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ABSTRACT Information on relative solvent ac-
cessibility (RSA) of amino acid residues in proteins
provides valuable clues to the prediction of protein
structure and function. A two-stage approach with
support vector machines (SVMs) is proposed, where
an SVM predictor is introduced to the output of the
single-stage SVM approach to take into account the
contextual relationships among solvent accessibili-
ties for the prediction. By using the position-specific
scoring matrices (PSSMs) generated by PSI-BLAST,
the two-stage SVM approach achieves accuracies up
to 90.4% and 90.2% on the Manesh data set of 215
protein structures and the RS126 data set of 126
nonhomologous globular proteins, respectively,
which are better than the highest published scores
on both data sets to date. A Web server for protein
RSA prediction using a two-stage SVM method has
been developed and is available (http://birc.ntu.
edu.sg/!pas0186457/rsa.html). Proteins 2005;59:
30–37. © 2005 Wiley-Liss, Inc.
© 2005 Wiley-Liss, Inc.

Key words: protein structure prediction; solvent ac-
cessibility; support vector machines;
PSI-BLAST

INTRODUCTION

The knowledge of protein structures is valuable for
understanding mechanisms of diseases of living organisms
and for facilitating discovery of new drugs. Protein struc-
ture can be experimentally determined by NMR spectros-
copy and X-ray crystallography techniques or by molecular
dynamics simulations. However, the experimental ap-
proaches are marred by long experimental time, prone to
difficulties, expensive, and therefore limited to small pro-
teins.1 Bioinformatics approaches have recently being
sought to predict relative solvent accessibility (RSA) to
help elucidate the relationship between protein sequence
and structure, and thereby predict the three-dimensional
(3D) structure of proteins.2,3 The studies of solvent accessi-
bility have shown that the hydrophobic free energies of
proteins are directly related to the accessible surface area
of both polar and nonpolar groups of amino acid in
proteins.4 Chan and Dill5 discovered that the burial of core
residues is a strong driving force in protein folding.
Furthermore, the RSA prediction gives insight into the
organization of 3D structure: The position of protein
hydration sites playing an important part in a protein’s
function can be predicted based on solvent accessibility,6

and information about solvent accessibility has improved
the prediction of protein subcellular location, as the distri-
bution of solvent accessibilities is correlated with its
subcellular environments.7 One of the objectives in RSA
prediction is to classify a pattern of residues in amino acid
sequences to a pattern of RSA types: buried (B) and
exposed (E) residues.

Many different techniques have been proposed for RSA
prediction, which broadly fall into the following categories:
(1) Bayesian, (2) neural networks, and (3) information
theoretical approaches. The Bayesian methods provide a
framework to take into account local interactions among
amino acid residues, by extracting the information from
single sequences or multiple sequence alignments to ob-
tain posterior probabilities for RSA prediction.8 Neural
networks use residues in a local neighborhood, as inputs,
to predict the RSA of a residue at a particular location by
finding an arbitrary, nonlinear mapping.9–12 The informa-
tion theoretical approaches use mutual information be-
tween the sequences of amino acids and solvent accessibil-
ity values derived from a single amino acid residue, or
pairs of residues, in a neighborhood for RSA prediction.13

Recently, variants of these approaches with increased
prediction accuracies have been proposed: Gianese et al.14

predicted the RSA of a residue based on probability
profiles computed on amino acid residues in the neighbor-
hood; Adamczak et al.15 proposed using neural networks–
based regression to find continuous approximations to
RSA values.

