
strength.

backs. One problem is that they can only detect linear
dependencies between features and class labels. A simple
XOR or even OR combination of two CpGs would be
completely missed. Another drawback is that redundant
features are not removed. In our case there are usually
several CpGs from the same gene which have a high
likelihood of comethylation. This can result in a large set
of high ranking features which carry essentially the same
information. Although the good results seem to indicate
that the described problems do not appear in our data set,
they should be considered.

Backward Elimination
PCA, Fisher criterion and t-test construct or rank features
independent of the learning machine that does the actual
classification and are therefore called filter methods (Blum
& Langley, 1997). Another approach is to use the learning
machine itself for feature selection. These techniques are
called wrapper methods and try to identify the features
that are important for the generalisation capability of the
machine. Here we propose to use the features that are
important for achieving a low training error as a simple
approximation. In the case of a SVM with linear kernel
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these features are easily identified by looking at the normal
vector w of the separating hyperplane. The smaller the
angle between a feature basis vector and the normal
vector the more important is the feature for the separation.
Features orthogonal to the normal vector have obviously
no influence on the discrimination at all. This means
the feature ranking is simply given by the components
of the normal vector as w2

k . Of course this ranking is
not very realistic because the SVM solution on the full
feature set is far from optimal as we demonstrated in
the last subsections. A simple heuristic is to assume that
the feature with the smallest w2

k is really unimportant
for the solution and can be safely removed from the
feature set. Then the SVM can be retrained on the
reduced feature set and the procedure is repeated until the
feature set is empty. Such a successive feature removal
is called backward elimination (Blum & Langley, 1997).
The resulting CpG ranking on our data set is shown in
Fig. 2d and differs considerably from the Fisher and t-test
rankings. It seems backward elimination is able to remove
redundant features. However, as shown in Tab. 1 and Fig. 3
the generalisation results are not better than for the Fisher
criterion. Furthermore, backward elimination seems to be
more dimension dependent and it is computationally more
expensive. It follows that at least for this data set the
simple Fisher criterion is the preferable feature selection
technique.

Exhaustive Search
A canonical way to construct a wrapper method for feature
selection is to evaluate the generalisation performance of
the learning machine on every possible feature subset.
Cross-validation on the training set can be used to estimate
the generalisation of the machine on a given feature set.
What makes this exhaustive search of the feature space
practically useless is the enormous number of

∑n
k=0

(n
k

) =
2n different feature combinations and there are numerous
heuristics to search the feature space more efficiently (e.g.
backward elimination) (Blum & Langley, 1997).

Here we only want to demonstrate that there are no
higher order correlations between features and class labels
in our data set. In order to do this we exhaustively
searched the space of all two feature combinations. For
every of the

(81
2

) = 3240 two CpG combinations we
computed the leave-one-out cross-validation error of a
SVM with quadratic kernel on the training set. From all
CpG pairs with minimum leave-one-out error we selected
the one with the smallest radius margin ratio. This pair
was considered to be the optimal feature combination and
was used to evaluate the generalisation performance of the
SVM on the test set.

The average test error of the exhaustive search method
was with 6% the same as the one of the Fisher criterion
in the case of two features and a quadratic kernel. For five

features the exhaustive computation is already infeasible.
In the absolute majority of cross-validation runs the CpGs
selected by exhaustive search and Fisher criterion were
identical. In some cases suboptimal CpGs were chosen
by the exhaustive search method. These results clearly
demonstrate that there are no second order combinations
of two features in our data set that are important for an
ALL/AML discrimination. We expect that higher than
second order combinations of more than two features can
not be detected reliably with such a limited sample size.
Therefore the Fisher criterion should be able to extract all
classification relevant information from our data set.

CONCLUSIONS
To achieve reliable predictions on the basis of small
training set sizes the selection of relevant features is
necessary, even for advanced learning algorithms as the
support vector machine. For classification tasks where
the class information is directly correlated to single
CpG dinucleotide markers the simple Fisher criterion
is a powerful and efficient feature selection strategy.
For more complex problems it will be necessary to
derive feature selection algorithms that can remove or
combine redundant features and handle higher order
feature dependencies.

Taken together, our results clearly demonstrate that
microarray based methylation analysis combined with
supervised learning techniques can reliably predict known
tumor classes. Classification results were comparable to
mRNA expression data and our results suggest, that
methylation analysis should be applied to other kinds
of tissue. Well documented tissue samples with patient
history can be obtained only as archived specimens.
This strongly limits the amount and number of tissues
available for expression analysis (Bowtell, 1999). The
methylation approach has the potential to overcome this
fundamental limitation: through the mere fact that the
stable DNA is the object of study, extraction of material
is possible form archived samples. This enables the
examination of methylation patterns in large numbers of
archived specimen with comprehensive clinical records
and removes one of the major limitations for the discovery
of complex biological processes by statistical means.
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