Minimum Complexity Regression Estimation With Weakly Dependent Observations

Dharmendra S. Modha and Elias Masry¹

Department of Electrical & Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407

Abstract — Given N strongly mixing observations $\{X_i, Y_i\}_{i=1}^N$, we estimate the regression function $f^*(x) = E[Y_1|X_1 = x], x \in \mathbb{R}^d$ from a class of neural networks, using certain minimum complexity regression estimation schemes. We establish a rate of convergence for the integrated mean squared error between the proposed regression estimator and f^* .

I. INTRODUCTION

Let $\{X_i, Y_i\}_{i=-\infty}^{\infty}$ be a stationary process such that X_1 takes values in \mathbb{R}^d and Y_1 takes values in \mathbb{R} . Given N observations $\{X_i, Y_i\}_{i=1}^{N}$ drawn from $\{X_i, Y_i\}_{i=-\infty}^{\infty}$, we are interested in postulating an estimator based on single hidden layer sigmoidal networks for the regression function $f^* = E[Y_1|X_1 = x], x \in \mathbb{R}^d$.

Recently, assuming that the underlying random variables $\{X_i, Y_i\}_{i=-\infty}^{\infty}$ are i.i.d., Barron [1] proposed a minimum complexity regression estimator based on single hidden layer sigmoidal networks. Moreover, supposing that Assumption 1 (see below) holds he established a rate of convergence for the integrated mean squared error between his estimator and f^* . In this paper, we extend Barron's results from i.i.d. random variables to stationary strongly mixing [3] processes. The reader is referred to the full paper [2] for complete analysis.

II. A CLASS OF TARGET REGRESSION FUNCTIONS AND SINGLE HIDDEN LAYER SIGMOIDAL NETWORKS

ASSUMPTION 1. Assume that (a) Y_1 takes values in some interval $\mathcal{I} \equiv [a, a + b] \subset \Re$ a.s.; (b) X_1 takes values in $\mathcal{B} \equiv [-1, 1]^d$ a.s.; and that (c) there exists a complex valued function \tilde{f} on \Re^d such that for $x \in \mathcal{B}$, we have

$$f^*(x) - f^*(0) = \int_{\mathscr{R}^d} \left(e^{iw \cdot x} - 1 \right) \tilde{f}(w) \, dw$$

and that $\int_{\mathbb{R}^d} ||w||_1 |\tilde{f}(w)| dw \leq C' < \infty$ for some known C' > 0. Set $C = \max\{1, C'\}$.

Let $\phi : \Re \to \Re$ denote a sigmoidal function such that $|\phi(u) - 1_{\{u>0\}}| \leq q'/|u|^p$ for some p > 0, $q' \geq 0$, and for all $u \in \Re \setminus \{0\}$. Set $q = \max\{1, q'\}$. For $n \geq 1$, let $\gamma_n = n(d+2) + 1$. For $0 \leq i \leq n$, let $c_i \in \Re$; for $1 \leq i \leq n$, let $a_i \in \Re^d$ and let $b_i \in \Re$. We define a γ_n -dimensional parameter vector $\theta^{(n)}$ as

$$\theta^{(n)} = (a_1, a_2, \ldots, a_n; b_1, b_2, \ldots, b_n; c_0, c_1, \ldots, c_n).$$

Now, define a single hidden layer sigmoidal network $f_{\theta(n)}: \mathfrak{R}^d \to \mathfrak{R}$ parametrized by $\theta^{(n)}$ as

$$f_{\theta(n)}(x) = c_0 + \sum_{i=1}^n c_i \, \phi(a_i \cdot x + b_i), \ x \in \mathbb{R}^d.$$
(1)

Set
$$\varpi_n = 2^{\frac{2p+1}{p}} q^{\frac{1}{p}} n^{\frac{p+1}{2p}}$$
 and define $\mathcal{S}^{(n)} \subset \Re^{\gamma_n}$ as
 $\{\theta^{(n)} : c_0 \in \mathcal{I}, \sum_{i=1}^n |c_i| \le 2C, \max_{1 \le i \le n} ||a_i||_1 \le \varpi_n, \max_{1 \le i \le n} |b_i| \le \varpi_n\}$

For each fixed *n* and *N* and given an $\epsilon_{n,N} > 0$, we construct an $\epsilon_{n,N}$ -net of $S^{(n)}$, namely, $T_{n,N}$ such that

$$\ln \operatorname{card}(T_{n,N}) \leq \gamma_n \ln \frac{4\varpi_n e}{\varepsilon_{n,N}} \equiv L_{n,N},$$

where $\operatorname{card}(T_{n,N})$ denotes the cardinality of the set $T_{n,N}$.

III. ESTIMATION SCHEME AND MAIN RESULT

Let $\alpha(j)$ denote the strong mixing coefficient [3] corresponding to the process $\{X_i, Y_i\}_{i=-\infty}^{\infty}$.

Assumption 2. Assume that the strong mixing coefficient satisfies $\alpha(j) = \bar{\alpha} \exp(-cj^{\beta}), j \ge 1, \bar{\alpha} \in (0, 1], \beta > 0, c > 0.$

Write $l_N = \lfloor N \lceil \{8N/c\}^{1/(\beta+1)} \rceil^{-1} \rfloor$. l_N plays the same role in our analysis as the sample size N in the i.i.d. case. Define

$$\hat{\theta}_{n,N} = \arg\min_{\theta \in T_{n,N}} \left\{ \frac{1}{N} \sum_{i=1}^{N} (Y_i - f_{\theta}(X_i))^2 \right\}$$

where for a given $\theta \in T_{n,N}$, f_{θ} is defined as in (1). Now, for each fixed regularization constant $\lambda > 0$, define $\hat{n} \equiv \hat{n}_N$ as

$$\arg \min_{1 \le n \le l_N} \left\{ \frac{1}{N} \sum_{i=1}^N (Y_i - f_{\hat{\theta}_{n,N}}(X_i))^2 + \lambda \frac{L_{n,N} + 2\ln(n+1)}{l_N} \right\},\$$

and define the minimum complexity estimator as $f_{\hat{\theta}_{\hat{n},N}}$.

THEOREM 1. Suppose Assumptions 1 and 2 hold. Let $\lambda > 5b^2/3$ and for some $r \ge 1/2$ let $(nl_N)^{-r} \le \epsilon_{n,N} \le n^{-1/2}$, then

$$E \int_{\Re^d} [f_{\hat{\theta}_{\hat{n},N}}(x) - f^*(x)]^2 \, dP_X(x) = O\left(\frac{\sqrt{\ln N}}{N^{\beta/(2\beta+2)}}\right), \quad (2)$$

where P_X denotes the marginal distribution of X_1 .

Note that the exponent of N in (2) does not depend on the dimension d. In [2], we compare the rate of convergence obtained in Theorem 1 to the rate of convergence achieved by the classical nonparametric kernel estimator in similar setting and to the rate of convergence obtained by Barron [1] in the i.i.d setting. In [2], we also establish a result analogous to Theorem 1 for *m*-dependent observations.

References

- A. R. Barron, "Approximation and estimation bounds for artificial neural networks," *Machine Learning*, vol. 14, pp. 115-133, 1994.
- [2] D. S. Modha and E. Masry, "Minimum complexity regression estimation with weakly dependent observations," submitted for publication, 1994.
- [3] M. Rosenblatt, "A central limit theorem and strong mixing conditions," Proc. Nat. Acad. Sci., vol. 4, pp. 43-47, 1956.

¹This work was supported by the Office of Naval Research under Grant N00014-90-J-1175.