Despite the existence of many approaches, the current
success rates of existing techniques for RSA prediction are
insufficient; further improvement of the accuracy is neces-
sary. Most existing techniques for RSA prediction are
single-stage approaches in the sense that the solvent
accessibility type is directly predicted from amino acid
sequences or profiles derived from them, except the PHDacc
method3 using an averaging filter at outputs of the first
neural network and the Jnet method30 combining two
multi-layer perceptron (MLP) networks. They suffer from
the limited size of the local neighborhood used in the
prediction; the sequential relationships among the solvent
accessibilities of residues are not taken into account. In
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this article, we propose a two-stage approach to RSA
prediction by using a second predictor, a support vector
machine (SVM) classifier, introduced at the end of a
single-stage RSA prediction scheme. The aim of the second
stage is to take into account the influence on the RSA of a
residue by the RSAs of its neighbors.

SVMs were earlier shown to perform well in multiple
areas of biological analysis,16 including RSA predic-
tion,17,18 that have strong foundations in statistical learn-
ing theory; as shown by Vapnik,19,20 SVMs implement a
classifier that is capable of minimizing structural risk.
Furthermore, SVMs offer several associated computa-
tional advantages, such as the lack of local minima and a
solution completely encompassed by the set of support
vectors. In addition, SVMs scale well for large-scale prob-
lems, which makes them particularly attractive for predict-
ing structures of large protein sequences.16 Also, the
generalization capability of SVMs is well suited for the
prediction of RSAs of novel amino acid sequences. All
previous SVM approaches to RSA prediction have been
single-stage approaches.

By using a two-stage SVM approach based on the
position-specific scoring matrices (PSSMs) generated by
PSI-BLAST, substantial improvements of prediction accu-
racies up to 7.6% and 4.0% were achieved on the Manesh13

and the RS1263 data sets, respectively, compared to
previously reported accuracies.14,18

MATERIALS AND METHODS
Data Set 1 (RS126)

The set of 126 nonhomologous globular protein chains
used in the experiment of Rost and Sander3 and referred to
as the RS126 set was used to evaluate the accuracy of the
prediction. Many current-generation RSA prediction meth-
ods have been developed and tested on this data set, which
is available at http://gibk21.bse.kyutech.ac.jp/rvp-net/
all-data.tar.gz. The two-stage SVM approach was imple-
mented with the position-specific scoring matrices (PSSMs)
generated by PSI-BLAST, and tested on the data set using
a 7-fold cross-validation to estimate the prediction accu-
racy. With 7-fold cross-validation, approximately one-
seventh of the data set was left out while training and,
after training, that one-seventh of the data set was used
for testing. In order to avoid the selection of extremely
biased partitions, the RS126 set was divided into subsets
of same size and composition of each type of RSA.

Data Set 2 (Manesh)

The second data set, generated by Manesh,13 consisted
of 215 nonhomologous protein chains and is referred to
as the Manesh data set. The dataset contains proteins
with less than 25% homology and is available online
(http://gibk21.bse.kyutech.ac.jp/rvp-net/all-data.tar.gz).

The NETASA prediction method12 was developed and
tested on this data set. A set of 30 proteins containing 7545
residues was selected for training (see Table I). The
remaining 185 proteins with 43,137 residues were used for
testing. We adopted these training and testing sets in
order to provide an objective comparison of the prediction
accuracy of the two-stage SVM approach with the results
of the NETASA method12 and the probability profile
approach of Gianese et al.14 The two-stage SVM predicted
the RSA types based on the PSSMs generated by PSI-
BLAST. The PSI-BLAST profiles contained probabilities of
residues, taking into account the significance of each
sequence and distant homologues.21

