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Mimicking Cellular Sorting Improves Prediction of
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Predicting the native subcellular compartment of a protein is an important
step toward elucidating its function. Here we introduce LOCtree, a
hierarchical system combining support vector machines (SVMs) and other
prediction methods. LOCtree predicts the subcellular compartment of a
protein by mimicking the mechanism of cellular sorting and exploiting a
variety of sequence and predicted structural features in its input. Currently
LOCtree does not predict localization for membrane proteins, since the
compositional properties of membrane proteins significantly differ from
those of non-membrane proteins. While any information about function
can be used by the system, we present estimates of performance that are
valid when only the amino acid sequence of a protein is known. When
evaluated on a non-redundant test set, LOCtree achieved sustained levels
of 74% accuracy for non-plant eukaryotes, 70% for plants, and 84% for
prokaryotes. We rigorously benchmarked LOCtree in comparison to the
best alternative methods for localization prediction. LOCtree outperformed
all other methods in nearly all benchmarks. Localization assignments using
LOCtree agreed quite well with data from recent large-scale experiments.
Our preliminary analysis of a few entirely sequenced organisms, namely
human (Homo sapiens), yeast (Saccharomyces cerevisiae), and weed (Arabi-
dopsis thaliana) suggested that over 35% of all non-membrane proteins are
nuclear, about 20% are retained in the cytosol, and that every fifth protein in
the weed resides in the chloroplast.
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Assignment and prediction of
subcellular localization indispensable

The sequencing of the genomes, i.e. all DNA
sequences, of over 260 organisms (February 2005),
including the human genome1,2 has been com-
pleted. For over 200 of the entirely sequenced
organisms, the protein sequences are publicly
available; 105 have been analyzed in the PEP
database†, and contribute about 413,000 protein
sequences, i.e. about one-fourth of all currently
known protein sequences.3–5 With this explosion of
genome sequences, the major challenge in modern
biology is to follow suit in advancing the knowl-
edge of the expression, regulation, and function of
the entire set of proteins encoded by an organism,
i.e. its proteome. This information will be invalu-
able for understanding how complex biological
processes occur at a molecular level, how they differ
in various cell types, and how they are altered in
disease states. Proteins must be localized in the
same subcellular compartment to cooperate
towards a common function. Therefore, experimen-
tally unraveling the native compartment of a
protein constitutes one step on the long way to
determining its role. Using experimental high-
throughput methods for epitope and green fluor-
escent protein (GFP) tagging, two groups have
recently reported localization data for most proteins
in Saccharomyces cerevisiae (baker’s yeast).6,7 So far,
the majority of large-scale experimental efforts to
predict localization have been restricted to yeast, or
to particular compartments, such as a recent
analysis of chloroplast proteins in Arabidopsis
thaliana (weed).8 As of now, these large-scale
experiments cannot be repeated for mammalian or
other higher eukaryotic proteomes. One major
obstacle is that large scale production of a collection
of cell lines each with a defined gene chromo-
somally tagged at the 3 0 end is not yet possible.9 In
contrast, computational tools can provide fast and
accurate localization predictions for any organ-
ism.10–13 Attempts to predict subcellular localiz-
ation have increasingly become one of the central
problems in bioinformatics/computational
biology.14–20
Most reliable predictions cover less than
50% of all proteins

A number of methods predict localization by
identifying short sequence motifs, such as signal
peptides21–26 or nuclear localization signals
(NLS)15,27–29 that are responsible for protein target-
ing. Most proteins destined for the secretory path-
way, the mitochondria and the chloroplast contain
N-terminal peptides that are recognized by the
translocation machinery.30,31 The term “signal pep-
tide” is used to describe the peptides in secreted
† http://cubic.bioc.columbia.edu/db/PEP/
proteins that are cleaved in the endoplasmic
reticulum (ER) by signal peptidases; the peptides
responsible for targeting proteins to the mitochon-
dria and chloroplast are referred to as “transit
peptides”. Signal and transit peptides can be
recognized by generic prediction methods, that by
the detection of these peptides also predict sub-
cellular localization.17,24,32,33 Many proteins des-
tined for the nucleus contain NLS motifs that may
occur anywhere in the sequence. Recently, we have
collected a data set of experimental and potential
NLS motifs as an aid to predicting nuclear
localization.29 However, the vast majority of nuclear
proteins have no known motif. For mitochondria
and chloroplast, a number of alternative targeting
pathways have also been discovered recently.34–37

Additionally, proteins such as fibroblast growth
factors are targeted to the extra-cellular space via
non-classical secretory pathways, i.e. they do not
possess N-terminal signal peptides.38,39 Further-
more, a particular problem for methods detecting
N-terminal signals is that start codons are pre-
dicted with less than 70% accuracy by genome
projects.1,2,40 Overall, known and predicted
sequence motifs enable annotating about 30% of
the proteins in six entirely sequenced eukaryotic
proteomes.4,41,42 Other methods that can be reliably
used to annotate localization but are not always
applicable are annotation transfer from sequence
homologues43 and text analysis.44–47 A particular
variant of homology-based predictions is the
domain projection method that is based on simi-
larity to SMART domains of known subcellular
localization.41 Despite recent high-throughput
experiments, the most reliable prediction methods
together cover less than 50% of entirely sequenced
multi-cellular proteomes.
De novo predictions of localization
restricted by limited “biophysical
reality”

In the near future, the only hope of assigning
compartments to the remaining half of all multi-
cellular proteins is using methods that predict
localization from features other than known
import/export motifs. The most promising
approach is to exploit the correlation between
localization and amino acid composition of a
protein,48,49 which is mostly due to the altering of
the protein surface in response to changing
environmental conditions.50 Methods using only
amino acid composition to predict localization are
de novo methods; they predict localization without
any explicit experimental knowledge of the protein
under investigation. In particular, they are as
accurate if any information about function is
available for a target as when the target is merely
a “hypothetical protein”. Higher-order residue
correlations (between residues i and iCn, for
nZ2,3,4) have been accounted for by using pseudo-
amino acid composition.51–53 Recently, we showed

