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Abstract
Background: Molecular signatures are sets of genes, proteins, genetic variants or other variables
that can be used as markers for a particular phenotype. Reliable signature discovery methods could
yield valuable insight into cell biology and mechanisms of human disease. However, it is currently
not clear how to control error rates such as the false discovery rate (FDR) in signature discovery.
Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult
to replicate in independent studies, casting doubts on their reliability.

Results: We demonstrate that with modern prediction methods, signatures that yield accurate
predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail
to replicate in independent studies due to limited statistical power. Thus, neither stability nor
predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a
general statistical hypothesis testing framework that for the first time provides FDR control for
signature discovery. Our method is demonstrated to be correct in simulation studies. When
applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR
in three cases, while two data sets yielded no significant findings.

Conclusion: Our approach enables reliable discovery of molecular signatures from genome-wide
data with current sample sizes. The statistical framework developed herein is potentially applicable
to a wide range of prediction problems in bioinformatics.

Background
Molecular signatures are sets of genes, mRNA transcripts,
proteins, genetic variants or other variables that can be
used as markers for a particular cell or tissue phenotype,
such as a cancerous or diabetic state. Signatures have a
two-fold purpose: they may be useful for disease diagnosis
or risk assessment (prediction), but they may also impli-
cate molecules not previously known to be involved in the
underlying molecular pathology (discovery), as illustrated
in Figure 1A. Signature discovery differs from simple cor-

relation or differential expression testing in that molecu-
lar signatures may account for multivariate effects and
consists only of the variables most directly correlated with
given phenotype. The signature approach has been espe-
cially popular for cancer diagnosis based on gene expres-
sion profiling, and several studies have proposed
signatures for specific cancer types [1-5]. A prominent
example is the breast cancer signature discovered by van't
Veer et al. [4], which is currently being validated in a clin-
ical trial [6].
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Unfortunately, existing computational approaches often
fail to distinguish between the different objectives of pre-
diction and discovery. If molecular signatures are to be
used for discovery, then the primary objective is to control
the false discovery rate (FDR) with respect to the optimal
(true) signature. On the other hand, if the end goal is an
accurate predictor, then the FDR of the gene signature is
not important in itself. However, it has hitherto not been
possible to directly address FDR control, since an opera-
tional definition of the optimal signature (a "gold stand-
ard") has not been available. Therefore, current methods
for signature discovery resort to optimizing prediction
accuracy, implicitly assuming that the FDR is thereby kept
reasonably low, even though there is no a priori reason to
assume that this is the case. Recently, the stability of a sig-
nature, that is, the expected overlap between signatures
derived from replicated experiments, has been suggested
as an alternative quality measure [7,8]. Signatures derived
from cancer gene expression data have been found to be
unstable, raising concerns that existing signature discov-
ery methods may not be sound [9,10]. While the stability
measure seems intuitively reasonable and cleverly avoids
the gold standard problem, it has not been shown that
low stability actually indicates high FDR.

In this paper, we build upon a recently discovered opera-
tional definition of the optimal signature to study the
actual FDR in signature discovery. First, we demonstrate
that high FDR can occur even with very accurate predic-
tors. Therefore, current methods for signature discovery
that focus on optimizing prediction accuracy offer no
means of controlling the FDR. Second, we show that sig-
natures can be highly unstable even when the FDR is kept
low. Thus, reliable signature discovery may be possible in
spite of the recent reports of unstable signatures in cancer
[9,10]. Third, we propose a novel hypothesis testing pro-
cedure based on our definition of the optimal signature
that for the first time directly addresses signature FDR. We
show that our method achieves FDR control on simulated
data. Application to well-known cancer data sets uncovers
three novel molecular signatures for leukemia, colon and
breast cancer.

