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ABSTRACT
Motivation: Genome-wide gene expression measurements,
as currently determined by the microarray technology, can be
represented mathematically as points in a high-dimensional
gene expression space. Genes interact with each other in
regulatory networks, restricting the cellular gene expression
profiles to a certain manifold, or surface, in gene expres-
sion space. To obtain knowledge about this manifold, various
dimensionality reduction methods and distance metrics are
used. For data points distributed on curved manifolds, a sens-
ible distance measure would be the geodesic distance along
the manifold. In this work, we examine whether an approxim-
ate geodesic distance measure captures biological similarities
better than the traditionally used Euclidean distance.
Results: We computed approximate geodesic distances,
determined by the Isomap algorithm, for one set of lymphoma
and one set of lung cancer microarray samples. Compared with
the ordinary Euclidean distance metric, this distance measure
produced more instructive, biologically relevant, visualizations
when applying multidimensional scaling. This suggests the
Isomap algorithm as a promising tool for the interpretation
of microarray data. Furthermore, the results demonstrate
the benefit and importance of taking nonlinearities in gene
expression data into account.
Contact: jensn@maths.lth.se

INTRODUCTION
The study of gene expression data has been greatly facilit-
ated by the development of the microarray technology. High
density oligonucleotide arrays (Lockhart et al., 1996) and
cDNA microarrays (Schena et al., 1995a, b) measure the
expression of thousands of genes simultaneously. Comparing
the transcription profiles of different types of tissue speci-
mens permits the identification of genes that best distinguish
the samples. When samples correspond to different patho-
logical states of the same tissue, or subtypes of the same
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malignancy, transcription profiling holds promise as a method
for classifying cancers from a molecular rather than from a
morphological perspective (Ramaswamy et al., 2001; Pollack
et al., 2002; Khan et al., 2002). Furthermore, complex biolo-
gical processes, such as the onset of the cell cycle (Iyer et al.,
1999) or cellular responses elicited by various growth factors
(Fambrough et al., 1999), are now open for a detailed analysis
by the study of dense time series.

A main problem in microarray data analysis is how to extract
the central features of the vast amount of information gener-
ated. Mathematically, the expression profile of a sample can
be represented as a point in a gene expression space with
coordinates given by its expression levels. Put in another
way, the location of a cell sample in gene expression space
is determined by its transcriptional state. Genes interact with
each other in regulatory networks and as a consequence, the
functional relations between genes restrict the distribution of
possible gene expression states of the cell to some manifold,
or surface, in gene expression space. Typically, the number
of genes measured is very large and, consequently, so is the
dimension of the studied gene expression space. A variety of
mathematical methods have been described that reduce the
dimensionality of the datasets so as to find the principal fea-
tures of the data (Quackenbush, 2001). Two established and
commonly used unsupervised methods are multidimensional
scaling (MDS) and principal component analysis (PCA) [see
e.g. Alter et al. (2000) and Bittner et al. (2000) for applications
to expression data]. These methods work best when data are
linearly distributed in data space. For the more general case
of nonlinearly distributed data, there are several dimensional-
ity reduction methods like, e.g. Principal Curves (Hastie and
Stuetzle, 1988) or Kernel PCA (Schölkopf et al., 1996), but
so far methods like these have been sparsely applied to gene
expression data.

A natural way to handle nonlinearities is to adopt a different
distance metric in data space. In most of the applied methods,
Euclidean metrics or correlation is applied when estimat-
ing similarities/differences between biological samples. In
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the present investigation we have applied geodesic distances
as an alternative measure for similarity. As opposed to the
straight-line Euclidean distance, geodesic distances are meas-
ured along the surface of the manifold on which data is
assumed to lie. Approximations of the geodesic distances are
calculated using the Isomap algorithm, originally described
by (Tenenbaum et al., 2000) and developed as a tool for ana-
lysis of complex data, such as, e.g. digital images. Isomap tries
to approximate the data manifold by a graph, constructed by
locally connecting nearest neighbors. Approximate geodesic
distances are then calculated as the distance of the shortest
paths between samples in the graph. In the present study,
we have applied the approximate geodesic distance measure
on two previously analyzed datasets—one set of lymphomas
(Alizadeh et al., 2000) and one set of lung cancer tumors
(Garber et al., 2001), and shown that this approach reveals
biologically relevant structures in the data not easily detec-
ted with a standard MDS analysis of the same data using
Euclidean metrics.