RSA and Prediction Accuracy Assessment

RSA percentage (%) of an amino acid residue is defined
as the ratio of the solvent-accessible surface area of the
residue observed in the 3D structure to that observed in an
extended tripeptide (Gly-X-Gly or Ala-X-Ala) conforma-
tion. The value of RSA lies between 0% and 100%, with 0%
corresponding to a fully buried type and 100% to the fully
exposed type. The type of the solvent accessibility of an
amino acid residue is considered buried (B) if the RSA
value of the residue is smaller than a specified threshold
c%, or an exposed (E) otherwise. We demonstrate our
approach with a range of thresholds of RSA: 0%, 5%, 9%,
10%, 16%, 20%, 25%, and 50%. The residue solvent-
accessible surface areas of the RS126 set were computed
with the Dictionary of Protein Secondary Structure (DSSP)
program.22 The Analytical Surface Calculation (ASC) pro-
gram,23 with the van der Waals radii of the atoms,4 was
used to compute the residue solvent-accessible surface
areas for the Manesh data set. The Ala-X-Ala oligopeptide
in an extended conformation instead of Gly-X-Gly is used
to calculate RSA in the Manesh data set. The definitions of
RSA and programs used to compute it are consistent with
those used by other authors, whose methods are compared
against the proposed approach.

The prediction accuracy is measured by the percentage
of correctly predicted types of solvent accessibility of
residues3; the sensitivity score indicates the proportion of
exposed (E) residues that are correctly predicted as E; the
specificity measures the proportion of buried (B) residues
that are correctly predicted as B. By changing the thresh-
olds of RSA definition of the prediction, we get a range of
sensitivities and specificities, which leads to receiver opera-
tion characteristics (ROCs) that plot sensitivity versus 1"
specificity. The ROC curves offer comparisons among
different prediction methods irrespective of the threshold
for determination of solvent accessibility type.

TABLE I. List of 30 Proteins Used for Training the Single-Stage and Two-Stage SVM Approaches

1aba 1abr 1bdo 1beo 1bib 1bmf 1bnc 1btm 1btn 1cem
1ceo 1cew 1cfy 1chd 1chk 1cyx 1dea 1del 1dkz 1dos
1fua 1gai 1gpl 1gsa 1gtm 1hav 2ilb 2sns 3grs 3mdd
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Single-Stage SVM Approach

In this section, we describe how a sequence of RSA types
is predicted from an amino acid sequence by using an SVM
classifier. Let us denote the amino acid sequence by r # (r1,
r2,…, rn), where ri ! $R and $R is the set of 20 amino acid
residues, and the corresponding solvent accessibility se-
quence by a # (a1, a2,…, an), where ai ! $A; n is the length
of the sequence. The prediction of the sequence of RSA
types, a, from an amino acid sequence, r, is the problem of
finding the optimal mapping from the space of $R

n to the
space of $A

n.
First, the values of raw matrices of PSI-BLAST24 used

as inputs to first-stage SVM are obtained from the NR
(nonredundant) database (ftp://ftp.ncbi.nih.gov/blast/db/
FASTA/). The low-complexity regions, transmembrane
regions, and coil–coil segments are then filtered from the
NR database by the PFILT program.21 Finally, the E-
value threshold of 0.001, 3 iterations, BLOSUM62 matrix,
a gap open penalty of 11, and a gap extended penalty of 1
are used for searching the NR sequence database to
generate PSSM profiles. These arguments are consistent
with those used in other methods.18,21 Let vi be a vector
representing a 21-dimensional coding of the residue ri,
where 20 elements take the values from PSSM profiles
ranging from [0, 1],18 and the last element is used as the
padding space to indicate the end of the sequence; the
padding element is set to 1 to indicate the end of the
sequence, or 0 otherwise. The SVM, a binary classifier B/E,
is constructed to predict whether the solvent accessibility
of a residue at a site belongs to a particular type, B or E.
The input pattern to the predictor at site i consists of a
vector ri of profiles from a neighborhood: ri # (vi"h1

,
vi"h1%1,…, vi%h1

), where h1 represents the size of the
neighborhood on either side.

