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Abstract — Given N strongly mixing observations
{Xs, Yi},»N=1, we estimate the regression function f*(z) =
E[Y1|X; = 2], £ € ®¢ from a class of neural networks,
using certain minimum complexity regression estima-
tion schemes. We establish a rate of convergence for
the integrated mean squared error between the pro-
posed regression estimator and f*.

I. INTRODUCTION

Let {Xi Yi}2_ be a stationary process such that X,
takes values in R¢ and Y; takes values in ®. Given N
observations {Xi,Y:}X; drawn from {X: Y:}2_,, we are
interested in postulating an estimator based on single hid-
den layer sigmoidal networks for the regression function
f*=EMNM|X:1=z], z e R

Recently, assuming that the underlying random variables
{X:,Yi}2 _o are ii.d., Barron [1] proposed a minimum com-
plexity regression estimator based on single hidden layer sig-
moidal networks. Moreover, supposing that Assumption 1 (see
below) holds he established a rate of convergence for the inte-
grated mean squared error between his estimator and f*. In
this paper, we extend Barron’s results from i.i.d. random vari-
ables to stationary strongly mixing [3] processes. The reader
is referred to the full paper [2] for complete analysis.

II. A Crass oF TARGET REGRESSION FUNCTIONS
AND SINGLE HIDDEN LAYER SIGMOIDAL NETWORKS

ASSUMPTION 1. Assume that (a) Y1 takes values in some
interval T = [a,a + 3] C R a.s.; (b) Xy takes values in

= [—1,}]d a.s.; and that (c) there exists a complex valued
function f on R? such that for ¢ € B, we have

F@) - £7(0) = / (e 1) fw)dw

and that mew]]l[f(w)] dw < C' < oo for some known
C' > 0. Set C = max{1,C

Let ¢ : R — R denote a sigmoidal function such that
16(6) = Liuoy| < ¢'/Iul? for some p > 0, ¢’ > 0, and for
all u € R\ {0}. Set ¢ = max{l,¢'}. For n > 1, let
m=n(d+2)+1. For0<i<n,letc; ER; for 1 <2< n,let
a; € R? and let b; € R. We define a y,-dimensional parameter
vector 8™ as

n
9( )=(a1,a2,...,an; b1,bz,...,bn; co,cl,...,c,.).

Now, define a single hidden layer sigmoidal network

fotny ¢ R4 — R parametrized by 8™ as

irz+b), zeR (1)

fom(z)=co+ ) cida

=1
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Set wp, =277 q% n'2r and define S™ C R as

{8 : co € T, Z les] < 2C, max ||a,||1 < wy, Jnax |b | < wn}.
=1

For each fixed n and N and given an en,n > 0, we construct

an €, n-net of S("), namely, T,, y such that

Incard(Tn,n) £ nln twnc = La,n,
n

where card(Ty,~) denotes the cardinality of the set T, v.

III. ESTIMATION SCHEME AND MAIN RESULT

Let a(j) denote the strong mixing coefficient [3] corre-
sponding to the process {Xi, Yi}{2_-

ASSUMPTION 2. Assume that the strong mizing coefficient
satisfies a(j) = aexp(—cj®),j > 1,& € (0,1],4 > 0,¢ > 0.

Write Iy = |_N|'{8N/c}1/(ﬁ+l)]-lj. Iy plays the same role in
our analysis as the sample size N in the i.1.d. case. Define

. N
A _argmin j 1 . N2
on,N = €T, N {N 2_1 (Y; fB(X:)) };

where for a given § € T, v, fo is defined as in (1). Now, for
each fixed regularization constant A > 0, define # = An as

N
argmin J 1 i . 2 Lnn +2In(n+1)
{w Z;(x — fou WX AT

1<n<iy
and define the minimum complezity estimator as féﬁ N

THEOREM 1. Suppose Assumptions 1 and 2 hold.  Let
X > 5b%/3 and for some r > 1/2 let (nin)™" < eny <n™2,

then
* 2 VlIlN
E/M[f,;ﬁ’N(z) - [ (z))°dPx(z) = O (Wifﬁz_)) , (2)

where Px denotes the marginal distribution of X1.

Note that the exponent of N in (2) does not depend on
the dimension d. In [2], we compare the rate of convergence
obtained in Theorem 1 to the rate of convergence achieved by
the classical nonparametric kernel estimator in similar setting
and to the rate of convergence obtained by Barron [1] in the
ii.d setting. In [2], we also establish a result analogous to
Theorem 1 for m-dependent observations.
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