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Abstract
This note focuses on extracting and analysing prostate texture features from
trans-rectal ultrasound (TRUS) images for tissue characterization. One of the
principal contributions of this investigation is the use of the information of
the images’ frequency domain features and spatial domain features to attain a
more accurate diagnosis. Each image is divided into regions of interest (ROIs)
by the Gabor multi-resolution analysis, a crucial stage, in which segmentation
is achieved according to the frequency response of the image pixels. The
pixels with a similar response to the same filter are grouped to form one
ROI. Next, from each ROI two different statistical feature sets are constructed;
the first set includes four grey level dependence matrix (GLDM) features and the
second set consists of five grey level difference vector (GLDV) features. These
constructed feature sets are then ranked by the mutual information feature
selection (MIFS) algorithm. Here, the features that provide the maximum
mutual information of each feature and class (cancerous and non-cancerous)
and the minimum mutual information of the selected features are chosen,
yeilding a reduced feature subset. The two constructed feature sets, GLDM
and GLDV, as well as the reduced feature subset, are examined in terms of three
different classifiers: the condensed k-nearest neighbour (CNN), the decision
tree (DT) and the support vector machine (SVM). The accuracy classification
results range from 87.5% to 93.75%, where the performance of the SVM and
that of the DT are significantly better than the performance of the CNN.

Table of abbreviations

TRUS Trans-rectal ultrasound
ROI Region of interest
GLDM Grey level dependence matrix
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GLDV Grey level difference vector
MIFS Mutual information feature selection
CNN Condensed k-nearest neighbour
DT Decision tree
SVM Support vector machine
DRE Digital rectal exam
PSA Prostate specific antigen
CAD Computer aided diagnosis
MI Mutual information
KNN k-nearest neighbour

1. Introduction

One of the highest cancer risks for men is prostate carcinoma. Since it is curable only at an
early stage, early detection is highly crucial (Scardino 1989). However, existing diagnostic
methods such as the digital rectal exam (DRE), the TRUS imaging system, the analysis of
the prostate specific antigen (PSA) and the prostate volume have proven to be unreliable. For
example, the common factor between DRE and TRUS is the dependence on the skills of the
conducting physician and radiologist. Experienced doctors achieve more accurate prediction
rates than inexperienced doctors due to the fact that prior knowledge is correlated to the
success of applying these methods. This is the prime motivation for designing a novel system
in which trained radiologists can provide feedback to augment knowledge of newer radiologists
for decision making. To achieve this, the work in this note relies mainly on improving the
computer aided diagnosis (CAD) techniques. When CAD is adopted as a tool in ultrasound
imaging, features are constructed from the echoes after the echo processing to identify the
tissue type present in the image. Such texture features include the statistical characteristics of
the grey level distribution in the image for cancer diagnosis (Bassat et al 1993, Scheipers et al
2001) and fetal lung maturity (Bhanu et al 2002).

The image texture method is adopted in this work and the proposed algorithm is presented
in figure 1.

The first stage in this work is identifying the high risk ROIs in the image. At the second
stage, the statistical features are constructed from the ROIs. After the most salient features
have been selected by the MIFS algorithm, three classifiers are used to determine the quality
of the feature sets.

This note is organized as follows: section 2 explains the ROI identification algorithm,
section 3 covers the feature construction algorithms, section 4 discusses the MIFS algorithm
used for the feature selection and section 5 highlights the classifiers used in this study. The
results and discussion are provided in section 6, and finally, the conclusion is given in section 7.

2. TRUS image ROI identification

The images for this investigation obtained from the University of Western Ontario (UWO)
are derived from the Aloka 2000 ultrasound machine by using a broadband 7 MHz linear
transducer and a field of view of approximately 6 cm. A set of 33 identified TRUS images,
where suspected cancer regions are highlighted by an expert radiologist, is used.

The ROI segmentation is a crucial step for prostate cancer diagnosis and is performed
by two methods: the first method depends on the contribution of an expert radiologist
(Bassat et al 1993) who obtains accurate enough results, and the other method requires that
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Figure 1. The proposed algorithm.

the image be divided into small square shaped ROIs, which is time consuming (Scheipers et al
2001). To assist the radiologist in the decision and to acquire fast and precise results, there is
a great need for an automated ROI segmentation algorithm as well. A well-established texture
segmentation algorithm based on multi-resolution analysis is used in this work to guarantee
accuracy, and proves to be an excellent method for texture segmentation in the field of image
processing (Clausi and Jernigan 2000).