Results
The optimal signature
For simplicity, we will consider a two-class prediction set-
ting throughout, although the methods could be general-
ized to other prediction problems as well. A predictor is
then a function g : , where we take  = !n and 
= {-1, +1}. The accuracy of a predictor g is 1 minus the

Signature discoveryFigure 1
Signature discovery. Molecular signatures (1) are markers for a particular cell or tissue phenotype. Signatures are discov-
ered from a given set of molecular profiles (e.g., gene expression profiles) together with phenotype labels (2). Signatures have 
dual uses, both as predictive models (3) and for discovery of molecular mechanisms (4). While it is well-known how to assess 
predictive accuracy (5), the method proposed herein is the first to control signature FDR (6), enabling reliably discovery.
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probability of error or risk R(g) = P(g(X)  Y). An optimal
predictor, denoted g* is one with maximal accuracy. An
optimal signature can be defined as a minimal set of vari-
ables S* such that the optimal predictor obtained using
only these variables is at least as accurate as any predictor
obtained with any other set, that is,

where gS denotes a predictor on the subspace S of 

corresponding to the variable set S. Unfortunately, this
criterion does not yield a unique S* in general, and there
are examples of data distributions such that no tractable
(polynomial-time) algorithms exist for computing S*
[[11], pp. 562]. Consequently, most research has focused
on heuristic algorithms for discovering approximate sig-
natures with near-optimal prediction accuracy [12].

While this approach has been largely successful at attain-
ing good predictive accuracy, the lack of a "gold standard"
has rendered direct evaluation of error rates for signature
discovery algorithms impossible. To address this prob-
lem, we have recently shown [13] that using a mild restric-
tion on the class of data distributions, the set S* becomes
unique and can be expressed as

That is, S* consists precisely of the variables i such that the
error probability of the optimal predictor g* increases
when i is removed. The required restriction is that the data
density f (x) is everywhere strictly positive. This condition
is satisfied by nearly all commonly used statistical models,
including the exponential family, and we believe that it is
reasonable for biological data. A formal proof of the cor-
rectness of (2) is given in Additional File 1.

Note that S* may be quite different from the set of varia-
bles that are marginally correlated with the phenotype
(e.g., differentially expressed genes). This is because some
correlated variables may be "redundant" for prediction:
while these do contain information about the phenotype,
that information is also present in other variables, so that
the redundant variables are excluded from S*. Indeed, it
can be proved that S* only contains variables Xi that are
conditionally dependent on Y regardless of what other
variable set is conditioned on [13]. In this sense, S* con-
stitutes the variables "directly" correlated with Y. Moreo-
ver, some variables may be predictive only when
considered together with certain other variables in a mul-
tivariate fashion, and thus S* may contain variables that
are not detectable by standard univariate methods [14].

The simple form (2) immediately suggests a general, lin-
ear-time, asymptotically correct algorithm for discovering
S* from data, as described elsewhere [13]. Here, we make
use of the fact that (2) permits S* to be calculated for any
given data distribution, thus providing the gold standard
required for evaluating signature discovery methods and
developing hypothesis testing procedures.

Accurate predictions despite high signature FDR
First, we tested whether high prediction accuracy implies
a low false discovery rate with respect to S*. We performed
a simulation study on a simple two-class prediction prob-
lem using a multivariate normal distribution with n = 1,
000 variables, of which 10% were in S* (see Methods for
details). In each run, a signature S was chosen to achieve
a given power and FDR with respect to S*, whereafter a
Support Vector Machine (SVM) classifier was trained on a
sample from the corresponding subspace of the data dis-
tribution. We found that FDR as high as 50% did not
degrade predictive accuracy discernably, provided that sta-
tistical power was sufficient (Figure 2). Thus, prediction
accuracy is not a valid measure of the reliability of a signa-
ture in terms of false positives.

The likely reason for this behavior is that modern predic-
tive methods such as the SVM have internal mechanisms
for suppressing noise (regularization). They are therefore

∀ ∀ ≤∗
∗S g R g R gS S S: : ( ) ( ), (1)

S i R g R gi i n n
∗

− +
∗ ∗= >{ : ( ) ( )}.{ ,..., , ,..., } { ,..., }1 1 1 1 (2)

Good predictive accuracy despite high FDRFigure 2
Good predictive accuracy despite high FDR. Probabil-
ity of prediction error for the Support Vector Machine (gray 
level) as a function of signature false discovery rate (FDR) 
and statistical power (fraction of true positives). Nearly hori-
zontal level curves indicate weak dependence on FDR.
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rather insensitive to false positives within the signature.
For prediction purposes, it is more important that the sig-
nature does contain some true positives genes, while a
large fraction of irrelevant genes may be tolerated without
degrading predictive accuracy. As a consequence, discov-
ering signatures by optimizing prediction accuracy should
not be expected control FDR, as we will further demon-
strate below.