http://cubic.bioc.columbia.edu/db/PEP/


Figure 1. Hierarchical architecture of LOCtree. LOCtree uses specialized architecture to predict subcellular
localization of proteins from different organisms: (a) architecture for eukaryotic non-plant proteins; (b) architecture
for plant proteins; and (c) the architecture for prokaryotic proteins. At each branch point a support vector machine
(SVM) is used to accomplish a binary classification (either protein belongs to localization class L or does not belong to L).
The hierarchical architecture has been designed to mimic the biological protein sorting mechanism as closely as possible.
The branches of the tree represent intermediate stages in the sorting machinery while the nodes represent the decision
points in the sorting machinery. The different levels of SVMs in the hierarchical tree are labeled Level 0, Level 1, etc. For
example, Level 0 represents the top node SVMwhich discriminates between secretory pathway proteins and other intra-
cellular proteins ((a) and (b)) or proteins which remain in the cytoplasm from the rest (c). The intermediate node SVMs in
the next level are represented as Level 1, and are responsible for separating extra-cellular proteins from proteins sorted to
the organelles and nuclear proteins from cytoplasmic proteins ((a) and (b)). For the prokaryotic architecture (c), Level 1
is the terminal level for Gram-negative bacteria and separates extra-cellular proteins from periplasmic proteins. In
addition, Level 1 also contains the cytoplasmic leaf which is propagated without branching from Level 0. For Gram-
positive bacteria, Level 0 is the terminal level and separates cytoplasmic proteins from extra-cellular proteins (non-
cytoplasmic branch). The leaves of the tree, represented by rectangular boxes represent the final localization classes for
which prediction is made. If a leaf has a depth smaller than the overall depth of the tree it is propagated without
branching for the remainder of the tree. Level 2 is the terminal level for the eukaryotic non-plant architecture (a) and is
responsible for sorting proteins into one of five subcellular classes (mitochondria and cytosol plus the three leaves from
Level 1), while Level 3 is the terminal level for the plant architecture (c) and separates proteins into one of six classes
(mitochondria and chloroplast plus the four leaves from Level 2). The prediction accuracy of the parent nodes is higher
than the child nodes leading to a significantly improved prediction accuracy for the intermediate localization states.
Abbreviations: EXT, extra-cellular; NUC, nucleus; CYT, cytosol; MIT, mitochondria; CHLORO, chloroplast; RIP,
periplasm; and ORG, organelle. Organelles are the endoplasmic reticulum, Golgi apparatus, peroxysomes, lysosomes,
and vacuolar compartments.
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that incorporating structural and evolutionary
information significantly improves prediction accu-
racy.54 With the availability of many completely
sequenced genomes, phylogenetic profiles have
been employed to identify subcellular localiz-
ation.55 So far, this approach has been much less
accurate thanmethods based solely on composition.
Drawid & Gerstein have proposed a Bayesian
system, based on a diverse range of 30 different
features, to predict the localization of yeast pro-
teins.56 The problem with all these methods is that
they are based on sequence features that may reveal
localization but are not the reason why proteins are
transported, such as signal and transit peptides
and nuclear localization signals. Furthermore, all
general methods, with the exception of PSORT,57,58

implicitly assume that all localizations are equi-
distant, i.e. if a method predicts a nuclear protein to
be cytoplasmic it makes the same mistake as
another method which predicts this protein to be
extra-cellular. In reality, however, some compart-
ments are more similar to each other than others,
e.g. ER is closer to extra-cellular than to nuclear due
to the proximity in the space of the biological
sorting machinery.
Here, we describe a novel system of support

vector machines (SVMs) that predict subcellular
localization by incorporating a hierarchical ontol-
ogy of localization classes modeled onto biological
processing pathways. By construction, the system
penalizes confusions of classes along the same
pathway (e.g. ER instead of extra-cellular) less
than confusions between classes from different
pathways (e.g. ER instead of nuclear). The bio-
logical similarities are incorporated from the
description of cellular components in the gene



Table 1. LOCtree on non-redundant test set of eukaryotic non-plant proteins

Hierarchy
level Class Nprot Acc Cov GAv

Q
(StdDev) MCC MI Nstates

Level 0 Secretory pathway 415 81 80 81 89 (2) 0.73 0.44 2
Intra-cellular 1090 92 93 93

Level 1 Extra-cellular 363 83 81 82
Organelles 52 51 52 52 78 (4) 0.55 0.40 4
Nuclear 562 78 78 78

Cytoplasm 528 76 78 77
Level 2 Cytosol 330 63 66 64 74 (6) 0.55 0.39 5

Mitochondria 198 70 67 68

Abbreviations used: hierarchy level and class are as illustrated in Figure 1;Nprot, number of proteins in sequence-unique test set with a
given localization; Nstates, number of effective states predicted at given level (note that Level 1 contains four states while Level 2
contains five states, namely the Level 1 leaves (extra-cellular, organelles and nuclear) C cytosol C mitochondria). Performance
measures: Acc, accuracy or specificity (equation (2)); Cov, coverage or selectivity (equation (3)); gAv, geometric average between Acc
and Cov (equation (4));Q, overall prediction accuracy for a given level in the hierarchy (equation (5); note depending on the level this is
a two-state, four-state, or five-state value); MCC, Mathews correlation coefficient (equations (6) and (8)); MI, mutual information
(equations (7) and (10)). Note 1: QZ74% at Level 2 is the overall accuracy for classification into one of five localization classes (extra-
cellular, organelles, nuclear, cytosol or mitochondria).
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ontology (GO).59,60 We simplified and tailored the
GO definitions to the problem of protein sorting.
For example, in GO both the ER and the Golgi
apparatus are subcategories of the cytoplasm.
However, proteins destined for the extra-cellular
space, the ER, the Golgi, endosomes and lysosomes
are targeted via the same secretory pathway. By this
criterion, proteins from the secretory pathway are
more similar to each other than they are to other
intra-cellular proteins.30 Hence, in our classification
scheme these compartments are grouped together
and are designated as belonging to the secretory
pathway. Technically, we incorporated the ontology
through a decision tree with SVMs as the nodes
(Figure 1). We favored SVMs over neural networks
due their improved performance (data not shown).
The final system, LOCtree, was extremely success-
ful at learning evolutionary similarities among
subcellular localization classes and was signifi-
cantly more accurate than other traditional net-
works at predicting subcellular localization.