This algorithm is applied for the first time to the prostate TRUS image to identify the
ROIs. The main advantage is that no prior image assesment is required from the radiologist,
that is, outlining the ROIs. Moreover the algorithm is efficient, since it does not require the
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Figure 2. ROIs identified.

examination of the entire image. Furthurmore, the algorithm uses both the frequency domain
information and the spatial domain information from the image. This process is achieved
by applying the Gabor multi-resolution analysis that is capable of segmenting the image
according to the frequency response of the pixels. The pixels that have a similar response are
assigned to the same cluster. This process segments the TRUS image into several ROIs. The
Gabor function is chosen for its high localization in both the spatial frequency domain and
the spatial domain. This algorithm is applied to the available TRUS images and a sample of
the professionally segmented TRUS images and their corresponding ROIs are shown in figure 2,
where the sensitivity of the recognized ROIs is 88%.

3. TRUS image feature construction

The identified ROIs are subjected to further analysis, where the statistical features are extracted
from the ROIs. This step is achieved by checking to see if each pixel is located inside the
region under study. The process is repeated for all the ROIs in the image. Due to the fact that
the two textures are differentiable by the human eye only if they have different second-order
statistics, two second-order texture feature construction methods, the GLDM and the GLDV,
are adopted.

3.1. ROI grey level dependence matrix

Some important texture features can be extracted from the identified ROIs by using the GLDM.
This second-order statistical approach has been found to be effective in a number of ultrasound
image applications such as fetal lung maturity determination (Bhanu et al 2002) and prostate
cancer diagnosis (Scheipers et al 2001). GLDMs are matrices whose elements p′(i, j) are the
probabilities of finding a pixel which has a grey-tone i at a distance d and an angle ϕ from
a pixel which has grey-tone j. A set of four features, detailed in Mohamed et al (2004), is
constructed from the GLDM which are: contrast, entropy, energy, homogeneity.
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3.2. ROI grey level difference vector

To overcome the high computational demand of the GLDM and to extract more information
about the ROIs’ texture, the GLDV is also applied. Its mathematical model is explained in
Bhanu et al (2002), where it was one of the feature construction algorithms used for fetal
long maturity. It is summarized as follows: let I (x, y) be the image intensity function. For
any given displacement d ≡ (�x,�y), let p be the probability density of Id(x, y). If there
are m grey levels, the GLDV has the form of m-dimensional vector whose ith component is
the probability that Id(x, y) will have the value i. It is simple to compute p by counting the
number of times each value of Id(x, y) occurs where �x and �y are integers. This vector is
also used as a texture measure, and features such as contrast, entropy, angular second moment,
mean and inverse difference moment are constructed.

4. Texture feature selection

The outputs of the ROI texture feature construction methods are the GLDM and GLDV
feature sets that consist of the features of each set, as well as a combined feature set where the
features from both methods are combined. This feature set can exhibit some redundancy and
correlation between features (the curse of dimensionality) which motivates the use of feature
selection techniques (Jain and Zongker 1997) such as MIFS.

Feature selection is used to select a subset of s features from a given set of p features, where
s < p without major degradation in the performance of the recognition system. Typically an
exhaustive search guarantees a global optimal feature subset; however its time complexity is
exponential to the dimension of the feature space, which causes this approach to be impractical
even for a small number of features.

The traditional feature selection for classification is classifier-dependent. After a classifier
is selected, the discriminatory power of a feature is proportional to the accuracy of the classifier,
when that feature is employed. In contrast, classifier-independent feature selection techniques
are feature driven regardless of the classifier, and this work is based on the MIFS (Battiti 1994).

MI is a powerful tool for evaluating the information content of each feature with respect to
the output class, and with respect to each of the other features. MI is based on the probability
distributions of the features and measures the amount of information one random variable
contains about another (Battiti 1994). In this note, an intelligent feature selection method by
which the best feature subset is chosen regardless of the chosen classifier is adopted. Classifier
independence is the most important reason for selecting MI as the foundation of the feature
selection method. It can be explained as follows: denote X as a random variable, describing
a texture feature and C as a random variable, describing the diagnosis or the class. Then
the mutual information I (C;X) is a measure of the amount of information that feature X
contains about the diagnosis C. Thus MI provides a criterion for measuring the effectiveness
of a feature for the separation of the two classes. Interdependence between feature values and
classes is proportional to the value of I (C;X) and the interdependence among the features
is denoted by I (X1;X2) that should be minimized to avoid selecting two or more similar
features. Therefore, the objective is to maximize I (C;X), and minimize I (X1;X2). The MI
between the feature values and classes can be calculated as follows (Battiti 1994):