The SVM transforms the input vectors to a higher
dimension via a kernel function, K1, and linearly combines
to derive the outputs with a weight vector, w1. The
function K1 and vector w1 are determined to minimize the
error in the prediction during the training phase. Let &train

1

# {(rj,qj) : j # 1,2,…,N} denote the set of all training
exemplars, where qj denotes the desired classification, B or
E, for the input pattern rj such that the output of SVM is
"1 if the correct RSA type is B or %1 if the type is E. When
N is the number of training patterns, the vector w1 is
determined by scalars 'j, j # 1,2,…, N that are found by
maximizing the following quadratic function Q1:

Q1 ! !
j#1

N

'j "
1
2 !

j#1

N !
i#1

N

'j'iqjqiK1(rj, ri), (1)

subject to 0 # 'j # *1 and ¥j#1
N 'jqj # 0. K1(rj,ri) #

+1(ri)+
1(rj) denotes the kernel function, and +1 represents

the mapping function to higher dimension; *1 is a positive
constant used to decide the trade-off between the training
error and the margin of the classifier.19,20

The weight vector is then given by w1 # ¥j#1
N qj'j+

1(rj).
Once the parameters 'j are obtained from the above
algorithm, the resulting discriminant function, say f1, is
given by

f1(ri) ! !
j#1

N

qj'jK1(rj, ri) $ b1 ! w1+
1(ri) $ b1, (2)

where the bias b1 is chosen so that qjf1(rj) # 1 for any j with
0 , 'j , *1.

In the single-stage SVM method, the solvent accessibil-
ity type 'i corresponding to the residue at site i, ri, is
determined by

ai ! "E if f1(ri) % 0
B otherwise. (3)

The function, f1, discriminates the type of RSA, based on
the features or interactions among the residues in the
input pattern. With optimal parameters, the SVM at-
tempts to minimize the generalization error in the predic-
tion. If the training and testing patterns are drawn
independently and identically according to a probability
P1, then the generalization error, errP1

, is given by

errP1(f1) ! Pf1-(r, q) : sign.f1(r)/ & q; (r, q) ! &10,

where &1 denotes the set of input patterns seen by the
SVM during both the training and testing phases. In the
following sections, we demonstrate that this error can be
minimized by connecting another predictor at the output
of the SVM predictor.

Two-Stage SVM Approach

The single-stage approach takes only the interactions
among amino acid residues in the neighborhood into the
prediction scheme. The RSA type of a residue is also
influenced by those in its neighborhood. A second SVM
predictor is used in the two-stage approach to predict the
RSA type of a residue by using the predictions from the
first stage, capturing the sequential relationships among
the RSA values in the neighborhood. The architecture of
the two-stage SVM prediction approach is illustrated in
Figure 1.

The second SVM classifier improves the accuracy of the
single-stage RSA prediction schemes by taking into ac-
count the sequential relationships among the RSA values
of residues into the prediction. The second-stage SVM
processes the estimated RSA values at the first stage and
minimizes the generalization error by incorporating the
contextual information among RSA values. Rost and
Sander3 proposed a simple method to incorporate the
sequential relationships of the estimated RSA types, in
which an averaging filter is employed to take the average
of neighboring outputs of the first neural network at each
amino acid residue; then, the solvent accessibility is
predicted as the type with the largest average. Two-stage
SVM approaches were previously proposed for protein
secondary structure prediction.25,26

The second-stage SVM processes the output of the dis-
criminant functions of the first stage to enhance the pre-
diction. At the site i, the input to the second SVM is given by
a vector di # (di"h2,di"h2%1,…,di,…di%h2

), where h2 is the
length of the neighborhood on either side and di # 1/(1
$ e"f1(ri)). The SVM converts the input patterns, usually
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linearly inseparable, to a higher dimensional space by
using the mapping +2 with a kernel function K 2(di,dj) #
+2(di)+

2(dj).
As in the first stage, the hidden outputs in the higher

dimensional space are linearly combined by a weight
vector, w2, to obtain the prediction output. Let the training
set of exemplars for the second-stage SVM be &train

2 #
{(dj,qj) : j # 1,2,…,N}. The kernel function K 2 and vector
w2 are obtained by solving the following convex quadratic
programming problem, over all the patterns seen in the
training phase:

max
1

!
j#1

N

1j "
1
2 w2

Tw2, (4)

such that 0 # 1j # *2 and ¥j#1
N 1jqj # 0, where w2 # ¥j#1

N

qj1j+
2(dj).