We have applied LOCtree to analyze the sub-
cellular localization of complete genomes of a
number of eukaryotic and prokaryotic organisms.
The LOCtree subcellular localization prediction
server and the results of our localization annota-
tions for entire proteomes are available.†
Results

Data sets and cross-validation results
More data with noise better than less data with less
noise

Proteins with experimentally annotated sub-
cellular localization were extracted from SWISS-
PROT61 (Methods andMaterials). For this study, we
excluded membrane proteins, i.e. all our results are
valid for a subset of 75–80% of all proteins.42,62–65
† http://www.rostlab.org/services/LOCtree/
In total, we had 8980 eukaryotic and 13,186
prokaryotic non-membrane proteins with explicit
experimental annotations (Methods and Materials).
Training and test sets were constructed by par-
titioning the data such that test sequences had less
than 25% sequence identity to any sequence in the
training set over an alignment length of 250
residues (HVALZ5; equation (1) Methods and
Materials). To avoid overestimating performance,
we reduced redundancy such that our final
sequence-unique test set contained 1505 non-
redundant eukaryotic non-plant sequences, 304
plant and 672 prokaryotic test sequences. All results
of the methods described here were based on
sixfold cross-validation experiments, i.e. we cycled
six times through the entire sequence-unique data
such that each protein was used for testing once. To
increase the size of the training set, we included
homology-based (LOChom43) and keyword-based
(LOCkey45) predictions in the training data. While
adding these noisy predictions, we ascertained that
no homologues to any of the test proteins were
included. This procedure almost quadrupled the
training data; it increased prediction accuracy by
nearly seven percentage points (data not shown).
The major improvement resulted from the addition
of keyword-based annotations using LOCkey.45

Plants were treated separately since their compo-
sitional features differed significantly from non-
plant eukaryotes (not shown). Using the SVM-light
package,66 we found the radial basis function (RBF)
kernel to perform better than linear and polynomial
kernels. This result was obtained on a small subset
of all proteins without cross-validation. In particu-
lar, we did not optimize this solution for the final
test set.
Very accurate distinction between secretory
pathway proteins and all others

To predict the localization of an unknown
eukaryotic protein, LOCtree first determines if it is
sorted using the secretory pathway. The SVM that

http://www.rostlab.org/services/LOCtree/


Figure 2. Reliability of LOCtree. The curves show prediction accuracy of LOCtree for eukaryotic animal sequences.
(a) Overall performance: the prediction accuracy decreases as we descent the hierarchical tree (Figure 1(a)). The Level 2
accuracy shown includes the accuracy of all Level 1 leaves like the extra-cellular, organelle and nuclear classes (Figure
1(a)), and represents the accuracy of classifying the protein into one of five subcellular classes. At 75% coverage the
prediction accuracy is around 94% for Level 0, dropping to 84% for Level 1 and 77% for Level 2. The ability of the
hierarchical system to predict intermediate localization states at a significantly higher accuracy is evident from the 17%
difference in prediction accuracy between Level 0 and Level 2. Level 1 separates proteins into one of four subcellular
classes and is over 7% more accurate than Level 2, which separates proteins into one of five classes. (b) Class-wise
performance: LOCtree is best at discriminating secretory pathway proteins from all other proteins (91% accuracy at 50%
coverage). Prediction of nuclear and extra-cellular proteins was only slightly less accurate (84% accuracy at 50%
coverage) while performance was significantly worse for cytosolic proteins with only 64% correctly predicted. The
standard deviation in the prediction accuracy for each of the localization classes was roughly 7%.
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makes this distinction achieved an overall predic-
tion accuracy around 90% for both eukaryotic
non-plant (Table 1; Figure 2(a)) and plant proteins
(Table 2). Using the signal peptide prediction of
SignalP23 as one input to the SVM improved
accuracy by over one percentage point (data
not shown). We also confirmed our previous
observation that using overall composition in con-
junction with N-terminal composition improved
performance.54 Our methods also distinguished
intra-cellular proteins very accurately from those
entering the secretory pathway (O90% accuracy;
Tables 1 and 2).
Table 2. LOCtree on non-redundant test set of plant proteins

Hierarchy
level Class Nprot Acc Cov

Level 0 Secretory pathway 42 77 79
Intra-cellular 262 97 96

Level 1 Extra-cellular 22 68 68
Organelles 20 57 60
Nuclear 32 70 81

Cytoplasm 230 95 93
Level 2 Cytosol 77 73 74

Non-cytosol 153 84 80
Level 3 Mitochondria 50 61 74

Chloroplast 103 77 63

Abbreviations used as for Table 1.
Overall accuracy of 74% for non-plants

If a protein is predicted as belonging to the
secretory pathway it is further sub-classified into
extra-cellular or not (Figure 1(a)). The non extra-
cellular proteins belong to either of the following
organelles: endoplasmic reticulum (ER), Golgi
apparatus, peroxisome, lysosome, or vacuole. Pro-
teins native in one of these organelles were
predicted at levels around 50% accuracy and 52%
coverage (values were higher for plant proteins;
Table 2); these values were much lower than the
averages for all other classes. The sub-classification
gAv
Q

(StdDev) MCC MI Nstates

78 94 (4) 0.74 0.49 2
97
68 88 (5) 0.58 0.49 4
58
75
94
74 77 (7) 0.59 0.44 5
82
67 70 (3) 0.58 0.42 6
70



Table 3. LOCtree on non-redundant test set of prokaryotic proteins

Hierarchy
level Class Nprot Acc Cov gAv

Q
(StdDev) MCC MI Nstates

Level 0 Cytoplasm 426 89 97 93 90 (4) 0.79 0.52 2
Non-cytoplasm 246 93 80 86

Level 1 Periplasmic 125 86 62 73 83 (2) 0.55 0.45 3
Extra-cellular 42 59 74 66

Abbreviations used as for Table 1. Note 1: Level 1 is applicable to Gram-negative bacteria only. For Gram-positive bacteria, the system
performs a two-state classification with non-cytoplasmic proteins being classified as extra-cellular. For Gram-negative bacteria, non-
cytoplasmic proteins are further separated into periplasmic and extra-cellular proteins. Note 2: the Level 0 prediction accuracy did not
differ significantly between Gram-positive and Gram-negative bacteria. The prediction accuracy reported above is the combined
prediction accuracy for Gram-positive and Gram-negative bacteria. The overall two class prediction accuracy for Gram-positive bacteria
was Q2Z90% while the three class prediction accuracy for Gram-negative bacteria was Q3Z83%.
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of intra-cellular proteins into nucleus and cyto-
plasm was less accurate; however, levels of accu-
racy and coverage were still above 76% (Tables 1
and 2). Of the final localization classes (the leaves in
Figure 1(a)), the extra-cellular class was predicted
most accurately while the nuclear class was
predicted only slightly less accurately (Figure
2(b)). Cytosolic proteins were, as expected, pre-
dicted with the lowest accuracy by the non-plant
method (Table 1 and Figure 2(b)), while mitochon-
drial proteins were the least accurately predicted by
the plant specialist (Table 2). Predictions for all
classes of the non-plant system were extremely
balanced between accuracy and coverage (Table 1).
For reporting prediction accuracy, if a leaf (terminal
node) has a smaller depth than the overall tree (the
extra-cellular leaf has a depth of 1 while the overall
tree depth is 2), the predictions for this leaf are
propagated without branching for the depth of the
tree (Figure 1(a)). Hence, the quoted Level 2
accuracy of Q5Z74% (Table 1) is the overall
accuracy for classification into one of five locali-
zation classes (extra-cellular, organelles, nuclear,
cytosol or mitochondrial). This was over seven
percentage points more accurate than another
system that used the same input with the traditional
pair-wise SVMs (data not shown). The unique
feature of our method is that it predicts “inter-
mediate” localizations such as intra-cellular and
cytoplasm (Tables 1 and 2). These intermediate
localizations are predicted with a much higher
accuracy as is evident from the progressive decrease
in prediction accuracy as we descent the hier-
archical tree (Figure 2(a)).
Accurate distinction of three prokaryotic classes