Unstable Signatures with Low FDR
To investigate the relation between signature stability and
FDR, we conducted a second simulation experiment,
again with n = 1, 000 variables. Here, each variable was
conditionally independent of all others within each class,
so that S* has the form

and can be discovered by simply testing the marginal dis-
tributions for a nonzero mean difference. For this we used
Student's t-test with the Benjamini-Hochberg correction
for FDR control, since the t-test has optimal power in this
case and the FDR can be controlled exactly [15]. Neverthe-
less, we found that the resulting signatures can be very
unstable (Figure 3). For small effect sizes where power was
low, stability was also low, despite a stringent FDR. Con-
versely, with strong effects and high power, stability was
high, even with a high FDR. Also, the dependence of sta-
bility on FDR was different between low- and high-power
regimes, indicating that the relationship between these
measures is complicated and data-dependent. Clearly,
unstable signatures need not contain many false positives.

In the low power regime, the situation is rather that small
signatures are being selected more or less at random from
a large set of true positives, resulting in small overlap
between experiments (Figure 3). Hence, in situations
where many genes are weakly associated with a given phe-
notype and power is limited, it is simply not feasible to
reproduce molecular signatures in independent experi-
ments, even with the most stringent and correct methods.
This implies that the lack of reproducibility observed for
cancer gene expression signatures [7,8] is not necessarily
problematic. The same mechanism may also account for
the low reproducibility of whole-genome association
studies of complex diseases [16], where many genes are
believed to be weakly associated with a given disease trait.

A Statistical Framework for Signature Discovery
The above results show that neither predictive accuracy
nor stability are relevant measures of signature FDR. To
directly control false discovery rates for signature discov-
ery, we instead propose a general method for directly test-
ing the hypothesis i  S* for each variable. From equation
(2) it follows that a generally applicable test statistic is

where  is an estimated error probability, for example a
cross-validated error estimate. This statistic is asymptoti-
cally correct for any data distribution, that is, with a suffi-
ciently large sample size, the globally optimal solution
will always be found [13]. However, the sample sizes
required for reasonable performance could be very large,

S i x Y X Yi i
∗ = = + ≠ = −{ : [ | ] [ | ]},1 1

T R g R gi i i n n= −− +
∗ ∗ˆ( ) ˆ( ),{ ,..., , ,..., } { ,..., }1 1 1 1

R̂

Signatures with low FDR may be unstableFigure 3
Signatures with low FDR may be unstable. Left, statistical power vs. effect size (arbitrary units) for varying FDR. Middle, 
stability, defined as the average normalized overlap between two signatures vs. effect size and FDR. Right, illustration of how 
power affects stability.
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since the error rate estimate  is uncertain. For particular
types of predictors, it is therefore preferable to develop
specialized statistics. As we are interested in applications
to gene expression data, where simple prediction rules
tend to work well, we here consider linear classifiers of the
form g(x) = sign ( iwixi). It is easy to see that in this case,

equation (2) reduces to

where  denote the weights of the optimal classifier.

Assuming that the classifier used is consistent, we have

that [wi]   as sample size increases. Hence, in this

case we can equivalently test the null hypothesis [wi] =

0. More complicated parametric forms such as polynomi-
als in xi could be used in a similar way, although the

number of weights would increase accordingly.

Since the statistical distribution of wi is unknown, we used

a bootstrap technique to test whether [wi] = 0. By sam-

pling with replacement from the given data set and re-
training the classifier on each sample, we obtain B vectors

. For each variable i, the corresponding

 are then used to obtain a bootstrap confidence

interval for wi. This interval is inverted to obtain a boot-

strap p-values pi for each variable i (that is, the null

hypothesis is rejected at level  if the (1 - ) confidence
interval does not cover zero). Importantly, this procedure
preserves the full dependency structure of the data distri-
bution. Finally, FDR control was performed using the
Benjamini-Hochberg procedure [15].