The discriminant function, f2, at the second stage is
given by

f2(di) ! !
j#1

N

qj1jK2(dj, di) $ b2 ! w2+
2(di) $ b2, (5)

where the bias b2 is chosen so that qjf2(dj) # 1 for any j
with 0 , 1j , *2. The solvent accessibility type ai corre-
sponding to the residue ri is given by

ai ! " E if f2(di) % 0
B otherwise. (6)

If the set of input patterns for the second-stage SVM in
both training and testing phases is denoted by &2, the
generalization error of the two-stage SVM approach, errP2

(f2), is given by

errP2(f2) ! P2-(d, q) : sign.f2(d)/ & q; (d, q) ! &20.

If the input pattern d corresponds to a site i, then d # di #
.(1 $ e"f1(ri"h2))"1,…,(1 %e"f1(ri))"1,…,(1 % e"f1(ri%h2))"1]; that is,
the second stage takes into account the influences of the
RSA values of residues in the neighborhood into the
prediction. It could be easily conjectured that if the RSA
type of a residue depends on those of its neighborhood,
errP2

(f2) # errP1
(f1), where the equality occurs when

h2 # 0.

RESULTS

For SVM classifiers, a window size of 13 amino acid
residues h1 # 6 gave optimal results in the [9, 21] range for
the first stage, and a window size of width 21; h2 # 10 in
the [11, 27] range gave the optimal accuracy for the second
stage. The kernels selected were Gaussian functions, K
(x,y) # e"2Px"yP2

with the parameters 2 # 0.1, *1 # 1.0 at
the first stage, and 2 # 0.15, *2 # 1.0 at the second stage,
which were determined empirically for optimal perfor-
mances in [0.01, 0.5] and [0.1, 2] ranges, respectively. In
the literature, the Gaussian kernel has been used in many
classification problems.16 The main reason is that it can
result in complex (but smooth) decision function, and
therefore has the ability to better fit the data where simple
discrimination by using a hyperplane or a low-dimensional
polynomial surface is not possible. The use of Gaussian
kernel showed the best performance when the dimension
of feature space is infinite,27 and gave better results over
the linear and polynomial kernels for RSA prediction.18

The Gaussian kernels have shown faster convergence than
linear kernels for large and complex training sets of RSA
problem. The SVM method was implemented using the
sequential minimization algorithm,28 which is simple to
implement without needing storage for matrices or to
invoke an iterative numerical routine for each subprob-
lem.

Table II shows the performances of different solvent
accessibility predictors and two-stage SVM approach on
the RS126 set. Two-stage SVMs with PSI-BLAST profiles

Fig. 1. Two-stage SVM approach for RSA prediction.

TABLE II. Comparison of Performances of Two-Stage SVM
Approach With Other Methods in RSA Prediction on the
RS126 Data Set With PSSMs Generated by PSI-BLAST

Method/threshold 0% 5% 9% 16%
Rost and Sander3 (PHDacc) 86.0 —a 74.6 75.0
Gianese et al.14 (PP) — — 76.8 75.1
Kim and Park18 (single-stage SVM) 86.2 79.8 — 77.8
Two-stage SVMs 90.2 83.5 81.3 79.4
aDashes indicate that the corresponding result was not available from
the literature.
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achieved accuracies of 90.2%, 83.5%, 81.3%, and 79.4% at
thresholds of 0%, 5%, 9%, and 16%, respectively, which are
the highest scores on the RS126 set to date. Compared to
the newest method of Kim and Park,18 using single-stage
SVM, the two-stage SVM method significantly obtained
4.0%, 3.7%, and 1.6% higher prediction accuracies at 0%,
5%, and 16% thresholds, respectively. On the RS126 data
set, the accuracies were improved by 4.5% and 4.3% at
thresholds of 9% and 16%, respectively, compared to the
results of the probability profiles approach of Gianese et
al.14 The prediction accuracy of two-stage SVMs outper-
formed the results by the multilayer perceptron networks
of PHDacc method proposed by Rost and Sander3 at all
thresholds.