For prokaryotic proteins, LOCtree first deter-
mines if the protein is cytoplasmic or not. The SVM
discriminating between these localizations reached
an overall accuracy of 90% (Table 3). Prediction
accuracy did not differ significantly between Gram-
positive and Gram-negative bacteria. For Gram-
negative bacteria, the non-cytoplasmic proteins are
further classified into periplasmic and extra-
cellular. The overall three class (cytoplasmic, peri-
plasmic or extra-cellular) prediction accuracy for
Gram-negative bacteria was Q3Z83%; the two class
(cytoplasmic or extra-cellular) accuracy for Gram-
positive bacteria was Q2Z90%. For Gram-negative
bacteria, the distinction between periplasmic and
extra-cellular proteins was at a much lower accu-
racy than cytoplasmic proteins.

Comparison with other methods using
additional test sets
Other methods tested on new data set

We compared our method to the following
publicly available methods: TargetP,33 SubLoc,67

NNPSL,40 and PSORT II.25 In contrast to all other
methods, TargetP focuses exclusively on N-terminal
sorting signals (secreted, chloroplast, mitochon-
dria); it does not predict proteins targeted using
other mechanisms or in any other compartment,
such as in the nucleus or cytoplasm. Of the other
servers that predict at least four classes, SubLoc67 is
also based on SVMs; NNPSL40 is based on neural
networks. SubLoc and NNPSL rely solely on amino
acid composition while PSORT25 combines infor-
mation from local sequence motifs and a neural
network based method. All publicly available
methods were tested on smaller data sets than
LOCtree, and on data sets with little mutual
overlap. We could run all servers on our non-
redundant test set from the cross-validation experi-
ments (Tables 1–3). However, most of the proteins
in our data set had been used to develop those
servers andwe could not cross-validate anymethod
other than our own. A benchmark with our data
set would, therefore, have very limited value. For
completeness, we reported the results of this test
which as expected, over-estimated the public
servers significantly (Supplementary Data,
Table 1). The most meaningful comparison of
prediction methods is based on a significantly
sized, sequence-unique data set of proteins that
have neither been used for the development of any
of the methods tested, nor have significant sequence
similarity to any of the methods tested. Unfortu-
nately, such sets are often difficult to get. If we
ignored the most recent improvement of one of
the components of TargetP, namely SignalP 3.0,17

we could find such a data set in proteins
added between SWISS-PROT version 40 and 41



Table 4. Comparison on identical sequence-unique set of new SWISS-PROT non-plant eukaryotic proteins

Abbreviations used as for Table 1, with the following exceptions. Data set: all sequence-unique eukaryotic non-plant proteins added
between release 41 and 40 of SWISS-PROT (Non-plant new unique in Table 4 of the Supplementary Data). Note that none of the proteins in
this set had significant sequence similarity to any of the proteins that had annotations about localization in SWISS-PROT at the time of
development of the prediction methods for which results are shown. In this sense, our test set could also provide an independent and
likely more accurate estimate for the sustained performance than some of the original publications for some of the methods.
Localization: Ext, extra-cellular; Nuc, nuclear; Cyt, cytosolic; Mit, mitochondria; Chloro, chloroplast. Methods: Predictions from
methods other than LOCtree, introduced here, were taken from their public Internet servers (Methods andMaterials), except for PSORT
II that was run locally; numbers in square brackets under methods refer to the original publication (References). Numbers in bold: in
each row, the best method(s) is (are) marked in bold letters; methods are grouped according to significant differences (below), i.e. all
values that are statistically indistinguishable are marked as one best group. Significant differences: For LOCtree, the standard deviation
in the five-state accuracy was roughly six percentage points. The following estimates for standard deviations were published: TargetP,33

about one percentage point; NNPSL,40 about 2.5 percentage points; PSORT II,25 about 3.5 percentage points. Since no error estimates
were published for SubLoc,67 we used 2.5 percentage points as the mean over the other three.
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(Methods and Materials). While SignalP 3.0 has
been developed after release 41, all the methods
that we compared have been developed before
release 41. Note that we deliberately restricted our
development of LOCtree to proteins available
in version 40 so that we could carry out this
comparison. In many ways, our evaluation was
also informative of the sustained performance of
the methods tested, some of which had fallen prey
to severe over-estimates of performance in their
original publications. Note that PSORT, TargetP and
the different versions of SignalP stood out in that
their authors had correctly estimated the sustained
performance all along.
LOCtree over 20 percentage points more accurate
than other general servers

In the benchmark of proteins that had not been
used for the development of any method, LOCtree
outperformed all other servers (Table 4). TargetP
was more accurate at predicting proteins targeted
via the secretory pathway but its coverage was
lower than that of LOCtree. The reason was that
TargetP slightly under-predicted the secretory path-
way (imbalance in gAv (equation (4)), i.e. the
geometric average over Acc and Cov; Table 4). On
our data set, we found the accuracy of SignalP 3.017

