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A large gene expression database has been produced that characterizes the gene expression and physiological effects
of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In
order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms
were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers
based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug
signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments
in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive
contribution (act as “rewards” for the class-of-interest) while others have a negative contribution (act as “penalties”)
to the classification decision. The combination of reward and penalty genes enhances performance by keeping the
number of false positive treatments low. The results of these algorithms are combined with feature selection
techniques that further reduce the length of the drug signatures, an important step towards the development of
useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for
the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a
given class.

[Supplemental material is available online at www.genome.org.]

Expression microarray data have been used to classify biological
samples in a number of novel ways such as by tumor type (Golub
et al. 1999), toxicological mode of action (Thomas et al. 2001;
Waring et al. 2001), and pharmacological mechanism (Gunther
et al. 2003). Our interests are to characterize the pharmacologic
and toxicologic mechanisms of new chemical compounds rela-
tive to known compounds and drugs. We have assembled a large
microarray data set derived from in vivo drug-treated rats in or-
der to provide a reference database so that the significance of
various expression patterns might be rapidly judged. This data-
base is composed of over 13,000 microarrays and encompasses
the response of rats to 630 different approved drugs and certain
biochemical and environmental toxic standards, as well as a
number of drugs withdrawn from the market. The studies are all
performed at two or more doses, four or more timepoints, and in
biological triplicate. All studies are accompanied in the same ex-
periment by traditional toxicological and animal physiology
measurements, a variety of biochemical measurements, and care-
ful curation of critical pharmacological and pathway literature
associated with compounds and pathologies, creating a multido-
main database that places each drug in its full physiological,
pathological, and gene expression context (a full description of
this database is presented by Ganter et al. 2005).

Deriving classification information from large databases
presents several challenges. An essential first step to addressing
this problem is careful examination of current mathematical
methods and new methods to determine the advantages and
disadvantages of the various methods. Here we compare several
standard and some newer classification algorithms. Classification
algorithms can be separated into two main categories: supervised
and unsupervised. Examples of unsupervised clustering methods
include principal component analysis (PCA), hierarchical cluster-
ing, and self-organizing maps (Hastie et al. 2001). With two-
dimensional hierarchical clustering, one of the earliest methods
used to analyze microarray data (Eisen et al. 1998), one can vi-
sually relate groups of treatments to groups of genes. PCA can
also cluster treatments in two or three dimensions using genes as
variables. Each of these dimensions, the principal components, is
a linear function of all the initial variables. The coefficients of
this function (eigen values) can be used to rank the contribution
of each of the initial variables to each principal component. A
group of treatments separating along one of the principal com-
ponents can thus be related to a set of genes. These methods
allow a rapid visual inspection of the data but fail to provide an
unbiased objective classification. Thus while unsupervised meth-
ods are useful for class discovery and can relate groups of obser-
vations to groups of variables, they do not provide decision rules
for classification.

Supervised methods rely on known descriptors (pheno-
types) associated with each observation (drug or chemical treat-
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ments). The descriptors can be of several types; for example, they
could include histopathological observation of a particular lesion
type associated with a given treatment, or they could be derived
from a literature report showing that a particular compound
causes liver cancer after more than one year of treatment. The
descriptors are used to define two or more classes. A separation
function is derived that classifies each observation into these
classes. Examples of supervised classification methods include
support vector machines (SVMs), decision trees, logistic regres-
sion, and neural nets (Hastie et al. 2001). Multi-class problems
can be reduced to multiple two-class classifications (class-of-
interest vs. all other classes) using the same methods. Supervised
classification methods can be further subdivided according to
two other important attributes: whether they use a linear or a
nonlinear separation function and whether all or just a subset of
the variables are used in the separation function. Both of these
attributes impact the ability of the biologist to interpret the clas-
sification function and the ability of technologists to develop
simple robust and inexpensive assays to classify future samples.
Particularly attractive from an interpretation point of view are
linear classifiers which can be reduced to a simple weighted gene
list or “signature.” We show below that the absolute values of the
weight and of the weighted expression provide an indication of
the relative importance of each gene in the signature, whereas
the sign of the weight indicates the direction of regulation. Mini-
mizing the length (number of genes) of the classifier also helps in
the interpretation of the signatures and allows for future robust
inexpensive assay development. For example, the superior per-
formance of linear SVM over weighted voting (WV) or k-Nearest
Neighbor (k-NN) was illustrated (Ramaswamy et al. 2001). How-
ever, those authors also show that in their linear SVM implemen-
tation, the best classifiers use thousands of genes. The participa-
tion of this many genes in the classifier greatly complicates the
task of interpretation and their use in a diagnostic device. Non-
linear kernel SVMs and neural nets can produce powerful classi-
fiers, but they cannot be reduced to simple gene lists. Indeed,
nonlinear classifiers output a list of weights that correspond to
complex, nonlinear compositions of genes (e.g., the ratio of two
genes, the logarithm of a gene, etc.).

Our goal is to provide short interpretable signatures that are
reducible to a diagnostic device and that have a high per-
formance for the response of a biological system to chemical
treatments. Thus, the analysis is focused on a family of new
linear classification methods including sparse linear pro-
gramming (SPLP) and sparse logistic regression (SPLR) (El Ghaoui
et al. 2003). The novelty of these methods is their utilization
of the standard error of the mRNA response, available be-
cause all treatments presented here were performed in triplicate.
Data replication is commonly used to assess the statistical
significance of an individual gene expression data point. We
show here that this information can also be utilized by these
algorithms in order to produce high-performance short linear
classifiers.

The performance of these linear classifier algorithms (SPLP,
SPLR) is compared to that of several nonlinear alternatives (ker-
nel SVMs, decision trees, and neural nets). Their behavior is then
analyzed in greater detail. Signatures for two compound classes,
fibrates and statins, are described and interpreted in biological
terms. Evidence is provided that the specific genes used, the
weights associated with these genes, and the weighted expression
of these genes in the class-of-interest can all be used to extract
valuable information (Fig. 1).

Results

Data set description

Male Sprague-Dawley rats were treated daily with compounds at
two doses and for several durations. The doses used were an es-
timate of the upper limits of toxicity as determined by a dose-
range finding study (i.e., the maximum tolerated dose, MTD),
and a dose intended to approximate the pharmacologically ac-
tive dose (i.e., the fully effective dose, FED) estimated from lit-
erature information. Animals (three rats per dose group per time-
point) were dosed once daily and sacrificed after 0.25, 1, 3, 5, or
7 d. Up to 12 tissues were harvested, RNA was extracted, and
microarray hybridization was performed with each biological
sample. The microarray data for the three animals per time and
dose group were averaged and were expressed as the log10 ratios
relative to untreated controls. A random subset of the data was
analyzed using PCA in order to illustrate the relative contribution
of tissue differences versus drug-induced differences to the total
variability of the data set. In addition, 597 arrays corresponding
to 199 triplicate treatments with 22 drugs and toxicants were set
aside for a detailed study of classification algorithms and the
resulting signatures. The treatments (see Supplemental Table S1)
correspond to four classes (fibrates, statins, azoles, and toxicants)
based on literature descriptions of structural and mode of action
similarities between compounds (Hardman et al. 2001; Klassen
2001). Three of the classes, azoles, fibrates, and statins, corre-
spond to well known drugs with a defined mode of action, all
targeting some aspect of lipid metabolism; the fourth, toxicants,
is a class containing diverse structures and mechanisms but for
which various kinds of toxicity is well documented in the litera-
ture. The four classes were chosen to represent what we know to
be very-easy to very-hard classification challenges (fibrates easy,
statins and azoles moderate, and toxicants hard). By selection of
these ranges of difficulty we are able to show the generality of the
conclusions and assessments made in this study.

Fibrates are a family of drugs used to treat hypercholester-
olemia and lipidemia. Their pharmacologic effects are attributed
to the direct receptor-ligand-mediated activation of the peroxi-
some proliferator activated receptor alpha (PPAR�) (Kersten et al.