Table III shows the performance of the two-stage SVM
approach on the Manesh data set based on PSI-BLAST
profiles and comparison with other solvent accessibility
predictors. The best performance was shown by the cas-
cade of two SVMs. On the Manesh data set, the accuracies
were significantly improved by 2.5%, 8.3%, 9.8%, 7.8%,
and 3.2% for 0%, 5%, 10%, 25%, and 50% thresholds,
respectively, compared to the results of NETASA method.12

Comparing two-stage SVMs to the probability profiles

method,14 substantial gains of 0.9% to 7.6% of prediction
accuracy were observed for different thresholds.

Figures 2 and 3 present the distributions of prediction
scores obtained by two-stage SVMs for the benchmark
Manesh and RS126 data sets with a 5% threshold based on
PSI-BLAST profiles. The ROC curves on the Manesh and
RS126 data sets for single-stage and two-stage SVM
approaches at different thresholds are illustrated in Fig-
ures 4 and 5. As shown, the prediction accuracy of two-
stage SVMs outperformed the single-stage SVM methods
for RSA prediction at all thresholds.

For RSA prediction, the accuracy of two-stage SVMs
using PSI-BLAST profiles is significantly higher than
results obtained by using multiple sequence alignments.
For example, the accuracy of two-stage SVM method on
the RS126 data set was only 78.6% at a threshold of 5%
based on multiple sequence alignments. As mentioned,21

PSI-BLAST profiles contain more information on homolo-
gous protein structures than do multiple sequence align-
ments. Additionally, improvements of accuracies are ob-
served when larger sequences or more homologous profiles
are used in training. As shown in Table IV, by using a set of
205 proteins instead of 30 proteins for training, the
prediction accuracies of 10 sequences, obtained from the

Fig. 2. The distribution of prediction scores obtained by two-stage
SVMs for the banchmark 185 proteins of the Manesh data set at a 5%
threshold based on PSI-BLAST profiles.

TABLE III. Comparison of Performances of Two-Stage SVM Approach in RSA Prediction
Based on PSSMs Generated by PSI-BLAST, With Other Methods on the Manesh Data Set

Method/threshold 0% 5% 10% 20% 25% 50%
Ahmad and Gromiha12 (NETASA) 87.9 74.6 71.2 — 70.3 75.9
Gianese et al.14 (PP) 89.5 75.7 73.4 — 71.6 76.2
Two-stage SVMs 90.4 82.9 81.0 78.6 78.1 79.1

Giorgi et al.29 (PredAcc) 85.0 — — — 70.7 —
Cuff and Barton30 (Jnet) 86.6 79.0 — — 75.0 —
Li and Pan10 — — — 71.5 — —
Pollastri et al.11 (BRNN) 86.5 81.2 — — 77.2 —
Adamczak et al.15 (SABLE) — 76.8 77.5 77.9 77.6 —

Fig. 3. The distribution of prediction scores obtained by two-stage
SVMs for the banchmark RS126 data set at a 5% threshold based on
PSI-BLAST profiles.
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tails of the histogram in Figure 2 (1lts, 1nba, 1afw, 3cox,
2wsy, 7rsa, 1amm, 1mai, 1knb, 1kte) were improved at a
threshold of 5%. These observations suggest that the
performance of two-stage SVM method based on PSI-
BLAST profiles for a novel amino acid sequence suffers if it
lacks in the homologous structures in the training set. For
a completely new protein whose homologous proteins are
not used in training, the two-stage SVM method predicts
its solvent accessibilities with a low accuracy. To our
knowledge, Rost and Sander3 and Adamczak et al.15

concluded that the overall performance of any method
based on evolutionary profiles suffers when very remote or
no homologues are included.