I (C;X) = H(C) − H(C|X), (1)

where the entropy H(C) measures the degree of uncertainty entailed by the classes, the
conditional entropy H(C|X) measures the degree of uncertainty entailed by the set of classes
C given the set of feature values X. The entropy H(C) depends mainly on the classes, and it
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Figure 3. MIFS algorithm.

represents the upper bound for I (C;X). The second term in the expression H(C|X) represents
the decrease in the certainty. The higher H(C|X) the higher the uncertainty. The MI, I (C;X),
is maximum when the class is totally dependant on the feature, while it is minimum when
the class and the feature are totally independent. The number of selected features should be
minimized to get rid of redundancies and increase the efficiency of the classifier. In order to
achieve this task, the MI among different features I (X1;X2) is calculated as follows:

I (X1;X2) = H(X2) − H(X2 − X1). (2)

The MIFS algorithm has been proposed by Battiti (1994) and is shown in figure 3. The
parameter β > 0 controls the relative importance of the MI between the candidate features
and the previously selected features with respect to the MI of the class.

The MIFS algorithm is used to select three features from the combined set of features,
where β = 0.5 as recommended by Battiti (1994) (0.5 < β < 1).

5. Classification

After the best representative feature subset has been chosen from the available feature set, it is
a crucial step to test those features. The original texture feature sets, the combined feature set
and the reduced feature set are examined by using three different classifiers: CNN, DT and
SVM, which are summarized in this section.
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5.1. Condensed k-nearest neighbour

The CNN classifier is applied in this investigation due to its simplicity and efficiency. The
KNN rule assigns an unclassified sample to the same class as the k-nearest stored samples, and
the CNN retains the same approach with less time complexity. It uses the consistent subset of
the original sample set. A consistent subset is a subset which when used as a stored reference
set for the KNN rule correctly classifies the rest of the sample set (Hart 1968).

5.2. Decision tree

Also the DT is a favoured classifier since there are logic rules for the generated classification.
Moreover the DT relies at each stage of the training on the information gain. Therefore, the
DT is a recursive structure for expressing classification rules. A DT is a system that uses a
top-down, divide-and-conquer strategy that partitions a given set of objects into smaller and
smaller subsets in steps that correspond to the growth of the tree (Webb 1988). In DT the data
are classified to probably cancerous or probably non-cancerous. Construction of leaf nodes
and decision nodes that identify the test condition for each of the available features, is called
an attribute. All the possible conditions are examined at each stage, and the condition that
maximizes the information gain is chosen as the next step in the construction of the decision
tree.

5.3. Support vector machines

The SVM is found to be an influential methodology for solving a nonlinear classification
problem (Duda et al 2001) such as the one described in this note. The SVM has been
introduced within the framework of statistical learning theory and structural risk minimization,
depending mainly on pre-processing the data to represent patterns in a higher dimensionality
space, usually much higher than the original feature space. This is achieved with a suitable
nonlinear mapping φ (·) to a sufficiently high dimension. The data from two classes are
consistently separated by a hyper-plane.

6. Results and discussion

The texture feature sets (the GLDM features, the GLDV features, the combined GLDM and
GLDV features, and the reduced feature set that results from the MIFS) are tested by the three
classifiers, CNN, DT and SVM, and the results are demonstrated in this section. A set of
96 regions obtained from 33 TRUS images that correspond to 21 patients is used in this study;
80 regions are adopted as a training set and a set of 16 regions is employed as the test set.
There is a set of parameters defined in Webb (1988) to evaluate these classifiers: false negative
rate, false positive rate, sensitivity and specificity. Specificity, sensitivity and overall accuracy
are the measures used for testing the different classifiers applied in this work.

6.1. Condensed k-nearest neighbour (CNN)

The results of applying the CNN classifier to the GLDM features, GLDV features and the
combined features are summarized in table 1. It is clear from the shown confidence matrices
that all the features exhibit a better performance than that of either feature set. However, the
results are less satisfactory due to the fact that the performance of the CNN algorithm is limited
by the distance between each incidence and in this investigation; features carry information
that can be captured only by nonlinear classifiers. Yet the CNN yields acceptable results since
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Figure 4. A sample DT classifier.