Figure 1. Use of short linear classifiers, a general outline for the inter-
pretation of signatures.
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2000). One major transcriptional outcome resulting from activa-
tion of the PPAR� receptor is the expression of a large number of
genes belonging to the fatty acid �-oxidation pathway (FABO)
(Schoonjans et al. 1996), and which localize to the mitochondria
and the peroxisomes. FABO induction is likely responsible for the
lowering of triglycerides and low-density lipoprotein (LDL) lev-
els. In humans, fibrates also raise high-density lipoprotein (HDL)
levels through the induction of its major apolipoprotein, apoAI.
In rats the opposite effect is observed, i.e. a decrease in apoAI and
in HDL, due to a nonfunctional response element in the rat
apoAI promoter and repression by rev-erb � (Vu-Dac et al. 1998).
In rodents, in particular rats and mice, fibrates stimulate prolif-
eration of hepatic peroxisomes, recognizable at the transcrip-
tional level by the induction of a large number of genes whose
products are ultimately localized in the peroxisome (Lee et al.
1995).

Statins inhibit HMG-CoA reductase, the rate-limiting step of
cholesterol biosynthesis (Alberts et al. 1980). Inhibition of en-
dogenous cholesterol synthesis induces many cholesterol biosyn-
thesis genes through a positive feedback mechanism. Statins
lower blood cholesterol levels by inhibiting cholesterol synthesis,
resulting in increased expression of the LDL receptor gene and
decreased levels of circulating LDL. Specifically, decreased intra-
cellular cholesterol triggers the proteolysis of membrane-bound
sterol regulatory element-binding proteins (SREBPs), which
translocate to the nucleus and bind to sterol-responsive elements
(SREs) in the enhancers of many genes encoding enzymes of the
cholesterol biosynthesis, fatty acid biosynthesis, triglyceride bio-
synthesis, and lipid uptake pathways (Brown and Goldstein
1999; Horton and Shimomura 1999).

Azole antimycotics inhibit fungal 14-� demethylase, a mi-
crosomal, cytochrome P450-dependent enzyme system. Inhibi-
tion of fungal 14-� demethylase impairs the synthesis of ergos-
terol, the main fungal membrane sterol, leading to the detrimen-
tal accumulation of lanosterol (van den Bossche et al. 1978). In
mammals, azoles inhibit steroid biosynthesis and xenobiotic me-
tabolism through inhibition of host cytochrome P450-
dependent enzyme systems, which can result in a number of
reproductive sequelae as well as clinically significant drug–drug
interactions (Venkatakrishnan et al. 2000).

The fourth class, designated in this study as “toxicants,”
does not represent drugs; instead, they are a heterogeneous class
of hepatotoxic compounds with different modes of action. We
included this broad class of toxicants to test the ability of each
classification algorithm to derive classifiers for compounds with
diverse modes of actions.

Although the induction of FABO and cholesterol genes is
expected to form at least part of the fibrate and the statin signa-
ture, respectively, it is not certain whether these effects alone are
sufficient to form the basis of the best-performing classifiers. The
expected composition of an azole or a toxicant signature is more
speculative. As described above, the azoles affect a variety of host
P450-dependant enzymes in addition to their intended fungal
target, and the compounds grouped under the “toxicant” label
have different modes of action.

Tissue versus drug treatment-induced differences

Twenty-five microarrays derived from untreated and 25 microar-
rays derived from treated animals were randomly selected from
each of seven tissues to provide a general impression of the data
landscape and to demonstrate some of the qualities of the data

set. The signal intensities of the probes for these 350 arrays were
clustered using two-dimensional (2D) PCA. Well resolved tissue-
based clusters are evident (Fig. 2). As one might expect, as both
are hematopoietic organs, spleen and bone marrow are partially
overlapping. Treated and control arrays are not resolved using
this analysis method. These data are a visual if not quantitative
illustration that the differences in tissue expression are larger
than drug-induced differences within a tissue. Resolving gene
expression profiles induced by different classes of drugs within a
tissue appears to be a more subtle question than resolving tissue-
or cell-type differences. The complexity of this task is com-
pounded by drug class heterogeneity, as each drug has unique
pharmacokinetic, pharmacodynamic, and intrinsic efficacy
properties. To provide some indication of these drug-specific fea-
tures, we prepared a liver-derived data set comprised of several
drugs from each class, and we tested them at multiple times and
doses.

Description of the SPLP and SPLR classification algorithms

Because all treatments were conducted in biological triplicate,
every data point (treatment) can be represented by the smallest
hyper-rectangle that encloses all three replicates. More formally,
a nominal data matrix of treatments versus genes containing the
average expression log-ratios can be formed, as can a standard
error matrix of the same size that contains the corresponding stan-
dard errors. These provide an interval matrix model, in which each
data point is unknown but bounded within a high-dimensional
rectangle. This hyper-rectangle has as its center the nominal
value, and its dimensions correspond to the respective standard
errors for each gene in the expression measurement. To accu-
rately classify data points into a class or exclude it from a class
(binary classification), algorithms are used which seek a closer
match between the available data and the class utilizing binary,
linear classification methods based on an interval matrix uncer-
tainty model for the data. In this way, the standard error matrix
is exploited. A robust methodology is devised where the worst-

Figure 2. Two-dimensional principal component analysis (PCA) of
log10 signal intensities in arrays derived from 25 treated and 25 untreated
rats in seven tissues. The 500 genes with the highest standard deviation
across the resulting 350 arrays were selected for this analysis. PCA was
implemented in the Spotfire Decision Site software package (http://
www.spotfire.com). Samples are colored by tissue of origin. Circles are
samples derived from drug-treated animals, and triangles are from un-
treated controls.
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case value of a loss function is minimized over all possible real-
izations of the data within given interval bounds.

Two specific choices of a loss function are considered. The
first, the Hinge loss, is used in the context of soft-margin support
vector machines (Cristianini and Shawe-Taylor 2000; Scholkopf
and Smola 2002). The second loss function is the negative log
likelihood function used in logistic regression (Hastie et al. 2001).

In each case we developed both a robust version of the al-
gorithm, using the entire standard error matrix information, and
a sparse version, optimizing an upper bound on the proposed loss
function where only a summary of the standard error matrix is
used, the average standard errors per gene in this case. The ad-
vantage of optimizing an upper bound on the loss function in
the latter case is that it leads to an explicit 1-norm regularization
on the weight vector. This type of regularization is known to give
rise to a sparse classifier, i.e., many zeros in the optimal weight
vector (El Ghaoui et al. 2003). In the robust algorithm, the size of
the earlier mentioned hyper-rectangles can vary for each treat-
ment, whereas in the sparse algorithm, this uncertainty region
has the same shape for every treatment, given by the gene-wise
average standard errors over all treatments. Preliminary tests
showed that the robust algorithms have a slightly higher perfor-
mance but result in longer classifiers. Because a premium is
placed on interpretability and diagnostic device compatibility,
we are focusing on the sparse algorithms, here referred to as
sparse linear programming (SPLP) and sparse logistic regression
(SPLR).

Description of the other algorithms used in the comparison

The performances of SPLP and SPLR were compared to that of a
simpler method, the t-rank algorithm, and to several other more
complex nonlinear classification methods, Gaussian kernel
SVMs, decision trees, and neural nets. The t-rank algorithm cre-
ates signatures that consist of the genes with the largest average
class differences measured by a version of the t-test. The gene
selection in the algorithm is similar to the weighted voting
scheme (Golub et al. 1999). This algorithm is included because of
its immediate intuitive meaning; it identifies the genes with the
largest change relative to their standard error. Decision trees have
the advantage of producing simple rules but are known to be
prone to overfitting, since they perform well on the training but
poorly on the test data. We used the C4.5 algorithm in this com-
parison (Quinlan 1993). Neural nets are powerful classifiers and
are included in the comparison. The multilayer perceptron neu-
ral network was used, as implemented in the SPSS-Clementine
software package. Although neural nets are nonlinear classifiers
and cannot be reduced to simple weighted gene lists, one can
nevertheless perform a sensitivity analysis to evaluate the impor-
tance of each input (gene) in the final network (Fu 1994). Finally,
SVMs for different kernel functions were evaluated. These state-
of-the-art classifiers are known for their superior classification
performance in a range of applications. The resulting classifier is
nonlinear, where the type of nonlinearity is implicitly encoded
in the choice of kernel function: A polynomial kernel of degree 2,
for example, implicitly takes the squares and pairwise products of
the gene expression levels into account in addition to the gene
expression levels themselves, as a linear classifier does. Other
kernels such as polynomial kernels of higher degree and Gauss-
ian kernels implicitly take other nonlinearities into account.
Polynomial and Gaussian kernels were tested; Gaussian kernels
had lower test error rates, and thus we report here results ob-

tained with Gaussian kernels. These kernel SVM classifiers, as is
the case with neural nets, are not as interpretable as the linear
classifiers described above.