Table V lists the properties of 20 amino acids and their
average occurrence and probabilities for exposure and
error in RSA prediction on the Manesh data set at a 25%
threshold. Nelson and Cox,31 based on the polarity or
tendency to interact with water of R group at biological pH,
grouped 20 amino acids into 5 main classes. According to
the statistical data, amino acids Ala, Val, Leu, Ile, Phe,
and Cys were easy to predict, while Gly, Pro, Trp, Thr, Arg,
and His were difficult to predict by two-stage SVMs. As
shown, the two-stage SVM method frequently predicted A,
V, L, I, M, F, W, Y, and C to be buried, and G, P, S, T, N, Q,
K, R, H, D, and E to be exposed. The statistical data
confirm that the nonpolar R groups (hydrophobic) tend to

Fig. 4. The ROC curves on the Manesh data set for single-stage and two-stage SVM approaches for RSA
prediction.

Fig. 5. The ROC curves on the RS126 data set for single-stage and two-stage SVM approaches for RSA
prediction.

TABLE IV. Comparison of Performances of Two-Stage SVM Approach on 10 Proteins Based on PSI-BLAST Profiles With
Two Different Training Sets of 30 and 205 Proteins at a 5% Threshold

Training set 1lts 1nba 1afw 3cox 2wsy 7rsa 1amm 1mai 1knb 1kte
30 proteins 70.9 71.4 71.8 73.6 75.2 91.1 92.0 93.3 93.3 93.3
205 proteins 72.6 71.8 71.8 73.9 76.9 91.0 93.1 94.1 93.3 93.3
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be buried (i.e., in the interior of a protein) and the polar R
groups (hydrophilic) tend to be on the surface (exposed),
except for G, P, and C.32 This is because two Cys are
readily oxidized to form a disulfide bond, and disulfide-
linked residues are hydrophobic. Chen et al.32 also ex-
plained the reasons that Pro and Gly tend to be exposed
from their structures. The results from Table V suggest
that the amino acid residues that tend to be buried (A, V,
L, I, M, F, W, Y, C) are predicted with higher accuracies
than exposed ones (G, P, S, T, N, Q, K, R, H, D, E).

As shown in Tables II and III, predictions were best for
buried residues (e.g., 90.2% and 90.4% of the completely
buried sites were correctly predicted at a threshold of 0%
on RS126 and Manesh data sets, respectively). The two-
stage SVM method achieved the highest prediction accu-
racy for the extreme case of fully buried types because the
accessibility of completely buried residues is best con-
served in 3D homologous structures.3 Residues in '-helix
and 1-strand structure segments were predicted better
than ones in coil segments (e.g., 80.7%, 82.2%, and 77.5%
residues were correctly predicted in '-helix, 1-strand, and
coil segments, respectively) on the Manesh data set at a
25% threshold.

We also estimated the effect of the growing size of NR
databases used to generate position scoring matrices by
PSI-BLAST on the accuracy of two-stage SVM method.
Two NR databases were used: one as of December 22,
2003, with 1,581,064 sequences, and a newer version as of

April 7, 2004, with 2,745,128 sequences. The different
results of two-stage SVMs on two NR databases were not
significant (see Table VI).

A Web server for protein relative solvent accessibility
prediction using two-stage SVM method has been devel-
oped and is available (http://birc.ntu.edu.sg/!pas0186457/
rsa.html). A set of 30 proteins containing 7545 residues
(see Table I) was selected for training two-stage SVM
method presented on the Web server.