SYSTEMS AND METHODS
Datasets
Two previously described microarray datasets were analyzed—
one set of 96 lymphoma samples (Alizadeh et al., 2000) and
one set of 73 lung cancer samples (Garber et al., 2001).
The selection of genes was, in both cases, unsupervised.
The lymphoma data were filtered so that the fluorescent intens-
ity in each channel was greater than 1.4 times the local
background for a gene to be included in the analysis, result-
ing in a total of 854 genes. The samples were divided into the
nine diagnostic classes defined by Alizadeh et al. (2000). The
lung cancer data were centered by sample mean and filtered
so that the raw intensity in both channels was greater than
or equal to 1.5 times the background, resulting in 831 genes.
Samples were divided into five diagnostic classes as described
by Garber et al. (2001).

Multidimensional scaling
MDS is a mathematical procedure that creates a lower-
dimensional configuration of points {x̄′

i} so as to approximate
optimally given distances between points {x̄i} in a higher-
dimensional space. MDS was performed using an implement-
ation of non-metric MDS (Schiffman et al., 1981) available in
the STATISTICA 6.0 software (Statsoft, Tulsa, OH). In short,
the algorithm minimizes the raw stress defined as

φ =
∑
ij

[
d(x̄′

i , x̄
′
j ) − f (d(x̄i , x̄j ))

]2

for different functions f belonging to a set M of monotone
functions. The effect of the transformations f is such
that the order relation between distances is preserved
rather than the absolute values. The optimization proced-
ure alternates between minimizing φ over M and the set of

Fig. 1. Data distributed along a spiral. The geodesic distance along
the spiral is presumably more reasonable than the Euclidean distance.
Thus the distance between a and b should be considered shorter than
that between a and c.

lower-dimensional configurations. The initial configuration in
the optimization is found through PCA, i.e. by setting f to the
identity.

Isomap
Generally, MDS techniques work with distance data as it
is given, possibly letting them undergo some monotone
transformation as described above. The Isomap algorithm
(Tenenbaum et al., 2000) differs in this respect since dis-
tances are transformed so that nonlinear dependencies in
data are taken into consideration. Assume, e.g. that data are
sampled from a spiral-shaped configuration (Fig. 1). Then
the preferable distance measure between points is perhaps not
the Euclidean distance, but the geodesic distance along the
spiral. Consequently, in Figure 1, the distance between a and b

should be considered shorter than that between a and c.
To handle this, Isomap constructs a graph G locally by

connecting each data point to its nearest neighbors. The set of
nearest neighbors of a point x̄0 is defined either as all points
x̄i within a distance d(x̄0, x̄i ) < ε, for some chosen ε > 0,
or as the K closest points, for some chosen integer K > 0.
After the graph construction, approximations dG(x̄i , x̄j ) to
the geodesic distances between points x̄i , x̄j are calculated
by finding the shortest path in the graph between x̄i and x̄j .
MDS is then applied to these approximate geodesic distances
instead of the original distances.

The ability of the Isomap algorithm to produce good approx-
imations of the geodesic distances on the underlying manifold
depends on the density of data points and the choice of K

(or ε) (Bernstein et al., 2000, http://isomap.stanford.edu).
If the parameter is too small, a single connected graph is
not achieved and distances cannot be calculated between all
sample pairs. If, on the other hand, the parameter is too large,
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shortcuts, not following the surface of the manifold, may
appear in the graph. For the K-rule, the latter situation is likely
to appear for large parameter values and low data density. It
is reasonable to assume that the dimension of the underlying
nonlinear data manifold is fairly large, thus the densities of
the presently analyzed datasets are expected to be low. With
this in mind and after trying different parameter values, we
chose to construct the graph using the K-rule with K = 2.