Comparing performance of algorithms

Each algorithm was used to answer all four classification prob-
lems within the 22-compound liver-derived data set described
above. The cross-validated performance of each algorithm is re-
ported as the average training and the average test error rate over
20 (60% training, 40% test) random partitions of the data. As a
global metric, the average of each rate over the four classification
problems is presented (Table 1). Algorithms are ranked left to
right according to their average test error. Decision trees have the
worst test error, followed by the t-rank algorithm. Linear classi-
fiers (SPLP and SPLR) perform much better than decision trees
and the t-rank algorithm, but slightly worse than the two non-
linear methods. The improved performance of the nonlinear
classifiers (Kernel SVM and NN) over the linear ones (SPLP, SPLR)
results in large part from an improved performance in the toxi-
cant class prediction. For the more mechanistically homoge-
neous classes (azoles, fibrates, and statins), the difference be-
tween the performance of the linear and the nonlinear methods
is much smaller. In fact, SPLR yields the best azole signature.

Detailed analysis of SPLP and SPLR algorithms: Control
of signature length, sensitivity and specificity, effect of data
filtration, and gene preselection on classification performance

SPLR and SPLP methods are dependent on a single parameter, �.
This parameter trades off the sparsity of the signature with the
error rate on the training set. Both objectives are related to cor-
responding terms in the respective cost function for SPLP and
SPLR. For higher values of �, more importance is given to the
sparsity term. As � gets higher, the signatures shorten and the
classifier can model less-complex separations, resulting in more
errors on the training set. In contrast, a small training error re-
quires a more complex classifier that has more genes that have
non-zero weights: Sparsity must be sacrificed to decrease error (El
Ghaoui et al. 2003).

We investigated the behavior of SPLP and SPLR as a function
of �. Figure 3 shows the average training error, average test error,
and the average signature length across the four different signa-

Table 1. Error rates of algorithms in four classification problems

Decision
tree t-rank SPLPa SPLRa

Gaussian
Kernel
SVM

Neural
net

Test errorb

Azoles 7.2 10.3 5.8 4.1 6.8 4.4
Fibrates 14.6 4.0 1.6 2.8 1.3 1.1
Statins 23.7 9.3 6.4 5.6 6.5 5.4
Toxicants 14.1 18.0 10.7 11.9 5.6 5.7
Average 14.9 10.4 6.1 6.1 5.0 4.2

Training error
Azoles 0.2 6.0 0.0 0.0 0.0 0.0
Fibrates 0.9 5.0 0.5 0.0 0.0 0.0
Statins 0.7 9.0 3.0 0.0 0.0 0.0
Toxicants 0.7 15.1 0.0 0.0 0.0 0.0
Average 0.6 8.8 0.9 0.0 0.0 0.0

aSPLP and SPLR were run with � values of 0.08 and 0.0025, respectively.
bTest error is an average rate for each classification over 20 random
partitions of the data.
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tures. Three ranges of � values can be defined. For values of
� � 0.02, SPLP and SPLR produce no training error. For � = 0.02
the average length of SPLR signatures is approximately half that
of SPLP (29 vs. 50). For values of � between 0.02 and 0.08 (SPLR)
or 0.16 (SPLP), the training error rate starts to rise but the test
error remains close to its minimum. At the high end of this range
of �, the average signature length is 15 for SPLR and 25 for SPLP.
This condition is interesting because it minimizes signature
length without compromising the test error rate. The overtrain-
ing gap (test error minus training error) is thus greatly reduced.
For higher values of �, the overtraining gap disappears and both
error rates rise substantially. Thus, a judicious choice of the
� parameter can reduce the signature length by 50% with no
loss in test performance. In practical applications, optimal tuning
of the � parameter can be performed for a specific signature by
using cross-validation. Note that the optimal � is not a charac-
teristic of the algorithm, so for each signature, � needs to be
re-optimized. However, � values between 0.02 and 0.16 in gen-
eral provide drug signatures with short lengths and very good
performance.

To better understand the behavior of SPLP and SPLR, the
performance of both algorithms was expressed in terms of log-
odds ratio, sensitivity, and specificity (Table 2). The specificity of
both algorithms is higher than their sensitivity. This is due to a
combination of two factors. First, in each of the four signatures,
a comparatively small class-of-interest (∼one-quarter of the treat-
ments) is separated from the rest of the data set. In addition, false
positive and false negative errors are not distinguished in the loss
functions of SPLP and SPLR. We are currently modifying the loss
function of SPLP in order to introduce two error terms, one for

each type of error. This modified algorithm should prove useful
in cases where one seeks a highly sensitive signature for a rare event
(G. Natsoulis, G. Lanckriet, L. El Ghaoui, and K. Jarnagin, in prep.).

The effect of filtering the individual log ratio data points
and of preselecting genes on the performance of SPLP and SPLR
was investigated. Filtration as used here is the process of resetting
to zero the logratio of the expression levels that are not found to
be significantly different from zero in the data matrix. The ratio
of the variability of the logratio to the mean logratio was used to
filter the data, resulting in matrices where 86% and 62% of the
data points are reset to a logratio of zero. Preselection is the
process by which a subset of initial variables is chosen prior to
submission to the classification algorithm. The standard devia-
tion of the mean logratio across all 199 experiments was used to
select 1000, 5000, or all 9031 genes. Several combinations of gene
preselection and data filtration were investigated. The average
computation time per signature (threefold cross-validated) was
220 sec for SPLP, using all genes and a full data matrix. Compu-
tations were performed on an Intel Pentium IV, 1.5-Ghz desktop
computer. The computation time was reduced fivefold when
86% of the data was filtered and all genes were used. The com-
putation time was reduced eightfold when just 1000 genes were
preselected and the data was not filtered. While both of these
processes drastically reduce the computation time of the algo-
rithms, we found that data filtration negatively impacts perfor-
mance whereas gene preselection does not, at least within the
ranges tested here (data not shown). These results suggest that in
cases where rapid initial investigation of multiple signatures is
needed, gene preselection strategies are preferable to data filtra-
tion strategies.

Classifying random label sets

In order to show that the classifications are significant, the train-
ing and test errors produced by SPLP and t-rank when asked to
classify random label sets were examined. Briefly, we generated
100 random label sets, keeping the size of the class-of-interest
one-quarter of the total number of samples. This is commonly
called a label permutation test. Each of the random label sets was
split 60/40 as described in the Methods section. A signature was
derived from the training set and used to classify both the train-
ing and the test sets. The distribution of the test errors, expressed
here as logodds ratios (LORs), is presented in Figure 4. Twenty
cross-validation runs of the same four “real” label sets used above
are included for comparison. When classifying random labels,
the test errors for both algorithms are indistinguishable and
closely centered on LOR = 0, as expected by chance only. Both
algorithms perform significantly better on real label sets, with
SPLP clearly outperforming t-rank on all four classification tasks.
These results demonstrate that both algorithms do indeed iden-
tify useful patterns in the true data but not in the random data.