to be slightly lower than that of TargetP, since the



Table 5. Performance of LOCtree based on large scale
yeast localization data

Method Nuclear Mitochondrial

Obs Acc Cov Obs Acc Cov

GFP7 586 82 68 418 83 51
IL6 124 88 64 60 76 62

Abbreviations used: Methods: Experimental subcellular localiz-
ation data for proteins in yeast were obtained from two methods:
GFP, large scale localization using green fluorescent protein
tagging;7 IL, large scale localization using high-throughput
immunolocalization of epitope-tagged proteins.6 Data: Obs,
number of non-membrane proteins for which localization was
predicted in this compartment by the respective large-scale
experiment. All proteins observed to be in multiple compart-
ments by the large-scale methods were excluded from our
analysis. LOCtree was used to predict localization of the
remaining proteins. The prediction accuracy (Acc) and coverage
(Cov) of LOCtree was calculated by assuming that the
localization observed in the large-scale experiment represents
the true localization of the protein. Note 1: cytoplasmic proteins
were excluded from our analysis, since a large fraction (45–70%)
of all proteins was observed to be in the cytoplasm in the two
large-scale experiments. Nearly half of all cytoplasmic proteins
were observed to be associated with more than one compartment
and many are likely to be further sorted to other compartments.
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difference was not significant, SignalP 3.0 was not
shown separately in order to simplify. PSORT II was
the most accurate server for predicting extra-
cellular proteins; however, this was achieved at
the cost of an extremely low level of coverage; in the
geometric average between accuracy and coverage,
PSORT II was more than 30 percentage points lower
than LOCtree. As shown in our cross-validation
experiments (Tables1–3),LOCtreewasverybalanced
in its compromise between accuracy and coverage,
i.e. betweenunderandover-prediction, for all classes,
and it was much more balanced than any other
server. In termsof the overall four-state accuracy (Q4;
equation (5)), LOCtree scored 21 percentage points
higher than its best competitor SubLoc (Table 4).
Figure 3. Benchmarking LOCtree using large-scale
experimental data. Both LOCtree and TargetP33 were
used to predict the localization of nearly 500 chloroplast
proteins from A. thaliana which were identified using
tandem mass spectroscopy (TMS) by Kleffmann et al.8

LOCtree and TargetP both predicted over 45% of these
proteins to be localized in the chloroplast lending strong
support to the large-scale experimental data using TMS.
Over 70% of the proteins were predicted to be in the
chloroplast by at least one server. TargetP showed a high
degree of agreement with LOCtree, agreeing with over
87% of the predictions using LOCtree.
Performance better than existing methods even for
incorrect sequences

LOCtree explicitly used information from the first
50 residues (N termini) and compositions from the
entire protein. Both these values are likely to be
wrong for many proteins taken from large-scale
sequencing projects.68–71 We tried to estimate the
effect of such mistakes through two different
“models”: (1) we cleaved off 30 N-terminal residues
for all proteins; and (2) we randomly picked
positions to remove one-third of the sequence for
each protein. These tests constituted worst-case
scenarios in the sense that they all over-estimated
sequencing errors substantially. We found that the
overall prediction accuracy of LOCtree on the
randomly cleaved fragments was 68% (Supplemen-
tary Data, Table 2), 10% less than what was obtained
using the full protein sequence. For the N-term
cleaved sequences, the accuracy further dropped to
55% due to the explicit dependence of LOCtree on
N-terminal sequence information. This is still
accurate enough to provide reliable first estimates
of localization for genomic sequences.
About 80% agreement between predictions and
large-scale experiments in yeast

Over the last years the large-scale experimental
determination of subcellular localization for a
substantial fraction of all yeast proteins has become
increasingly accurate. Using high-throughput
immuno-localization (IL) of epitope-tagged gene
products, the Snyder group6 determined the locali-
zation for about 60%, while the O’Shea group7

exploited high-throughput GFP tagging to cover
about 66% of all yeast proteins. Both studies did not
distinguish between membrane and non-
membrane proteins, and both did not capture
secreted proteins. Many proteins were experi-
mentally associated to more than one single
compartment: 35% for Snyder et al. and 31% for
O’Shea et al. We compared the LOCtree predictions
of all proteins predicted to not contain membrane
helices, and observed to be nuclear or mito-
chondrial in the two large-scale experiments.
Proteins observed to be in the cytoplasm in the
two large-scale studies were excluded from our
analysis, since a large fraction (43% for Snyder et al.
and 55% for O’Shea et al.) of cytosolic proteins



Figure 4. Composition of com-
partments in three representative
proteomes. Note that 100% of the
pie charts represents the number of
proteins without transmembrane
helices (predicted by PHDhtm98–100

and taken from PEP3). The final
estimates were corrected in order
to account for our compartment-
specific estimates of accuracy and
coverage (equation (11)). For all
three proteomes the nucleus
appeared to take the lion’s share
of all proteins, only the chloroplast
came near this value for the plant
representative weed (A. thaliana).
Human (H. sapiens) has signifi-
cantly more secreted proteins than
do weed and yeast (S. cerevisiae).
Yeast appeared to have the highest
fraction of mitochondrial proteins.
For the proteomes the percent
fractional error for the estimates
of the different compartments are
given by: extra-cellular (G9%),
organelle (G34%), nuclear (G10%),
cytosol (G20%), mitochondria
(G25%)and forchloroplast (G17%).
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were also observed in alternative compartments.
Similarly, we also excluded all other proteins
experimentally associated with more than one
compartment. This filtering left over 1000 proteins
from the GFP data and about 200 proteins from
the IL data. For both these data sets, about 80%
of the predictions from LOCtree were identical with
the experimental results (Table 5). This is com-
parable to the 80% agreement between the GFP data
and traditional non-high-throughput results pre-
viously annotated in SGD.72,73 The agreement
between GFP and IL is about 75% for the subset of
146 proteins found to be nuclear or mitochondrial
by GFP that were also found in the IL data set. The
agreement between GFP annotations and yeast
proteins annotated using homology to SWISS-
PROT proteins was 79%. This is for five subcellular
classes and using an HVALO10 (equation (1)) for
homology annotations. For the IL data the agree-
ment with SWISS-PROT was 72% (note due to the
small data set this number is a very inaccurate
estimate).
† http://www.rostlab.org/cgi-bin/var/nair/loctree/
query-genome.pl
Chloroplasts: experimental data supported by
predictions

Using tandem mass spectroscopy (TMS),
Kleffmann et al.8 recently identified 690 proteins
localized in the chloroplast of A. thaliana (weed). Of
these we predicted 190 to contain membrane
helices. We compared LOCtree and TargetP33 for
the remaining 500 proteins (Figure 3). The following
results stood out: (1) less than half of these proteins
were identified by all three methods; (2) a con-
siderable fraction (29%) of the 500 proteins was only
identified by TMS; and (3) when comparing the
chloroplast predictions for all weed proteins, we
found that LOCtree and TargetP agreed in about
87% of their predictions. TargetP, however, predicts
more chloroplast proteins than LOCtree. This could
be due to the over-prediction of chloroplast proteins
by TargetP which has been reported by an inde-
pendent group.74

Application to representative proteomes

We used LOCtree to annotate the subcellular
localization for all non-membrane proteins in the
entire proteomes of Homo sapiens (human),1,2