Projection quality
The accuracy of an MDS approximation is quantified by the
raw stress of the final point configuration. Lower stress values
correspond to a better approximation of the original distances.
To evaluate how well an individual sample x̄i is represented in
a projection one can calculate the raw stress over the distances
between x̄i and all other samples, i.e. φi = ∑

j

[
d(x̄′

i , x̄
′
j ) −

f (d(x̄i , x̄j ))
]2

. Samples with higher stress values are then less
well approximated by the projection than samples with lower
stress values.

Since the calculation of Isomap graph distances depends on
the distribution of data, it is desirable to investigate how stable
an acquired Isomap visualization is to changes in the data. This
can be done by excluding one sample at a time, constructing
Isomap graphs for each of the remaining data subsets and not-
ing for which samples the Isomap graph structure changes
drastically. Let G0 be the graph that is constructed when
the whole dataset is used and let Gi be the resulting graph
when the i-th sample is left out. For each left-out sample
we calculate δi , the Euclidean norm of changes in graph dis-
tance between points present in both G0 and Gi divided by
the Euclidean norm of graph distances in G0 between points
present in both G0 and Gi as

δi =
√∑

k,l∈J×J

[
dG0(x̄k , x̄l) − dGi

(x̄k , x̄l)
]2

√∑
k,l∈J×J dG0(x̄k , x̄l)2

,

where J = {k; x̄k ∈ Gi}. Then δi is a measure of how deformed
the Isomap graph is.

RESULTS AND DISCUSSION
Analysis of the lymphoma dataset
To analyze the lymphoma samples, at first a distance mat-
rix based on Euclidean metrics was produced from the data
obtained by Alizadeh et al. (2000). A lower-dimensional rep-
resentation of the data was obtained by performing non-metric
MDS. Without previous knowledge of subclasses within the
sample set no distinct clusters were seen. However, when
the classification used by Alizadeh et al. (2000) was applied,
it was seen that cases belonging to the same classes were
mainly located in the same regions of the projection (Fig. 2a).
In marked contrast, a similar MDS analysis of the calcu-
lated Isomap distances already produced distinct structures

when projected into two dimensions. When samples were
marked according to their classification a clear connection
between classification and structure appeared (Fig. 2b). The
two-dimensional Isomap visualization revealed three well-
separated groups, all consisting of samples previously known
to be of divergent origin. These groups were located at the
periphery of the projection; one constituting the chronic
lymphocytic leukemia (CLL) samples (yellow), one the activ-
ated blood-B samples (light blue), and a third group including
resting/activated T cells (red) and transformed cell lines
(pink). The other samples were positioned in the center of
this structure. One interesting observation, already apparent
in the two-dimensional representation, was the misclassific-
ation of one of the transformed cell lines (pink in Fig. 2b).
This case, SUDHL-5, was grouped together with the other
transformed cell lines by hierarchical cluster analysis (Aliz-
adeh et al., 2000). In contrast, the Isomap algorithm placed
this case at a distance from the transformed cell line class and
between the activated blood-B and the diffuse large B-cell
lymphoma (DLBCL) samples. Hence, this cell line seems to
be more similar to the DLBCL and the activated blood-B class,
than the other transformed cell lines. This is perhaps not sur-
prising, given the fact that SUDHL-5 is a cell line established
from a DLBCL tumor (Epstein and Kaplan, 1979), whereas
at least three of the remaining cell lines are of T-cell origin
(Tweeddale et al., 1987; Mehra et al., 2002). The third dimen-
sion revealed even further informative structures that could be
linked to previous biological knowledge (Fig. 2c and d). For
example, the central group of the samples in Figure 2b showed
an extended distribution in the third dimension, revealing
two arms extending upwards; one consisting of the follicu-
lar lymphoma group (FL, green) and the other of the DLBCL
group (blue) interconnected by two cases of germinal center
B-cells (GC B-cells; orange). When examining the FL cases
(green in Fig. 2c, d and f ) these could be separated into two
groups; one located more closely to the GC B-cells and one
more closely to the resting blood-B samples. The proxim-
ity of the latter group with the resting blood B-cells (violet)
and CLL samples (yellow), could reflect the low prolifera-
tion rates of these samples, as also suggested by Alizadeh
et al. (2000). The largest and most heterogeneous group of
tumors was the DLBCL, which formed an extended central
cluster (Fig. 2c and d). When labeling this group into those
belonging to the ‘germinal center B cell-like’ (GCBL) or
‘activated B cell-like’ (ABL) DLBCL types as described by
Alizadeh et al. (2000), the GCBL cases occupied the upper-
half of the structure (red in Fig. 2e), whereas the ABL group
preferentially occupied the lower half (green in Fig. 2e). As
expected, the GCBL group extended towards the two GC
B-cell samples (orange in Fig. 2c, d and f ), whereas the ABL
group was positioned in-between samples of normal lymph
node/tonsil (gray in Fig. 2b–d) and the activated blood B
samples (light blue in Fig. 2b–d). The proximity of the GCBL
and ABL tumors to these normal cell samples was also seen
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Fig. 2. Visualization of lymphoma microarray data. (a) A two-dimensional MDS representation of the Euclidean distances. (b) A two-
dimensional MDS representation of the approximate geodesic distances. (c) A three-dimensional MDS representation of the approximate
geodesic distances. (d) As in Figure 2c but from a different angle. Color codes in Figure 2a–d are as given in the figure. (e) DLBCL–GCBL,
red; DLBCL–ABL, green. (f) FLs, green; GC B-cells, orange; DLBCLs with t(14;18), blue. (g) Blood-B cells activated for 6 h, green;
blood-B cells activated for 24 h, red. For details, see text.