Table 2. Logodds ratio, sensitivity, and specificity of SPLP
and SPLR

Fibrates
vs. All

Statins
vs. All

Azoles
vs. All

Toxicants
vs. All

SPLP logodds ratio 6.38 4.74 5.18 4.11
sensitivity 0.88 0.70 0.90 0.78
specificity 0.99 0.98 0.96 0.95

SPLR logodds ratio 6.45 4.94 5.67 4.74
sensitivity 0.88 0.75 0.89 0.76
specificity 0.99 0.98 0.98 0.97

Figure 3. Average training error, test error, and length of four com-
plete signatures as a function of � for two algorithms, SPLR (top) and SPLP
(bottom). Both errors are expressed as percent 100 � ((FP+FN)/N) where
FP is false positive, FN is false negative, and N is the total number of tests.
Training error and length results are averages for the four complete sig-
natures. Test errors are averages of four signatures cross-validated three
times.
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SPLP is clearly superior to the t-rank algorithm in terms of clas-
sification accuracy.

Analysis of signatures for drug classes

For any given signature, the equation of the hyperplane separat-
ing the two classes is �wixi � b = 0, where wi are the weights
assigned by the algorithm, xi is the log-ratio values for each sig-
nature gene in that sample, and b is the bias term. The decision
to assign a sample to a given class is given by the scalar product:
S = �wixi � b. A scalar product greater than zero places a sample
into the given class, whereas a scalar product less than zero places
a sample out of the class. The weights, wi, determine the orien-
tation of the hyperplane in the space of the signature genes, and
the bias term, b, determines its position along an axis perpen-
dicular to the hyperplane. Intuitively the bias term can be un-
derstood as a threshold along the direction of the signature.

To understand the biological basis on which the linear clas-
sifier-based signatures gain their predictivity, we analyzed in
greater detail some of the fibrate and statin signatures produced
by the SPLR algorithm. SPLR was chosen because it produces
shorter signatures. The fibrate and the statin signature derived
from the first random partition are presented in Table 3. The first
signature, fibrate_SPLR/1, is eight genes long, produces no train-
ing errors, and produces just two test errors. Six genes are posi-
tively weighted and comprise several FABO genes (acyl-CoA oxi-
dase, acetyl-CoA acyltransferase, enoyl-CoA hydratase, and acyl-
CoA dehydrogenase). One of the two negatively weighted genes,
acetoacetyl-CoA synthetase, is a cholesterol biosynthesis gene
and is up-regulated by statin treatments; thus this gene penalizes
statin treatments, improving performance by reducing false iden-
tifications of a statin as a fibrate. The other is not annotated, but
its pattern of expression is highly correlated with that of aceto-
acetyl-CoA synthetase; thus, this gene may also be a cholesterol
biosynthesis gene.

One can further analyze the mechanics of each signature
gene by creating a weighted expression table. It is informative to

consider the average of the weighted expression (weighted
expression = wixi) over the class-of-interest and the average
weighted expression of the out-of-class samples grouped accord-
ing to meaningful categories (we use here the same statin, azole,
and toxicant classes). Each gene can now be annotated as to its
positive (“reward”) or negative (“penalty”) contribution to the
overall decision (Table 3, right panel). Note that the concept of
reward and penalty refers to the sign of the weighted expressions,
not the sign of weight. Five of the six positively weighted genes
are strong reward genes for the average fibrate treatment. In do-
ing so we observe that acyl-CoA oxidase is not only a strong
reward for fibrate treatments but also a weaker reward for statin
and a penalty for azole treatments. This analysis illuminates the
role of the negatively weighted genes in this signature. Both of
the negatively weighted genes act as penalties for statins, which
tend to be weakly rewarded by several positively weighted FABO
genes. It is striking to note that neither of these two genes is
regulated by fibrate treatments (Table 3, left panel). The algo-
rithm makes use of genes showing no regulation in the class-of-
interest as penalty genes in order to avoid producing false posi-
tive calls. T-rank-derived signatures cannot capture genes with
this type of behavior, and thus at least part of this method’s weak
performance is easily explained. As noted above, the concept of
reward and penalty genes refers to the sign of the weighted ex-
pression. Therefore a negatively weighted down-regulated gene is
also a reward gene. An example of this situation is seen with the
statin_SPLR/1 signature (Table 3). The adenylosuccinate synthe-
tase gene acts as an even stronger reward for statins than does the
up-regulated HMG CoA reductase. Of all the genes in this signa-
ture, HMG CoA reductase is the most up-regulated by statins;
however, NF-E2-related factor 2 acts as a stronger reward gene for
statins. HMG CoA reductase shows 20% as much up-regulation
in toxicant as in statin treatments. NF-E2-related factor 2, on the
other hand, is down-regulated by both azoles and toxicants and
shows very minor up-regulation by fibrates. This may explain
why the algorithm weighs NF-E2-related factor 2 fifteen times
more than it does the HMG CoA reductase gene in the statin
signature. Finally, whereas cholesterol pathway genes were used
as penalty for statin treatments in the fibrate SPLR/1 signature,
FABO genes (enoyl CoA hydratase and carnitine O-acetyl-
transferase) are strong penalty genes for fibrate treatments in the
statin SPLR/1 signature. In some sense these two signatures could
be viewed as mirror images of each other.

We performed a sensitivity analysis of the neural net-
derived fibrate and statin signatures. Sensitivity analysis ranks all
genes by their importance in the network. The top 30 ranked
genes for each analysis are presented in the Supplemental mate-
rial (Table S2). There are obvious similarities between the neural
net sensitivity lists and the SPLR-based signatures described
above. For instance enoyl-CoA hydratase, a FABO gene and
mevalonate kinase, a cholesterol biosynthesis gene are ranked
7th and 24th, respectively, in the fibrate signature sensitivity list.
The classification rule used by the network cannot however be
deduced from the examination of the sensitivity list. Any as-
sumption that these genes perform for the network a role similar
to what has been described above for genes in the same pathway
in the SPLR-based fibrate signature (Table 3) would be specula-
tive.

It is interesting to note that when we re-derive a signature
using SPLP and � = 0.005 for the same classes within the context
of all the liver treatments (∼1400 treatments) as opposed to the
restricted 199 treatment subset, the test logodds ratios are ap-

Figure 4. Test performance of SPLP (red) and t-rank (blue) algorithms
classifying real and randomized label sets. Test logodds ratio (LOR) is
plotted in 20 cross-validation runs against fibrates, statins, azoles, and
toxicant label sets and in 100 cross-validation runs against 100 different
random label sets. An LOR of zero, which is expected from random
chance, is marked with a dotted line.
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proximately the same. However, the sensitivity of the signature
tends to decrease, the specificity tends to increase, and the length
of the signature more than doubles. For example, in the fibrate
case we obtain sensitivity and specificity values of 0.50 and
0.998, respectively and a logodds ratio of 6.2. The length of the
signature is 65 genes. This behavior is what would be anticipated
when one moves from a small restricted data set to a much more
varied and larger data set. The number of variables needed to
separate the classes increases.

Short signatures
One of our goals is to produce interpretable and diagnostic de-
vice-friendly signatures involving as few genes as possible. How-
ever, directly optimizing this objective, i.e., minimizing the
number of non-zero-weights (the “0-norm” of the weight vector),
is a mathematically difficult problem. The proposed sparse algo-
rithms approximate this objective by minimizing the smallest
convex upper bound on this quantity, i.e., the 1-norm of the

weight vector. This results in a problem that can be solved sig-
nificantly more easily. A compromise arises since the approxima-
tion will deliver a suboptimal solution: although the resulting
signature will clearly be quite sparse already—we showed how to
vary the value of � in order to produce shorter signatures without
compromising test performance—it might well not yet be the
shortest one possible. Therefore, feature selection techniques
could be used in conjunction with our algorithms to trim the
resulting signatures further. To illustrate this for our experi-
ments, an ad hoc technique was selected where signatures are
further trimmed by using a previously computed signature as
input for a second round of calculations. The approach is illus-
trated on the eight-gene fibrate SPLR/1 and on the 29-gene statin
SPLR/1 signatures presented in Table 3, above. Briefly, the genes
of a “first-pass” signature are ranked by the value of their weights.
A series of gene lists is created in which the first list consists of the
highest- and lowest-weighted genes, the second list consists of
the two highest- and the two lowest-weighted genes, and so on.