A. thaliana (weed),75 and S. cerevisiae (yeast)19

(Figure 4). The results of our proteome annotations
can be queried (downloaded) from the LOCtree
website†. We estimated that over 60% of all non-
plant and over 50% of all plant proteins are nuclear
or remain in the cytosol (Figure 4 and Table 3 of
Supplementary Data). While over 75% of the non-
membrane proteins in all genomes appeared intra-
cellular, the fraction of secreted proteins varied
substantially between 8% and 20%, with plants

http://www.rostlab.org/cgi-bin/var/nair/loctree/query-genome.pl
http://www.rostlab.org/cgi-bin/var/nair/loctree/query-genome.pl
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having fewer than 10% extra-cellular proteins and
the number exceeding 20% in human. Nuclear
proteins were overabundant in yeast. In general,
the unicellular yeast was somewhere in
between human and weed in its composition of
compartments.
Discussion

Tree-based system provided additional
advantages to boosting performance

Our results demonstrated how the prediction of
subcellular localization can be substantially
improved by mimicking the biological protein
trafficking mechanism as closely as possible
through, LOCtree, a hierarchical tree of SVMs
(Figure 1 and Tables 1–3). PSORT25,57,58,76 is based
on an implementation of a reasoning tree that is
conceptually most similar to LOCtree. However,
unlike LOCtree, PSORT is not based on an explicit
“ontology” of subcellular localization. Instead, the
nodes of the PSORT reasoning tree assign a
probabilistic value to the presence/absence of a
single feature and have no intrinsic meaning. In
contrast, the nodes of LOCtree separate proteins
belonging to different cellular sorting pathways.
In addition to being more accurate, our machine
learning system provided two added benefits. The
first was the prediction of “intermediate stages”.
The prediction of intermediate stages, such as
secretory pathway, was achieved at much higher
levels of accuracy than the native compartments.
This is not too surprising given that large-scale
experiments using IL and GFP-tagging6,7 suggest
that 30% of all proteins are ambiguous, i.e. spend a
considerable portion of their life-time in more than
one native compartment. These experimental data
might strike many biologists as “expected,” since
the vast majority of proteins travel through the cell,
e.g. most extra-cellular proteins “visit” at least three
other compartments (ER, Golgi, vesicles) before
they eventually are secreted. However, the very fact
that our system reaches levels above 74% accuracy
for the distinction of proteins into one of five
compartments (extra-cellular, cytoplasmic, mito-
chondrial, nuclear, and organellar) suggested that
most proteins have very strong preferences for
one single compartment imprinted onto their
sequences. The importance of post-translational
modifications in altering these sequence signals as
a means to increase the “fitness” for other compart-
ments might explain the difference between these
two extreme opposite perceptions of proteins as
native to “one native compartment” and as “fre-
quent travelers between compartments”.12,50,77 The
second advantage of our hierarchical system might
appear to be of more technical nature, namely that
our modular architecture allows the addition of
more fine-grained modules at later stages (e.g. the
split of nuclear into nuclear-matrix and other78).
However, this seemingly technical detail actually
once again was borne out of the advantage of
mimicking the actual sorting system. We observed
that as one descent’s the hierarchical tree the
prediction accuracy progressively decreases, since
the classification task becomes increasingly com-
plex and the SVM has to discriminate between
increasingly similar proteins. One problemwith our
decision tree-like implementation was that a pre-
diction mistake at a top node could not be corrected
at nodes lower in the hierarchy. The appropriate
choice of the evolutionary hierarchy was, therefore,
crucial. The fact that we cannot correct mistakes
from higher levels was by no means a feature of the
design: we tried to recover from higher-level sorting
mistakes by predicting localization of a protein at all
nodes and averaging over the prediction strengths
over all higher level nodes. Sometimes this worked,
however, most of the time such an alteration
introduced new mistakes.
Over 20 percentage points improvement over
existing generalized methods

We also showed that the increase in the size of the
training set through the addition of noisy predic-
tions was more relevant than the noise added from
the mistakes in these annotations obtained through
text-analysis45 and homology-transfer.43 This sur-
prising finding suggested that prediction methods
might improve even more through the continued
addition of large-scale experimental tackling of
localization. Finally, we confirmed our previous
findings54 that predicted structure and evolutionary
profiles contain information relevant for the pre-
diction of localization. All these data combined with
our hierarchical tree-based system improved the
overall accuracy over 20 percentage points over the
best competitor that generically predicted localiz-
ation in four states (extra-cellular, nuclear, cyto-
plasmic, mitochondrial; Table 4). The only method
that performed at a similarly high level as LOCtree
was TargetP33 (Table 4) that focuses on particular
classes (secreted, mitochondria, chloroplast). Tar-
getP33 was also the only method that appeared
significantly better at predicting one particular
compartment, namely, chloroplast proteins (Table
1 of Supplementary Data; note, however, that in this
test we did compare our method in cross-validation
mode to TargetP in not-cross-validation mode, i.e.
were likely to have over-estimated the performance
of TargetP). Predictions using LOCtree had the
added advantage of being extremely balanced
between accuracy and coverage (Tables 1–4). In
contrast, methods such as SignalP,23 the secreted/
not-secreted component of TargetP, are either very
prone to over (high coverage, low accuracy) or
under-prediction (low coverage, high accuracy; e.g.
TargetP, PSORT II). The only other general method
that was as well balanced as LOCtree was NNPSL40

that had an overall performance of 27 percentage
points below LOCtree (Table 4).
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Many estimates for performance had a rather
short-life span

Another problem that we noticed was that only
TargetP and PSORT had published estimates for
performance that were close to our results on a
“never-seen-before” set of sequence-unique pro-
teins. In particular, SubLoc67 was estimated to
achieve an overall accuracy of Q4Z79%, while it
reached only 57% on our data (Table 4). The
differences may be explained by the fact that up to
90% pair-wise sequence identity was allowed
between testing and training set for the original
publication of SubLoc and NNPSL.40 Cai et al.79 also
claim very high level of accuracy (73%). That value
was more difficult to compare because their
methods are not available as servers and because
their publications did not rigorously describe
protocols for removing redundancy. In fact, it
appears that only proteins identical between train-
ing and testing set were excluded. Furthermore, the
accuracy was compiled on a different partition of
the prediction goal. More recently this group
published even higher estimates using similar
data sets with unspecified sequence similarity
between testing and training.51,52 In general, the
problem of correctly estimating performance is a
very difficult one as illustrated by the bi-annual
meetings for the critical assessment of structure
prediction (CASP80–84) and by servers that evaluate
the performance of servers such as EVA†.85,86 The
task is particularly difficult in a field in which we
have too few and no continuous resource of
experimental data.
As accurate as large-scale experiments?