Simulation Experiments
To validate our method, we conducted simulations using
two-class data with 1, 000 variables and 100 samples. To
model the variable dependencies often present in gene
expression data, we used a class-conditional multivariate
Gaussian distribution with precision matrices generated
randomly as previously described [17]. For this distribu-
tion class, it is straightforward to calculate S* (see meth-
ods). We chose sampling parameters so that S*
constituted approx. 200 variables on average (since S*
depends on the randomly chosen covariance matrix, its
size fluctuates somewhat). We evaluated three linear clas-
sification methods: the Support Vector Machine (SVM)
[18], the Kernel Fisher Discriminant (KFD) [19] and the
Weighted Voting (WV) algorithm of Golub et al. [2]. Since
the results were highly similar for all of these, we here only
present results for the SVM (see Additional File 2 for KFD

and VW). For each learning method and across a range of
effect sizes, our bootstrap test produced correct p-values,
while power increased with increasing effect size (Figure
4A). This demonstrates that the bootstrap test is sound.
After correcting for multiplicity using the procedure of
Benjamini and Hochberg [15], we verified that our
method did control FDR at nominal levels (Figure 4B).
Power was limited however, especially for predictors with
low accuracy. We therefore expect that for high-dimen-
sional data, predictors must be quite accurate in order to
yield reliable signatures. We also verified that the power of
our bootstrap method approaches 1 as sample size
increases, as one would expect (see Additional File 2).
However, power depends on a number of distribution
properties, and it is difficult to make predictions about the
sample sizes required in practise from simulations.

We repeated the simulation study using the popular
Recursive Feature Elimination (RFE) method [20] to dis-
cover signatures. While this method did produce accurate
predictive models (data not shown), we observed that
FDR was high (above 40% in this experiment) and
depended on the effect size in an unpredictable manner.
Indeed, optimizing prediction accuracy by RFE does not
guarantee a reliable signature. High FDR was also
observed when choosing the signature S as a fixed-size
"top list" by the rank according to the wg statistics (Figure
4D). We have also previously observed high FDR for other
methods that optimize the signature for prediction accu-
racy [21]. Often, these methods attempt to include more
variables in the signature when the prediction problem is
harder, thus sacrificing FDR control for better predictive
accuracy. Conversely, for less difficult prediction prob-
lems, many true positives may be removed from the sig-
nature because they do not influence predictive power
discernably.

Application to Cancer Gene Expression
We applied our method together with the SVM prediction
method to analyze a number of publicly available cancer
gene expression data sets (Table 1). For the data sets by
van't Veer [4] and Wang [5] where the SVM had poor accu-
racy, the bootstrap method did not call any genes signifi-
cant. Note that these signatures may still be useful for
prediction; the fact that no genes are called significant
merely demonstrates that it is not possible to ascertain
which genes are responsible for the predictive accuracy.
For the remaining data sets, we found that higher predic-
tive accuracy tends to result in greater power, in accord-
ance with our simulation results. The largest signature,
obtained for the data set by Golub et al. [2], contained
over 500 genes at 5% FDR (see Additional Files 3, 4 and 5
for complete gene lists).

R̂

S i wi
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Controlling error rates for gene signaturesFigure 4
Controlling error rates for gene signatures. A: Realized level and power for the bootstrap test at 5% nominal level. B: 
Realized FDR, power and stability for signatures selected by the bootstrap test after Benjamini-Hochberg (BH) correction. 
Here the nominal FDR was set at 5%. C: Same as (B) for signatures selected by recursive feature elimination (RFE). D: Same as 
(B) for signatures selected as the top 200 genes. Acc, classifier accuracy.

Table 1: Results on cancer gene expression data

Data set (ref.) n MCF,% CV,% TA,%(ref.) BS BS0 RFE RFE0 DE

Golub (2) 72 32 97.0 ± 4.2 99.3 (28) 537 0 35 154 1007
Singh (4) 136 43 92.6 ± 3.0 81.1 (27) 99 0 48 312 3807
Alon (1) 62 35 81 ± 7.2 97.9 (29) 19 0 55 94 303
Wang (6) 286 37 65 ± 4.3 N/A 0 0 261 1250 106
van't Veer (5) 97 47 62 ± 8.4 N/A 0 0 42 153 1

Results are ordered by prediction accuracy. n, number of samples; MCF, minority class frequency; CVA, balanced cross-validated prediction 
accuracy, mean ± std.dev.; TA, balanced prediction accuracy of bootstrap signature on an independent test set (reference given in parentheses); BS, 
significant genes using the bootstrap with SVM at 5% FDR; RFE, genes chosen by recursive feature elimination; BS0 and RFE0, gene chosen by the 
bootstrap and RFE methods respectively on randomized data. DE, differentially expressed genes using the t-test at 5% FDR.
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As a negative control, we applied our bootstrap test on
randomized versions of each original data set where the
phenotype values were randomly permuted, correspond-
ing to the complete null hypothesis. This yielded zero sig-
nificant genes in each case, confirming that we do not
obtain spurious findings. In contrast, when applying the
RFE method to randomized data, we consistently
obtained even larger signatures than with the real data
sets. We also tested each signature on an independent data
set, confirming that the signatures are indeed predictive.