Table 3. A fibrate and a statin SPLR-derived signature

The fibrate and statin signatures obtained using SPLR from the first partition of the data. Figure 1 describes the general
process being followed.
Both signatures are “training signatures” in that they derived from a randomly selected 60% of the data.
Neither signatures produce training errors. The test set comprises 81 treatments of which 14 are fibrates and 15 are
statins.
The fibrate signature produce two test errors and the statin signature produces four test errors. All test errors are false
negatives for both signatures.
Genes are designated by their accession number, and a short description is provided.
The bias term is indicated below the weight column. �wixi is the average weighted expression summed over all
signature genes. �wixi-bias, substracts the bias term.
*Average gene expression (logratio) of each signature gene in each of the four classes.
**Average gene expression over all members of the class multiplied by the gene specific weight. Values > 0.1 (Reward)
are in green. Values < �0.1 (Penalty) are in red.
***Annotation of each signature gene. The letter designates the affected class, and the superscript sign designates the
direction of the effect (reward or penalty).
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The same algorithm was run using each gene list, and the same
training set was used to derive the first-pass signatures. The num-
ber of test errors was determined on the corresponding test set.

Examination of the results (Table 4, panel A) suggests a
simple procedure. The shortest signature producing no training
errors identifies a three-gene fibrate signature producing two test
errors. This is the same number of test errors as the starting eight-
gene signature. For the statin signature, the same selection algo-
rithm identifies a seven-gene signature producing just three test
errors, one less than the starting 29-gene signature. A three-gene
fibrate or a seven-gene statin signature of equal test performance
could not be produced in a single pass of the algorithm where
different values of � are tested and all the genes are submitted to
the algorithm (Table 4, panel B).

This “trimming” procedure is conceptually very simple, as it
iteratively eliminates genes with small weights from a previously
generated signature. The process stops when training errors are
produced. The procedure is introduced here solely to illustrate
the point that simple methods can be used in conjunction with
the algorithms we present here in order to significantly shorten
signatures. Other methods of feature selection (Xiong et al. 2001;
Guyon et al. 2002) could be adapted for the same purpose. In-
terestingly, the two-gene fibrate signature, obtained when the
two most weighted genes of signature SPLR/1 are used as input,
produces just two training errors and four test errors (Table 4,
panel A). We illustrate (Fig. S3) the resulting classifier together
with the expression values of the 199 treatments in this two-
dimensional space. The distribution of the four treatment classes
and the shallow slope of the SPLR-derived two-gene classifier
suggests that a decision tree-like rule such as (NM_017340 Up)
AND NOT (AI454943 Up) would perform well. As NM_017340
(acyl-coA oxidase) is just one of many coregulated FABO genes,
and AI454943 is coregulated with acetoacetyl-CoA synthase, we

may express the previous rule as: (FABO genes Up-regulated)
AND NOT (Cholesterol biosynthesis Up-regulated).

Alternate signatures

Throughout this analysis we sought to illustrate that certain
types of linear classifiers can produce short interpretable signa-
tures. Although it is clear that linearity is a desirable attribute
from an interpretation point of view, one may argue that very
short signatures may focus on a handful of possibly un-
annotated genes and thus preclude interpretation altogether.

To address some of these issues, SPLR was used iteratively to
derive signatures for the same classification problem. Initially all
genes were used to address the classification question. The genes
appearing in this first round of signature generation were elimi-
nated from the data set, and the signature was rederived. The
procedure was continued until the cross-validated performance
of the resulting signature dropped below some threshold.

Applying this procedure to the fibrate signature and using
LOR = 4.0 as a threshold, 33 separate signatures were generated.
The first two signatures are presented in Table 5 and were ana-
lyzed as previously described. Comparing the types of genes used
in these two signatures is biologically informative because, by
design, they have no genes in common. In both cases, FABO and
peroxisomal genes are used as strong rewards for the fibrate class.
Enoyl-CoA hydratase and acetyl-CoA acyltransferase 1 are used
in fibrate_1st, and acyl-coA oxidase, acetyl-CoA dehydrogenase,
and acetyl-CoA acyltransferase 2 are used in fibrate_2nd. As was
the case in the fibrate SPLR/1 signature (Table 3), statin treat-
ments on average tend to partially up-regulate some of the same
genes. Thus the two signatures (Table 5) incorporate several
genes acting as penalties for the statin class of treatments. The
strongest statin penalty gene in fibrate_1st is AI454953 (an un-

Table 4. Trimming gene signatures

A B

Input
Output
length

Test errors (#) Training error (#)

� Input
Output
length

Test errors (ave) Training error (#)

fn fp fn fp fn fp fn fp

Fibrate trim 2 2 3 1 1 1 Fibrate 0.64 9031 2 14.3 0.0 22 0
4 3 1 1 0 0 0.32 9031 5 5.7 0.0 9 0
6 6 2 0 0 0 0.16 9031 4 2.7 0.3 5 1
8 7 1 0 0 0 0.08 9031 7 1.7 0.3 2 0

9031 8 2 0 0 0 0.04 9031 9 1.0 0.3 1 0
Statin trim 2 2 13 1 17 3 0.02 9031 16 1.0 0.3 0 0

4 4 9 1 5 1 0.01 9031 23 1.0 0.3 0 0
6 5 9 4 6 3 0.005 9031 24 1.0 0.3 0 0
8 8 4 3 3 1 0.002 9031 30 0.7 0.3 0 0

10 7 1 2 0 0
12 11 2 1 0 0
14 13 3 2 0 0 Statin 0.64 9031 1 15.7 0.0 24 0
16 12 1 2 0 0 0.32 9031 6 14.7 0.0 16 0
18 14 1 2 0 0 0.16 9031 7 6.7 0.0 10 0
20 14 3 1 0 0 0.08 9031 13 4.7 0.0 8 1
22 16 3 0 0 0 0.04 9031 21 4.0 0.0 3 1
24 16 3 0 0 0 0.02 9031 31 3.7 0.0 1 0
26 16 3 0 0 0 0.01 9031 36 3.0 0.0 0 0
28 18 3 0 0 0 0.005 9031 40 3.0 0.0 0 0

9031 29 4 0 0 0 0.002 9031 41 3.7 0.0 0 0

Panel A shows the result of signature trimming. Initial signatures are in bold. The trimmed signatures as defined in the text are shaded. Input and output
length refer to the number of genes used by the algorithm for classification and to the length of the resulting signature.
SPLR was used with � = 0.002.
Panel B shows the results obtained with SPLR varying �.
The training and test sets contain 22 and 14 fibrates treatments, respectively and 24 and 15 statins treatments, respectively.
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annotated gene), as was the case in the fibrate SPLR/1 signature.
Interestingly, the strongest statin penalty gene in fibrate_2nd is
NF-E2-related factor 2. This gene was the strongest reward in the
statin SPLR/1 signature (Table 3). Other genes such as those cod-
ing for guanine nucleotide binding protein 13, �- and Ras-related
protein P23 are also used as penalty for statin treatments. None
of these genes are part of the cholesterol biosynthesis pathway.
However, all are induced by statin treatments but not by fibrates.

Together these results suggest that several nonoverlapping
short linear classifiers can resolve the fibrate class of treatments
with similar performance. These classifiers tend to use positively
weighted FABO genes as rewards. Because statin treatments tend
to partially induce some of the same FABO genes, several other
genes are used as penalty in order to avoid scoring statin treat-
ments as false positives. Cholesterol biosynthesis genes can act as
statin penalty genes. Other genes, strongly induced by statins but

not fibrates, can also perform that function (e.g., NF-E2-related
factor 2, guanine nucleotide-binding protein 13, Ras-related pro-
tein, P23, and others).