DISCUSSION AND CONCLUSION

The existing bioinformatics techniques for RSA predic-
tion are mostly single-stage approaches that predict the
RSA types of residues based on only the information
available in amino acid sequences. We demonstrated a
two-stage approach, by using SVMs, that utilizes the
output predicted by single-stage prediction schemes and
improves the accuracy of RSA prediction. In this way, the
influences on the RSA value of a residue by those of its
neighbors are accounted for. This is because the solvent
accessibility at a particular position of the sequence de-
pends on the structures of the rest of the sequence (i.e., it
accounts for the fact that the buried or exposed type
consists of at least two consecutive residues). Therefore,
another layer of SVM classifier incorporating the contex-
tual relationship among the solvent accessibility character-
istics makes the prediction more realistic in terms of
predicted mean lengths of solvent accessibility elements.
The analysis of prediction results from single-stage and
two-stage SVM methods showed that the second-stage
SVM ultimately cleans the output prediction of the first
stage SVM, mostly by removing isolated buried or exposed
residues.

SVMs are more suitable for prediction of RSA values
because they minimize the generalization error in the
prediction. We showed that the generalization error made
in the first stage is further minimized by the second stage
of the two-stage approach. The SVM is an optimal classi-
fier for the second stage in terms of the margin of separa-
tion; it attempts to minimize not only the empirical risk of
known sequences but also the actual risk for unknown
sequences. Two stages of SVMs are sufficient to find an
optimal classifier for RSA prediction as the second stage
SVM attempts to minimize the generalization error of the
first stage by solving the optimization problem at the
second stage.

Recently, Kim and Park18 suggested using the informa-
tion of the PSSMs generated by PSI-BLAST as inputs to
SVMs for RSA prediction. By combining PSI-BLAST pro-
files, the present approach achieved better results than the

TABLE V. Properties of 20 Amino Acids: Average
Occurrences, Probabilities of Exposures, and the Error in

RSA Prediction on the Manesh Data Set
at a 25% Threshold

Amino acid
Occurrence

(%)
Exposure

(%)
Error in RSA
prediction (%)

Nonpolar R group (hydrophobic)
Gly G 7.5 55.8 27.1
Ala A 7.7 39.7 19.0
Val V 6.8 16.7 16.2
Leu L 8.8 14.1 15.7
Ile I 5.7 12.1 14.8
Met M 2.2 20.8 21.7
Pro P 4.5 64.8 27.5
Aromatic R group (hydrophobic)
Phe F 4.1 10.5 16.5
Trp W 1.4 12.3 25.1
Tyr Y 3.8 18.8 24.8
Polar, uncharged R group (hydrophilic)
Ser S 5.9 63.7 24.7
Thr T 5.6 53.2 25.6
Cys C 1.6 12.5 15.1
Asn N 4.6 74.4 25.0
Gln Q 3.9 79.4 24.6
Positively R charged (hydrophilic)
Lys K 6.1 84.5 19.8
Arg R 4.8 72.5 28.3
His H 2.2 51.2 30.5
Negatively R charged (hydrophilic)
Asp D 6.3 80.9 23.2
Glu E 6.4 84.7 21.4

TABLE VI. Comparison of Performances of Two-Stage
SVM Approach on the Manesh Data Set Based on PSSMs

Generated by PSI-BLAST With Two Different NR
Databases

Database/threshold 0% 5% 10% 20% 25% 50%
1,581,064 NR 90.2 82.8 80.9 78.6 78.1 79.0
2,745,128 NR 90.4 82.9 81.0 78.6 78.1 79.1
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methods using information from single sequences and
multiple sequence alignments. Compared to the method of
Kim and Park, our method showed a considerable improve-
ment in the accuracy of prediction. By incorporating the
state-of-the-art methods based on PSI-BLAST profiles and
SVMs in a two-stage approach, we are able to report the
best accuracies to date for RSA prediction on the tested
data sets. The RSA elements of residues predicted by our
approach could facilitate the prediction of the structure
and function of amino acid sequences.
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