Table 1. Classification results using CNN.

Cancer Non-cancer

GLDM Cancer 4 2
Non-cancer 2 8

Sensitivity = 66.67%, specificity 80%, 75% accuracy

GLDV Cancer 4 2
Non-cancer 2 8

Sensitivity = 66.67%, specificity 80%, 75% accuracy

All Cancer 4 2
Non-cancer 1 9

Sensitivity = 66.67%, specificity 90%, 81.25% accuracy

it generates a piecewise decision boundary which allows the KNN to deal with nonlinearly
separable data, especially if a smaller number of neighbours that make it more nonlinear are
chosen. This explains why choosing the DT, which relies mainly on the information gain
of each feature is selected. However, the CNN can be used as an efficient classifier if the
algorithm is applied online during the biopsy process.

6.2. Decision tree

A sample DT that is obtained for the GLDM features is given in figure 4, and the classification
results are listed in table 2. From table 2 it is evident that the GLDV feature set exhibits a
better specificity than that of the GLDM feature set and the combined feature set with the same
sensitivity. Not only is the computational effort decreased since it reduces the non-important
biopsies, but also the overall accuracy of the DT classifier is increased.

6.3. Support vector machine (SVM)

The results of applying the SVM to the available feature sets are shown in table 3.
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Table 2. Classification results using DT.

Cancer Non-cancer

GLDM Cancer 5 1
Non-cancer 2 8

83.33% Sensitivity, 80% specificity, 81.25% accuracy

GLDV Cancer 5 1
Non-cancer 0 10

83.33% Sensitivity, 100% specificity, 93.75% accuracy

All Cancer 5 1
Non-cancer 2 8

83.33% Sensitivity, 80% specificity, 81.25% accuracy

Table 3. Classification results using SVM.

Cancer Non-cancer

GLDM Cancer 5 1
Non-cancer 1 9

83.33% Sensitivity, 90% specificity, 87.75% accuracy

GLDV Cancer 5 1
Non-cancer 0 10

83.33% Sensitivity, 100% specificity, 93.75% accuracy

All Cancer 5 1
Non-cancer 1 9

83.33% Sensitivity, 90% specificity, 87.75% accuracy

It is obvious that the SVM achieves approximately the same results as those obtained by
the DT classifier for the available feature sets. This makes the DT more favourable for several
reasons:

• it provides a clear rule of how the classification results are obtained;
• it depends mainly on the information content of each feature;
• its computational cost is less.

6.4. Feature selection using MI results

The resulting MI between each feature and the classes is depicted in figure 5, where the x-axis
represents the feature number and the y-axis represents the mutual information between that
feature and the class.

Choosing the feature subset that maximizes the MIFC and minimizes the MIXY according
to figure 3, results in three features from the GLDV feature set whose classification results are
shown in table 4.

Here it is obvious that the SVM and DT perform much better than the CNN classifier for
the same feature subset. However, the chosen feature subset achieves better classification than
both the GLDM feature set and the combined features. The subset performs as well as the
GLDV features. The MIFS selected features are all GLDV features which are further proof
that the GLDV features are more informative than the GLDM features. When the feature sets
are combined, the classifier is confused.
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Table 4. Classification results using MI feature subset.

Cancer Non-cancer

CNN Cancer 4 2
Non-cancer 2 8

Sensitivity = 66.67%, specificity 80%, 75% accurracy

DT Cancer 5 1
Non-cancer 0 10

83.33% Sensitivity, 100% specificity, 93.75% accuracy

SVM Cancer 5 1
Non-cancer 0 10

83.33% Sensitivity, 100% specificity, 93.75% accuracy

7. Conclusion

This note introduces a comprehensive TRUS tissue characterization algorithm with a multi-
feature capability to mimic the expert radiologist in detecting suspicious regions with a high
degree of accuracy. In addition, the note offers a comparison between the different feature sets
either individually such as the GLDV or the GLDM or as a combination of all the features.
In the case of the combined features, the MIFS is applied successfully to extract the most
informative features. Moreover, three different classifiers are compared with all the available
feature sets, revealing that the combination of the SVM or the DT classifier with the MIFS
features has the highest accuracy. This technique can be used as a support for the existing
technologies for prostate cancer diagnosis and as a result aiding biopsy planning. The key
advantage of the proposed algorithm is the application of multi-resolution texture segmentation
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for ROI identification, which leads to substantial time saving either by assisting the radiologist
or by eliminating the need for whole image analysis.
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