Effect of individual treatments on the �-oxidation
and cholesterol biosynthesis pathways

Having established that both the �-oxidation and the cholesterol
biosynthetic pathway are important to resolve fibrates from
statins, we now examine the effects individual members of these
two classes of compounds have on those two pathways. Treat-
ments with bezafibrate, gemfibrozil, atorvastatin, and simva-
statin were chosen for this analysis because of their different
misclassification rate during cross-validation. Bezafibrate and
atorvastatin treatments are almost always correctly classified,
whereas some gemfibrozil and simvastatin treatments are some-

Table 5. Two fibrate signatures with no genes in common
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times misclassified as statins and fibrates, respectively. Direct
analysis of the gene expression changes (Fig. 5) induced by these
four drugs on the fatty acid �-oxidation and cholesterol pathway
genes confirmed that bezafibrate and atorvastatin behave like
typical members of their class, whereas gemfibrozil and simva-
statin share properties of both classes. Gemfibrozil treatments
induce cholesterol biosynthesis much more than the average fi-
brate treatment. Simvastatin treatments tend to induce �-oxida-
tion more than the average statin treatment.

Discussion
We generated a very large microarray data set derived from treat-
ing rats with drugs, withdrawn drugs, failed drug candidates,
toxicants, and various biochemicals.

We investigated the possibility of creating signatures ca-
pable of resolving samples treated with drugs belonging to a par-
ticular drug class. We seek to strike a balance between good pre-
dictive power, the ability to interpret the signature in biological
terms, and the possibility of obtaining a gene list short enough to
be useable in a robust diagnostic test device. A set of four classi-
fication questions (class-of-interest vs. the rest of the data set)
was posed to a variety of classification algorithms. At the poor
performing end of the spectrum was the t-rank algorithm, a
simple intuitive algorithm that uses the genes most significantly
different between the classes under consideration. Although the
results from t-rank-based signatures are readily interpretable,
they are mediocre classifiers of the groups and only successful on
the groups with many, large, and distinct gene expression
changes; few drug classes provide large and distinct gene expres-
sion changes. At the other end of the spectrum, Gaussian kernel
SVMs and NN are powerful classifiers. These algorithms were the

best classifiers for the heterogeneous toxicant class, the most dif-
ficult group to classify in the data set. However, when used to
classify mechanistically more homogeneous classes (fibrates,
statins, azoles), linear and nonlinear methods performed similarly.

The behavior of two linear classifier algorithms, SPLP and
SPLR, was investigated further. The single parameter �, which
determines the penalty associated with training errors, can be
used to indirectly control the length of the signature. There is a
range of � values for which the training error starts to increase but
the test error remains constant and close to its absolute mini-
mum. The length of the signature tends to decrease in that range
of � values. Thus, a narrow range of � values can be identified that
simultaneously minimize the test error, the overtraining gap, and
the length of the signatures.

The fibrate and statin signatures were analyzed to reveal
why SPLR signatures differ from t-rank signatures and why these
differences result in better performance. T-rank-based fibrate sig-
natures rely primarily on FABO genes to delineate fibrates from
other classes. Several statin treatments up-regulate FABO genes,
too, and thus are often misclassified as false positives by t-rank-
based signatures. In contrast, SPLR signatures use both positively
weighted genes (in this case, FABO genes) and negatively
weighted genes (in this case, cholesterol biosynthesis genes) in
order to reduce the error rate. Thus, SPLR signatures use gene
expression information from both classes of compounds (i.e.,
class-of-interest and out-of-class compounds) to increase perfor-
mance. We show for example how different fibrate signatures
can be expressed as: (FABO genes Up-regulated) AND NOT (Cho-
lesterol biosynthesis genes Up-regulated). The ability to make
such simple statements as “fibrate drugs induce the FABO path-
way, but unlike statins do not induce the cholesterol pathway”
should prove useful from an interpretation point of view.

Figure 5. Gene expression changes induced by bezafibrate, gemfibrozil, simvastatin, and atorvastatin on the �-oxidation and cholesterol biosynthesis
pathways. The accession numbers and a short description of the genes present on the RU1 chip and belonging to the two pathways are shown on the
left. Four treatments for each drug are shown. Treatments are labeled as drug name_dose_time. The gemfibrozil and simvastatin panels are placed
between the columns corresponding to the fibrate and statin class averages, to highlight the fact that they share properties from both classes.
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We show that the length of signatures can be further
trimmed without loss of predictive power by simply using the
genes of an initial signature computation as input for a second
round of calculations. It is worth noting that even the space of
very short signatures is not exhaustively searchable. There are
∼108 two-gene combinations and 1012 three-gene combinations
in a space of ∼10,000 genes. Thus a two-step method as presented
here that can create a 29-gene statin signature out of 9031 initial
variables and then, in one simple step, further trim this signature
to seven genes without loss of test performance ought to prove
valuable as we move forward to create diagnostic tests for the
mechanism and mode of toxicity of drug candidates. In the con-
text of this study however, the main application of trimming
signatures is to help focus on a small number of genes that are
sufficient to classify the data.

Very short signatures may be less interpretable than longer
ones when the algorithm focuses on a small number of poorly
annotated genes. In those situations it is biologically informative
to ask whether other signatures composed of different genes,
belonging to the same or to different pathways, can classify the
same data set with equivalent performance. We show that differ-
ent FABO genes tend to be used as rewards for fibrate treatments
in various fibrate signatures. However, although cholesterol biosyn-
thesis genes can be used as penalty to avoid scoring statin treat-
ments as false positives, genes from other pathways can also per-
form that role. This leads to a broadening of the understanding of
what characterizes a fibrate treatment in the context of this data set.

We used the misclassification rate to identify typical and
atypical fibrates and statins. We show that gemfibrozil, unlike
other fibrates, partially up-regulates the cholesterol biosynthesis
pathway. It is not known whether this induction occurs in re-
sponse to decreased intracellular cholesterol, as is the case with
statin treatments (Brown and Goldstein 1999). Unlike statins,
gemfibrozil is not an HMG-CoA inhibitor. Therefore this induc-
tion of the cholesterol biosynthetic pathway may result in in-
creased hepatic cholesterol synthesis in these rats. Simvastatin,
relative to other statins, results in higher levels of induction of
the �-oxidation pathway. This fibrate-like effect may point to
additional beneficial effects of statins in general and simvastatin
in particular.

In conclusion, we have shown that the performance of SPLP
and SPLR, two types of linear classifiers, is comparable to that of
nonlinear methods when used to classify mechanistically homo-
geneous classes of compounds. Analyses of the signature genes,
their associated weights, as well as the comparison between mul-
tiple signatures for the same class of compounds can all be used
to derive insights into the mode of action of the entire class and
the idiosyncratic behavior of some of its members.

Methods

The full protocol for preparing of the database is described in
(Ganter et al. 2005). Brief highlights of the protocol are included
here to aid the reader. The gene expression data supporting this
publication are available at NCBI’s Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) under accession no. GSE2187.
Additional information is also available at http://www.
iconixpharm.com.

Animal details
The rats used for these studies were Sprague Dawley rats (age 6–7
wks and weighing 200–260 g), purchased from Charles River

Laboratories. They were housed in plastic cages for 1 wk to ac-
climate to the laboratory environment of a ventilated room (tem-
perature 22°C�3°C, humidity 30%–70%; light/dark cycle, 12
h/d, 6:00 a.m.–6:00 p.m.) before starting the experimental study.

Compound dosing
The two doses selected for studies were based on the maximum
tolerated dose (MTD) and the fully effective dose (FED). The MTD
dose was empirically determined using a preliminary range-
finding study. The MTD was then selected as the dose at which
the animals put on 50% less body weight than the untreated
controls. Vehicle-dosed control animals generally put on 10%–
15% body weight during this period. The FED is determined as
the dose that is fully efficacious in an animal model of disease for
which the compound is used in human therapy. When disease
models are in species other than rat, accepted pharmacokinetic
conversion are applied (Wallace-Hayes 2001). When no such
model exists, the compound is administered at 1/10 the MTD
dose. Each compound was administered daily to three individual
male Sprague-Dawley rats using two doses (MTD and FED) for
four treatment durations (0.25, 1, 3, 5, or occasionally 7 d).