Numerically, our predictions from LOCtree
agreed as much with traditional “small-scale”
biochemical determinations of subcellular localiz-
ation as did the recent large-scale experiments6–8

(Tables 4 and 5). Interestingly, our predictions
reached a similar level of performance as large-
scale experiments (GFP: 79%, IL: 72%, and LOCtree:
74–78%) if analyzed against more careful traditional
approaches as the standard-of-truth. This by no
means implies that we aimed at the replacement of
experiments. Rather, we see predictions from
LOCtree as a reasonable, cheap starting point for
careful experiments and as a complement for the
interpretation of large-scale results. Furthermore,
our prediction method had slightly different poten-
tial than the large-scale experiments, e.g. while we
could identify secreted proteins, we currently could
not clearly distinguish between Golgi and vesicles,
nor did we include membrane proteins.
Open tasks

Our current systemmarked in someways the end
† http://www.rostlab.org/EVA
of a very long series of methods addressed at
predicting localization. While methods using
homology-transfer (LOChom43) and text-analysis
(LOCkey45) were crucial for achieving our new
state-of-the-art level of performance we will have to
tie some loose ends, in particular, we currently
exclude membrane proteins, treat each protein
as one without any experimental annotations
(LOChom and LOCkey are used for training and
for our prediction server; however, they are not
generically integrated into LOCtree), and do not
distinguish between proteins that are generically
native to more than one compartment and those
which are not. Furthermore, the task of annotating
more than a few representative proteomes remains.
Conclusion

Previous attempts at predicting subcellular
localization have implemented machine-learning
algorithms using the standard parallel architecture
as is common practice in computer science and have
focused on improving prediction by incorporating
additional sequence features that are correlated
with localization. Here we have shown that predic-
tion accuracy can be significantly improved by
using a hierarchical architecture of support vector
machines to mimic the protein sorting mechanism.
This result is likely to hold for other aspects of
protein function and can significantly aid the
development of more accurate predictors of protein
function. The ability of many proteins to function in
more than one native subcellular compartment
makes the prediction task especially difficult. In
fact, over 30% of the more than 4000 yeast proteins
for which localization has been determined using
high-throughput experiments7 are associated with
more than one compartment. The hierarchical
architecture of LOCtree can better incorporate
proteins which spend time in more than one native
compartment by predicting “intermediate” localiz-
ation states, which span multiple subcellular
classes, at a much higher accuracy. The fact that
the system achieved an overall five-state prediction
accuracy of 74% seems to indicate that the native
subcellular localization is imprinted somehow onto
the protein sequence and that a majority of proteins
carry only one strong sequence signal for one
particular compartment. In future, it should be
possible to further extend the abilities of LOCtree
by adding modules that can make fine-grained
distinctions such as discriminating among the
different organelles and various substructures like
the nucleolus.
Methods and Materials

Data sets used for development and evaluation

We selected all eukaryotic and prokaryotic proteins
with explicit annotations about subcellular localization in

http://www.rostlab.org/EVA
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SWISS-PROT release 40.87 We excluded proteins anno-
tated as MEMBRANE, POSSIBLE, PROBABLE, SPECIFIC
PERIODS or BY SIMILARITY. We also excluded proteins
annotated with multiple localizations. This left about 9000
eukaryotic proteins and 13,000 prokaryotic proteins in
our trusted set of experimentally annotated localization
(“SWISS-PROT annotated” set; Table 4 of Supplementary
Data). Training and test sets were constructed from this
set such that no pair of proteins from any two sets had
sequence similarity levels corresponding to HVALO5
(equation (1)). We picked this value, since below this
threshold assigning subcellular localization based solely
on homology leads to significant errors.43 Furthermore,
the test set was redundancy reduced at HVAL!10 using
a simple greedy search.88 This ensured that no two
proteins in the test set had greater than 25% sequence
identity over more than 250 residues (number of sequence
unique proteins given in Table 4 of Supplementary Data).
The reason for this reduction was to find a balance
between biased data known to yield over-estimates89,90

and between too small data sets likely to yield incorrect
estimates. We did not have to define thresholds for
significant sequence similarity between motifs such as
signal peptides,89 since we never explicitly used this
information, rather we used the entire protein
information†.
SWISS-PROT new set used for testing, only

After we completed the development of all our
methods, we used an additional data set to re-examine
performance, namely, we collected all proteins that had
been added to SWISS-PROT between release 40 and 41
(results presented in Table 4). We excluded all new
proteins that had HVALO5 (equation (1)) to any
previously used protein and found the sequence-unique
subset of the new proteins (Table 4 of Supplementary
Data). We never used any of these proteins for develop-
ment, and it is rather unlikely that any of the other
methods tested (Table 4) used any of these, since
all methods were developed based on SWISS-PROT
releases !41.
HSSP-value to measure pair-wise sequence similarity

The simplest way to measure sequence similarity is
percentage pair-wise sequence identity (PIDE), i.e. the
percentage of residues identical between two proteins
(not counting gaps). Another measure is the statistical
expectation values as reported by BLAST. Here, we used a
third measure, namely the HSSP-value (HVAL) because it
more accurately allowed the separation between proteins
pairs for which similarity in localization is recognizable
from sequence than the other two.43 The HVAL91,92 is
given by:

HVALZPIDK

100 for L%11

480LK0:32f1CexpKL=1000g for L%450

19:5 for LO450

8>><
>>: (1)

where Lwas the number of residues aligned between two
proteins, PID the percentage of pair-wise identical
residues.
†www.rostlab.org/results/2004/LOCtree/
Increasing size of training set

Preliminary results suggested that a larger training set
improved SVM performance through increased coverage
of the sequence space. Another source of improvement
was using a sequence redundant set of proteins to train
the SVM. Two strategies were used to increase the size of
the training set. (1) SWISS-PROT keyword-based annota-
tions: using LOCkey,45 we first annotated localization
for all proteins in the SWISS-PROT database for which
adequate keyword functional information was present in
the database. Next, proteins with HVALO5 to proteins in
the test set were excluded. The remaining proteins were
added to the training set. (2) Homology-based annota-
tions: using LOChom,43 we annotated localization for all
sequencehomologues in the SWISS-PROTdatabaseofpro-
teins in the training set. Using both procedures increased
the size of the training set by almost a factor of 4.