by Alizadeh et al. (2000) using hierarchical cluster analysis.
Interestingly, a close inspection of the DLBCL cases (blue in
Fig. 2f ) extending upwards towards the GC B-cell samples
(orange in Fig. 2f ), revealed that these in fact were t(14;18)-
positive as recently reported by Huang et al. (2002). Thus,
Isomap placed tumors with similar primary genetic changes,

i.e. DLBCL with a t(14;18) and FLs, which are known to
be characterized by the same translocation, in close proxim-
ity and in a continuum, extending out from the normal GC
B-cells. Hence, the data suggest that the latter two tumor types
both initially develop from GC B-cells as suggested previously
(Alizadeh et al., 2000; Küppers et al., 1999). In addition, as

877



J.Nilsson et al.

a b

c d

Fig. 3. Visualization of lung cancer microarray data. (a) A two-dimensional MDS representation of the Euclidean distances. (b) A two-
dimensional MDS representation of the approximate geodesic distances. (c) A three-dimensional MDS representation of the approximate
geodesic distances. (d) As in Figure 3c but from a different angle.

the tumor samples are organized in a linear order, originat-
ing from the GC B-cells, the observed order could possibly
reflect gene expression alterations related to tumor progres-
sion. Finally, when identifying the individual samples within
the activated blood-B samples, it was found that the upper
arm (red in Fig. 2g) corresponded to cells stimulated for more
than 24 h, whereas the lower arm (green in Fig. 2g) included
the samples stimulated for 6 h. Hence, this observation further
underscores the ability of the Isomap algorithm to differentiate
between biologically similar samples.

Analysis of the lung cancer dataset
The same analysis was applied to the lung cancer dataset
(Garber et al., 2001). First, a two-dimensional MDS analysis

was performed based on Euclidean distances, displaying an
unstructured cluster of tumor cases (Fig. 3a). When the
classification used by Garber et al. (2001) was applied, it
became evident that one-half of the structure was dominated
by adenocarcinoma (AC; red) cases and the other half by
squamous cell carcinoma (SCC; black) cases. In contrast, the
approximate geodesic distances revealed further substructures
when performing the corresponding MDS analysis (Fig. 3b).
More specifically, the SCCs were separated further from the
ACs. In addition, all but one of the small cell lung cancer
(SCLC; green) cases were located within or adjacent to the
SCC cluster. The remaining case (207-97-SCLC) was placed
together with the ACs, suggesting a larger similarity of this
tumor to that group. Further, five out of the six normal cases
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Fig. 4. Projection quality of lymphoma data. (a) Raw stress for MDS-projection of approximate geodesic distances relative to projection
dimension. (b) Locations of the two samples (OCI Ly10 and DLCL-0011) showing high individual stress values in the three-dimensional
MDS representation of the approximate geodesic distances. The representation is shown from the same angle as in Figure 2c. (c) Structure
stability analysis. Deviation i in graph distance for each left-out sample.