Tissue harvest and handling
Five (5) tissues were collected from animals treated once with the
test compound after either 0.25 or 1 d. The tissues collected were
liver, kidney, heart, bone marrow, and one additional tissue. The
latter was selected on the basis of literature reports on the com-
pound’s toxicology. Twelve (12) tissues were collected from the
animals dosed daily for 3, 5, or 7 days; the tissues collected were
liver, kidney, heart, bone marrow, spleen, brain, stomach-fore,
stomach-glandular, intestine, muscle, lung, and gonads. Blood
was collected and analyzed using a traditional clinical chemistry
and hematology assay panel. All tissues were harvested using
tissue punches in a way that produced samples of ∼100 mg in size
and then were flash-frozen in liquid nitrogen and stored at
�80°C until use.

Isolation and purification of mRNA using the MagNA
Pure robot
This method is described in the Methods section of (Ganter et al.
2005). Briefly, poly A(+)-enriched RNA from tissue samples was
isolated using the MagNA Pure LC robot (Roche) in combination
with the MagNA Pure LC RNA Isolation kit II (Roche). Each iso-
lated RNA sample was concentrated using a standard ethanol
precipitation protocol in the presence of glycogen (50 µg/mL).
After precipitation, the final purified RNA sample was resus-
pended in 7 µL DEPC-H2O and quantified using a Ribogreen
high-range assay (Molecular Probes, Eugene, OR) on the Wallac
Victor2 Fluorometer (Perkin-Elmer). The integrity of each RNA
sample was determined using an Agilent 2100 BioAnalyzer (Agi-
lent Technologies) in combination with an RNA 6000 Nano Lab
Chip kit (Agilent Technologies). Degraded or poor-yielding
samples were rejected and prepared again from a new tissue
sample.

Hybridization
The methods used for cRNA preparation are described in the
CodeLink manual v2.1 supplied by Amersham Biosciences (Dor-
ris et al. 2002). The QIAGEN BioRobot 9604 was used. The result-
ing cRNA yield was quantified using a UV spectrophotometer at
a wavelength of 260 nm. The integrity of the cRNA sample was
determined using the Agilent 2100 BioAnalyzer.
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Hybridization to microarrays
The methods used are essentially as described in the CodeLink
manual v2.1 supplied by Amersham Biosciences, using the pro-
tocol described in (Dorris et al. 2002) .

Microarray data collection
Processed slides were scanned using an Axon GenePix Scanner
(Axon Instruments) with the laser set to 635 nm, the photo-
multiplier tube (PMT) voltage to 600, and the scan resolution to
10 microns. Slides were scanned using CodeLink Expression
Scanning Software (Amersham Biosciences).

In order to assure that all of the data set was of high quality,
a number of quality metrics and tests were employed (Ganter et
al. 2005). Failure on any test resulted in rejection of the array and
exclusion from the data set.

Data processing and normalization
Data collected from the scanner were processed using a nonlinear
normalization procedure similar to the centralization approach
reported by Zien et al. (2001) and adapted specifically for the
CodeLink microarray platform. The procedure utilizes detrend-
ing algorithms to adjust for nonbiological trends and nonlinear
patterns in signal response, leading to significant improvements
in array data quality. The mean logratio is computed for each
gene in each treatment as the difference of the averaged Log10 of
the experimental signals from (usually) three drug-treated ani-
mals and the averaged Log10 of the control signals from (usually)
10 mock vehicle-treated animals. The variability of the logratio
was computed as the standard deviation of the paired differences
of the treated and control Log10 signal intensities.

Classification algorithms
The t-rank algorithm ranks all genes by the value

m1 − m2

sd1 + sd2 + 0.1
,

where mi and sdi are the mean and standard deviation of the
expression log ratios for the classes, 1 refers to the class-of-
interest, and 2 to the rest of the data set. The direction of regu-
lation and the number of genes chosen for the signature are
user-defined. We tested signatures composed of various lengths
and comprising up-, down-, or an equal mix of up- and down-
regulated genes. The average performances of those combina-
tions were similar. We report the results for the 20-gene up-
regulated version of the t-rank algorithm (Table 1). This proce-
dure defines a 20-dimensional signature vector, V, whose length
in each direction is equal to the average expression log ratio for
the class-of-interest. The match of given sample to the signature
vector is the signature projection score (SPS) S = �v�2cos� where v
is the expression vector of the sample, � �2 is the Euclidean
2-norm, and � is the angle between v and V. The threshold for
belonging to the class is the nth best match with n being the size
of the class-of-interest. During cross-validation, the training
threshold is applied to the test. The t-rank algorithm focuses on
the largest differences between classes.

SPLP and SPLR have been described in detail elsewhere (El
Ghaoui et al. 2003). They are based respectively on support vec-
tor machines (SVMs) and logistic regression (LR). These methods
are linear classification algorithms in that they determine the
optimal hyperplane separating a positive and a negative class.
This hyperplane H can be characterized by a vectorial parameter
w (the weight vector) and a scalar parameter b (the bias): H = {x
| wTx + b = 0}. For all proposed algorithms, determining the op-

timal hyperplane eventually reduces to optimizing the error on
the provided training data points, computed according to some
loss function—the Hinge loss (loss function used in 1-norm
SVMs) or the LR loss—augmented with a 1-norm regularization
on the signature w. This regularization helps realize our goal of a
sparse, short signature. Moreover, this 1-norm penalty on the
signature is weighted by the average standard error per gene.
Genes that have been measured with less certainty will be less
likely to get a high weight in the signature. Thus, the proposed
algorithms lead to sparse signatures and take the average
standard error information into account. Mathematically, the
algorithms can be described by the cost function that they actu-
ally minimize to determine the parameters w and b. This is as
follows.

SPLP: min
w,b �

i
ei + � �

i
�i |wi | s.t. yi�w

Txi + b� 	 1 − ei

ei 	 0, i = 1, . . . , N

The first term minimizes the training set error, and the second
term is the 1-norm penalty on the signature w, weighted by the
average standard error information per gene given by �. The
training set error is computed according to the Hinge loss, as
defined in the constraints. This loss function penalizes every data
point that is closer than “1” to the separating hyperplane H, or is
on the wrong side of H. Notice how the parameter � allows a
trade-off between training set error and sparsity of the signa-
ture w.

SPLR: min
w,b �

i
log�1 + exp�−yi�w

Txi + b��� + � �
i

�i |wi |

The first term expresses the negative log likelihood of the data (a
smaller value indicating a better fit of the data), as is normal in
logistic regression, and the second term gives rise to a short sig-
nature, with � determining the trade-off between both.

The kernel SVM implementation presented in Table 2 em-
ployed a Gaussian kernel. The Gaussian kernel defines the inner
product between pairs of data points according to the following
kernel function: k(x, y) = exp(�0.5�x � y�22/�), where x and y are
data points, � is the width-parameter of the Gaussian kernel
(Scholkopf and Smola 2002), and � �2 is Euclidean 2-norm. The
multilayered perceptron neural network (Fu 1994) was used in
conjunction with the Prune algorithm, both of which are avail-
able through SPSS. Sensitivity analysis is used to rank genes in
order of importance. Each gene is considered in turn. The sensi-
tivity of a gene is calculated by varying the values of that gene for
each case in the data set. After varying the values in a single case,
the maximum difference in the outputs is calculated. This value
is summed across all cases, and then normalized. All genes are
ranked by this value. The C4.5 decision tree algorithm has been
described elsewhere (Quinlan 1993).

Cross-validation
For cross-validation, the data set is randomly split. A training
signature is derived from the training set composed of 60% of
the samples and used to classify both the training set and the
remaining 40% of the data, referred to here as the test set. In
addition, a complete signature is derived using all the data.
The performance of these signatures can be measured in terms
of log odds ratio (LOR) or the error rate (ER) defined as
LOR = ln(((TP+0.5)*(TN+0.5))/((FP+0.5)*(FN+0.5))) and
ER = (FP+FN)/N where TP, TN, FP, FN, and N are true positives,
true negatives, false positives, false negatives, and total number
of samples to classify, respectively, summed across all the cross-
validation trials. Sensitivity and specificity are defined respec-
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tively as: Sens = TP/(TP+FN) and Spec = TN/(TN+FP). The perfor-
mance measures are used to characterize the complete signature,
the average of the training, or the average of the test signatures.
In this paper, training error or training performance refers to the
complete signature that was trained using all the data. The cross-
validated test error and test performance measures are unbiased
estimates of performance of the signature if it were constructed
based on a data set that is 60% of the full size. Hence, they are
somewhat conservative estimates of the true future performance
of the signature based on all data. However, they form a fairer
basis for comparison of signature performance than the overly
optimistic evaluations that result from reapplying the complete
signature to its own training data.