Building evolutionary profiles

We have shown54 that using evolutionary information
in the form of sequence profiles significantly improves
prediction accuracy. Profiles were built by aligning the
sequences against the SWISS-PROTCTrEMBL database
using the MaxHom dynamic programming algorithm.93

The aligned sequences were filtered for redundancy at
95% pair-wise sequence identity, i.e. pairs exceeding this
limit were removed. Finally, we included only those
proteins that hadHVALO5 and PIDO50%with respect to
the guide sequence. These thresholds were previously
found to be optimal for a rather different prediction
method.54 Finally, the profile composition was calculated
by replacing each amino acid residue in the protein by the
residue frequencies in the profile. All composition
information was input to the SVM in the form of
profile-based composition.

Hierarchical architecture and support vector machine
training

Each decision node in the hierarchical architecture of
LOCtree (Figure 1) was implemented using a support
vector machine (SVM). The SVMs were implemented
using the SVM-light package.66 We used the following
input information: amino acid composition (20 units),
composition of the 50 N-terminal residues (20 units), and
amino acid composition in the three secondary structure
states (60 units). For the eukaryotic plant and non-plant
systems, raw output from the SignalP server23 was used
as additional input to the SVM at the top node which
determined whether a protein is sorted through the
secretory pathway or not. Altogether 100 variables (104
for the top-level SVM in the eukaryotic architecture) were
used as input to the SVMs. Each SVM was trained using
the radial basis function (RBF) kernel. The g parameter for
the RBF-kernel and the C parameter for the trade-off
between training error and margin were determined by
optimization on small subset of the training data. We used
a constant value of gZ15 and CZ500 for all SVMs. The
predictions from the SVMs were observed to be quite
resilient to changes in kernel parameters.

Final decision through simple winner-takes-all

We experimented with the following two methods for
determining the localization of a protein. (1) Decision tree:
at each node in the hierarchical architecture (Figure 1), a
simple yes/no decision was made based only on the SVM

http://www.rostlab.org/results/2004/LOCtree/
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output at that node to determine which branch of the
localization tree the protein belongs to. (2) Summing over
prediction strengths: the branch of the localization tree
the protein is sorted through at each node was deter-
mined by summing the prediction strength’s over all
previous nodes. The simple decision tree architecture was
finally used, since it outperformed the summing archi-
tecture by over one percentage point.
Cross-validation

The “SWISS-PROT annotated” data was partitioned
into six sets of equal size using the HVAL criteria
described above: five of these sets were combined to
give the training set and the sixth one was used for
testing. Finally, we rotated through the test set such that
each protein was used for testing exactly once. We never
used any information from the test set to optimize
parameters.
Evaluating performance

As a simple measure for performance we used the
percentage accuracy (equation (5)). The accuracy/speci-
ficity and coverage/sensitivity of the two-state networks
were measured using four ratios derived from TP (true
positives, i.e. the number of proteins predicted to be in
localization L and experimentally observed to be in
localization L), FP (false positives, i.e. the number of
proteins predicted to be in localization L and observed in
not-L) and FN (false negatives, i.e. the number of proteins
predictednot tobe innot-Landobservedtobe inL).Weused:

AccðLÞZ 100
TP

TPCFP
(2)

CovðLÞZ 100
TP

TPCFN
(3)

In other words, Acc(L) is the accuracy/specificity in
predicting localization L, and Cov(L) is the corresponding
coverage/selectivity. We combined these two numbers
through the geometric average:

gAvðLÞ ¼ 1=100$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AccðLÞ$CovðLÞ

p
(4)

We omitted the specific qualifier L in text and Tables
whenever the localization that we referred to was
obvious. The overall accuracy was measured by Q:

QZ 100
TP

TPCFN

Z 100
number correctly predicted

number of proteins in data set
(5)

Note that the values of Q we presented in text and
Tables referred to different number of states, depending
on which level in the hierarchy (Figure 1) we monitored
the overall accuracy. Where needed, we indicated the
number of states through subscripts, e.g. Q5 is the overall
five-state accuracy that measures the accuracy in predict-
ing one of five classes of localization for non-plant
eukaryotes.
For the two class predictions we also reported the

Mathews correlation coefficient (MCC)94 and the normal-
ized mutual information (MI):95

MCCZ
TP!TNKFP!FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPCFNÞðTPCFPÞðTNCFPÞðTNCFNÞ
p (6)
MI ¼K
TPþ FN

N
$log

TPþ FN

N

� �

K
TNþ FP

N
log

TNþ FP

N

� �
(7)

The Mathews correlation coefficient and the mutual
information as defined above are only applicable for two
classes. For more than two classes, the Mathews
correlation coefficient was modified to the generalized
correlation coefficient:96

GC2 Z

P
ij
ðzijKeijÞ

2

eij

NðKK1Þ
(8)

where N was the number of proteins, K the number of
localization classes, zij the confusion matrix and eij was
given by:

eij ¼
Acci!Covi

N
(9)

For many classes the mutual information was modified
to the information coefficient:96

MIZ
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K
Covi

N
log

Covi
N
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zij
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:
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(10)

Prediction methods

The prediction accuracy of four publicly available
methods was evaluated using the “Non-plant unique”,
“Plant unique” and the “Non-plant new unique” sets (Table
4 of Supplementary Data). The four methods were:
(1) TargetP: neural network based tool predicting locali-
zation based on N-terminal sequence information;23,24,33

(2) SubLoc: support vector machine prediction of locali-
zation from amino acid composition;67 (3) PSORT II:
integrated method based on detecting sorting signals
and predictions from other methods like NNPSL and
SignalP;25,58,97 and (4) NNPSL: neural network based tool
predicting localization from amino acid composition.40

All methods were run with default parameter settings.

Estimate for composition in entire proteomes

Three different values determined our final estimates
for the percentage of proteins in localization L in entirely
sequenced proteomes (Figure 3), namely the number of
proteins actually predicted by LOCtree to be in localiz-
ation L, our estimate for the accuracy (equation (2)) and
coverage (equation (3)) of that prediction. In detail:

NprdðLÞ ¼
Nprot_notTMH

Nprd_corrected_sum

$Nprd_correctedðLÞ (11)

with

Nprd_correctedðLÞ ¼
AccðLÞ$Nprd_rawðLÞ

CovðLÞ
and Nprd_corrected_sum

¼
X
cL

Nprd_correctedðLÞ

where Nprd_raw(L) was the number of proteins predicted
directly by LOCtree to be in localization L, Acc(L) and
Cov(L) the estimates for prediction accuracy and
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coverage, respectively, and Nprot_notTMH the number of
proteins without membrane helices. The error in the
number of proteins predicted to be in localization L was
estimated by:

sNðLÞ

NðLÞ
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAccðLÞ

AccðLÞ

� �2

C
sCovðLÞ

CovðLÞ

� �2
s

(12)
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