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Abstract - Given N strongly mixing observations 
{ X i ,  X}El ,  we estimate the regression function f'(x) = 
E[YiIX1 = 21, x E Rd from a class of neural networks, 
using certain minimum complexity rlegression estima- 
tion schemes. We establish a rate of convergence for 
the integrated mean squared error between the pro- 
posed regression estimator and f *. 

I .  INTRODUCTION 

Let {X,,Y,)P",-, be a stationary process such that X1 
takes values in W d  and Yi takes values in 8. Given N 
observations { X l , K } z l  drawn from {X,,Y,}pO=-,, we are 
interested in postulating an estimator based on single hid- 
den layer sigmoidal networks for the itegression function 

Recently, assuming that the underlying random variables 
{ X , ,  Y,}p"-,  are i.i.d., Barron [l] proposed a minimum com- 
plexity regression estimator based on single hidden layer sig- 
moidal networks. Moreover, supposing that Assumption 1 (see 
below) holds he established a rate of Convergence for the inte- 
grated mean squared error between his estimator and f'. In 
this paper, we extend Barron's results from i.i.d. random vari- 
ables to stationary strongly mixing [3] processes. The reader 
is referred to the full paper [2] for complete analysis. 

f* = E [ X I X l  = 23, x E Rd. 

11. A CLASS OF TARGET REGRESSION FUNCTIONS 
AND SINGLE HIDDEN LAYER SIGMOIDAL NETWORKS 

ASSUMPTION 1. Assume that (a) Y1 takes values in some 
interval Z [a ,a + b] c 3? a.s.; (b) X1 takes values in 
B 3 a s . ;  and that ( e )  there exists a complex valued 
function f on Rd such that for x E B, we have 

and that JgZd IIwllllj(w)I dw 5 C' < 00 for some known 
C' > 0. Set C = max{I,C'). 

Let 4 : R -t R denote a sigmoidal function such that 
I4(u) - 1 ~ , > 0 ~ l  5 q'/(ulp for some p > a, q' 2 0, and for 
all U E R \ (0). Set q = max{l,q'). For n 2 1, let 
yn = n ( d + 2 )  + 1. For 0 5 i 5 n, let c, E 3; for 1 5 i 5 n,  let 
ai E Rd and let b, E R. We define a y,-dimensional parameter 
vector e(") as 

8'") = (al ,a2, .  . . , an; b l ,  b 2 , .  . . , bn; C O , C I , .  . , cn ) .  

Now, define a single hidden layer sigmoidal network 
fe(,,) : Rd + R parametrized by dn) as 

n 

fe(n)(x) = CO + ci 4(ai x + b i ) ,  E R ~ .  (1) 
i=l 
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n 

For each fixed n and N and given an E ~ , N  > 0, we construct 
an En,N-net of S("), namely, T n , ~  such that 

where card(Tn,N) denotes the cardinality of the set T n , ~ .  

111. ESTIMATION SCHEME AND MAIN RESULT 
Let a ( j )  denote the strong mixing coefficient [3] corre- 

sponding to the process { X i ,  x}g-m. 
ASSUMPTION 2 .  Assume that the strong mixing coeficient 
satisfies a ( j )  = ti exp(-cj@),j 2 1, ti E (0, I], p > 0, c > 0. 

Write IN = L N ~ { ~ N / C } ' / ( ~ + ~ ) ~ - ~ J .  IN plays the same role in 
our analysis as the sample size N in the i.i.d. case. Define 

J 

where for a given 
each fixed regularization constant X > 0, define A SE A N  as 

argmin 1 Ln,N + 2 ln(n + 1) 

E Trip, fe is defined as in (1). Now, for 

1, N 

{ i = l  
IN 

- C(yt - jin,N(xi))2 + 
1sn61N N 

and define the minimum complexity estimator as fi,,,. 

THEOREM 1. Suppose Assumptions 1 and 2 hold. Let 
X > 5b2/3 and for some T 1 1/2 let (nlN)-" 5 E,,,N - 
then 

< n--1/2 

where Px denotes the marginal distribution of X i .  

Note that the exponent of N in (2) does not depend on 
the dimension d. In [2], we compare the rate of convergence 
obtained in Theorem 1 to the rate of convergence achieved by 
the classical nonparametric kernel estimator in similar setting 
and to the rate of convergence obtained by Barron [l] in the 
i.i.d setting. In [2], we also establish a result analogous to 
Theorem 1 for m-dependent observations. 
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