Acknowledgments

We thank Mark Fielden, Kyle Kolaja, David O’Reilly, and Ken
Zaret for critical reading of the manuscript, and the members of
the Iconix array facility and informatics teams—B. Ganter,
E. Ayanoglu, S. Baumhueter, L. Brady, J. Calvin, G.-J. Day,
N. Brenckenridge, J. Ferng, S. Fujimoto, L. Gong, C. Hu, R. Idury,
M. Judo, M. Lee, C. McSorley, R. Nair, P. Nguyen, S. Nicholson,
H. Pham, A. Roter, S. Tan, S. Thode, A. Vladimirova, J. Yang, and
Z. Zhou—for generating and processing array data.

References

Alberts, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C.,
Rothrock, J., Lopez, M., Joshua, H., Harris, E., et al. 1980. Mevinolin:
A highly potent competitive inhibitor of
hydroxymethylglutaryl-coenzyme A reductase and a
cholesterol-lowering agent. Proc. Natl. Acad. Sci. 77: 3957–3961.

Brown, M.S. and Goldstein, J.L. 1999. A proteolytic pathway that
controls the cholesterol content of membranes, cells, and blood.
Proc. Natl. Acad. Sci. 96: 11041–11048.

Cristianini, N. and Shawe-Taylor, J. 2000. An introduction to support vector
machines. Cambridge University Press, Cambridge, UK.

Dorris, D.R., Ramakrishnan, R., Trakas, D., Dudzik, F., Belval, R., Zhao,
C., Nguyen, A., Domanus, M., and Mazumder, A. 2002. A highly
reproducible, linear, and automated sample preparation method for
DNA microarrays. Genome Res. 12: 976–984.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. 1998. Cluster
analysis and display of genome-wide expression patterns. Proc. Natl.
Acad. Sci. 95: 14863–14868.

El Ghaoui, L., Lanckriet, G.R.G., and Natsoulis, G. 2003. Robust
classifiers with interval data. Report # UCB/CSD-03-1279. Computer
Science Division (EECS), University of California, Berkeley, CA.

Fu, L.M. 1994. Neural networks in computer intelligence. McGraw Hill, New
York.

Ganter, B., Tugendreich, S., Pearson, C., Ayanoglu, E., Baumhueter, S.,
Bostian, K., Brady, L., Breckenridge, N., Browne, L., Calvin, J., et al.
2005. Development of a large-scale chemogenomics database to
improve drug candidate selection and to understand mechanisms of
chemical toxicity and action. J. Biotechnol. (in press).

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et
al. 1999. Molecular classification of cancer: Class discovery and class
prediction by gene expression monitoring. Science 286: 531–537.

Gunther, E.C., Stone, D.J., Gerwien, R.W., Bento, P., and Heyes, M.P.
2003. Prediction of clinical drug efficacy by classification of
drug-induced genomic expression profiles in vitro. Proc. Natl. Acad.
Sci. 100: 9608–9613.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. 2002. Gene selection
for cancer classification using support vector machines. Machine
Learning 46: 389–422.

Hardman, J.G., Limbird, L.E., and Gilman, A.G. 2001. Goodman &
Gilman’s The pharmacological basis of therapeutics. McGraw Hill, New
York.

Hastie, T., Tibshirani, R., and Friedman, J. 2001. Elements of statistical
learning: Data mining, inference and prediction. Springer-Verlag, Berlin,
Germany.

Horton, J.D. and Shimomura, I. 1999. Sterol regulatory element-binding
proteins: Activators of cholesterol and fatty acid biosynthesis. Curr.
Opin. Lipidol. 10: 143–150.

Kersten, S., Desvergne, B., and Wahli, W. 2000. Roles of PPARs in health
and disease. Nature 405: 421–424.

Klassen, C.D. 2001. Casarett and Doull’s Toxicology: The basic sciences of
poisons. McGraw-Hill, New York.

Lee, S.S., Pineau, T., Drago, J., Lee, E.J., Owens, J.W., Kroetz, D.L.,
Fernandez-Salguero, P.M., Westphal, H., and Gonzalez, F.J. 1995.
Targeted disruption of the � isoform of the peroxisome
proliferator-activated receptor gene in mice results in abolishment of
the pleiotropic effects of peroxisome proliferators. Mol. Cell Biol.
15: 3012–3022.

Quinlan, J.R. 1993. C4.5: Programs for machine learning. Morgan
Kaufman, San Francisco.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.H.,
Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J.P., et al.
2001. Multiclass cancer diagnosis using tumor gene expression
signatures. Proc. Natl. Acad. Sci. 98: 15149–15154.

Scholkopf, B. and Smola, A. 2002. Learning with kernels. MIT Press,
Cambridge, MA.

Schoonjans, K., Staels, B., and Auwerx, J. 1996. Role of the peroxisome
proliferator-activated receptor (PPAR) in mediating the effects of
fibrates and fatty acids on gene expression. J. Lipid Res. 37: 907–925.

Thomas, R.S., Rank, D.R., Penn, S.G., Zastrow, G.M., Hayes, K.R., Pande,
K., Glover, E., Silander, T., Craven, M.W., Reddy, J.K., et al. 2001.
Identification of toxicologically predictive gene sets using cDNA
microarrays. Mol. Pharmacol. 60: 1189–1194.

van den Bossche, H., Willemsens, G., Cools, W., Lauwers, W.F., Le
Jeune, L., Venkatakrishnan, K., von Moltke, L.L., and Greenblatt,
D.J. 1978. Biochemical effects of miconazole on fungi. II. Inhibition
of ergosterol biosynthesis in Candida albicans. Effects of the
antifungal agents on oxidative drug metabolism: Clinical relevance.
Chem. Biol. Interact. 21: 59–78.

Venkatakrishnan, K., von Moltke, L.L., and Greenblatt, D.J. 2000. Effects
of the antifungal agents on oxidative drug metabolism: Clinical
relevance. Clin. Pharmacokinet. 38: 111–180.

Vu-Dac, N., Chopin-Delannoy, S., Gervois, P., Bonnelye, E., Martin, G.,
Fruchart, J.C., Laudet, V., and Staels, B. 1998. The nuclear receptors
peroxisome proliferator-activated receptor � and Rev-erb � mediate
the species-specific regulation of apolipoprotein A-I expression by
fibrates. J. Biol. Chem. 273: 25713–25720.

Wallace-Hayes, A. 2001. Principles and methods of toxicology, Chapter 8.
Taylor & Francis, New York.

Waring, J.F., Ciurlionis, R., Jolly, R.A., Heindel, M., and Ulrich, R.G.
2001. Microarray analysis of hepatotoxins in vitro reveals a
correlation between gene expression profiles and mechanisms of
toxicity. Toxicol. Lett. 120: 359–368.

Xiong, M., Fang, X., and Zhao, J. 2001. Biomarker identification by
feature wrappers. Genome Res. 11: 1878–1887.

Zien, A., Aigner, T., Zimmer, R., and Lengauer, T. 2001. Centralization:
A new method for the normalization of gene expression data.
Bioinformatics (Suppl.) 1: S323–S331.

Web site references

http://www.iconixpharm.com; Iconix Pharmaceuticals’ company Web
site.

http://www.ncbi.nlm.nih.gov/geo/; Gene Expression Omnibus database,
hosted by NCBI.

http://www.spotfire.com; Spotfire company Web site, a provider of
statistical tools for scientific applications.

Received May 19, 2004; accepted in revised form January 27, 2005.

Natsoulis et al.

736 Genome Research
www.genome.org