(blue) formed a well-separated group at the periphery. These
cases were derived from adult tissue, whereas the outlier,
located among the AC tumors, was a sample obtained from
fetal lung.

A three-dimensional MDS projection (Fig. 3c and d) based
on approximate geodesic distances displayed an even better
separation between the three major groups—ACs, SCCs and
normal cases. Furthermore, the SCCs and the SCLCs, which
clustered together in the two-dimensional visualization were
now separated. Like in the two-dimensional projection, the
ACs formed one heterogeneous group. Thus, we could not
confirm the results of Garber et al. (2001) who, using hierarch-
ical clustering, divided the ACs into three major subgroups
and a fourth group of six samples, not included in any of
these main clusters. It remains unclear whether this discrep-
ancy stems from a shortcoming in the Isomap algorithm’s
capability to identify these suggested subgroups, or from the
fact that hierarchical clustering always detects clusters in data
regardless of whether any real underlying groups are present.
Similarly, the large cell lung cancer (LCLC; violet) cases
could not be separated from the ACs. These tumors are poorly
differentiated and their expression similarities with ACs may
suggest a common tumor origin.

Projection quality
Additional Isomap projections of the lymphoma data with
dimensions from four up to nine were made. For each pro-
jection dimensionality, the overall raw stress was calculated
and plotted in a scree plot (Fig. 4a). The scree plot indic-
ated that the data would be well described by a three- or
four-dimensional projection. Raw stress values were also
calculated for individual samples, in order to evaluate the
credibility of sample locations. Two samples, OCI Ly10 and

DLCL-0011, had a substantially higher stress than the rest and
these were marked in the visualization (Fig. 4b). However,
none of these samples were crucial for the detailed biological
interpretations made. In order to evaluate the robustness of
the structure, 96 Isomap graphs were constructed, excluding
one sample at a time. For each sample subset, the distance
deviations in the Isomap graph were calculated (Fig. 4c). For
the studied dataset and the used Isomap parameter settings,
the samples with high graph distance deviations are appar-
ently important in the calculation of graph distances and noise
disturbances on these samples have a relatively large impact
on the graph structure. Since there is no knowledge of the
underlying data manifold, we cannot tell to what degree their
positions in gene expression space are ‘biologically correct’
or if they have been dislocated by noise.

Raw stress analysis was performed also for the lung cancer
data. A scree plot showed that a three- or four-dimensional
projection was appropriate. To evaluate the goodness of fit for
individual samples, individual raw stress values were calcu-
lated. The distribution of these values was more homogeneous
than the corresponding distribution for the lymphoma data in
that it did not contain any obvious outlier values.

CONCLUSIONS
In this work, two alternative ways of measuring dissimilarities
or distances between gene expression profiles were com-
pared. Visualizations were created with both Euclidean and
approximate geodesic distances as inputs in MDS. The results
showed that the approximate geodesic distance measure gave
rise to more informative visualizations on the investigated
lymphoma and lung cancer data. Even without supervised
filtering of the genes with respect to class differentiation,
e.g. by creating a weighted gene list (Luo et al., 2001),
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diagnostic classes appeared as discernible units. That the
approximate geodesic distance measure seems more inform-
ative could be taken as an indication that tumor samples are
distributed on a nonlinear manifold in gene expression space,
which in turn would imply that functional relations between
genes are nonlinear. Furthermore, the fact that the approxim-
ate geodesic distances correspond to the sum of incremental
steps between slightly different tumor samples may open the
possibility to capture aspects of tumor progression in the form
of microarray data. More generally, the results demonstrate
the benefit and importance of taking nonlinearities in gene
expression data into account. To conclude, we anticipate that
the conceptual framework of geodesic distances will prove
useful in both practice and theory for the analysis of gene
expression data.
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