For comparison, we performed a conventional differential
expression test for each data set using the t-test statistic
with the Benjamini-Hochberg correction (Table 1). This
identified a substantially larger set of genes than the boot-
strap method – in one case, more than half of the genes
tested were significant. This illustrates the ability of the
gene signature approach to distinguish the genes directly
related to the phenotype variable from a much larger set
of differentially expressed genes: many of the latter turn
out to be "redundant" for prediction, meaning that they
are correlated with the phenotype only indirectly, through
genes in S*.

Discussion
Molecular signatures offer a systematic way to focus on
the genes most directly associated with a given phenotype,
and may yield valuable insights into the underlying bio-
logical system. It is therefore unfortunate that the reliabil-
ity of signatures per se is poorly understood. Since no gold
standard for signature discovery has been available, vali-
dation of discovered signatures often amounts to mining
the scientific literature for documented connections
between the phenotype being studied and the elements
(genes) of a hypothesized signature. However, this
approach is necessarily biased and rather speculative: it is
by no means clear that a gene should be included in a pre-
dictive signature simply because it is somehow "related"
to the phenotype. For example, approximately 25% of all
known human genes have some documented relation to
cancer [14], but it is unlikely that all of these should be
included in an optimal signature for cancer prediction.

To address this issue, we have herein developed a statisti-
cal method for signature discovery based on a formal def-
inition of the "gold standard" optimal signature. This
allows for assessing the reliability of signatures without
detailed knowledge of the biological system. To our
knowledge, our method is the first to provide statistical
guarantees for the reliability of molecular signatures,
although we note that random forests are similar to our
bootstrap testing scheme and also give indications of what
variables are important for prediction.

For two of the gene expression data sets investigated,
including the well-studied cancer data by van't Veer et al.
[4], our method did not call any genes significant, indicat-
ing that these data sets did not contain sufficient informa-
tion to uncover gene signatures at the specified false
discovery rate (5%). We emphasize that this does not nec-
essarily mean that it is infeasible to construct predictive
models for these studies, but merely that it is difficult to
determine which genes are responsible for the predictive
accuracy. In this sense, discovering reliable gene signa-
tures can be a harder problem than obtaining accurate
predictors. Prediction and signature discovery are two sep-
arate problems, and must be treated differently.

For simplicity, we have here restricted our analysis to two-
class problems and linear predictors. However, the pro-
posed method is applicable to any learning method for
which a reasonably well-powered statistic can be derived
to test the signature null hypothesis. Continuous pheno-
type variables can easily be addressed by substituting the
classification methods used herein for regression meth-
ods, such as ridge regression [22] or the relevance vector
machine [23]. General methods for handling non-linear
dependencies have also been described [13,24], although
it is unclear whether signature discovery from gene expres-
sion data would benefit from these more complex models
with currently available sample sizes.

Some technical issues remain to be considered. First, test-
ing the null hypothesis [wi] = 0 is technically correct

only in the limit of large samples where [wi]  .

While our simulation studies indicate correct behavior for
the sample sizes tested, this issue warrants further study.
Second, bootstrap hypothesis testing is known to provide
only approximate p-values, satisfying the inequality P(p 

)   + (1/l), where l is the sample size [25]. While the
additional term (1/l) was negligible in our simulations,
this should be verified in each particular case before
applying bootstrap testing. A possible future improve-
ment could be to estimate this term from simulations and
correct the bootstrap p-values accordingly, thereby "cali-
brating" the method.

Conclusion
As we have shown, neither predictive accuracy nor stabil-
ity constitute valid measures of FDR for molecular signa-
tures. Indeed, highly accurate predictions may be
obtained despite an FDR as high as 50% (Figure 2), while
in situations where many weak effects are present and sta-
tistical power is low, signatures can be unstable at an FDR
as low as 2.5% (Figure 3). This analysis explains at least
some of the difficulties with reproducing cancer gene
expression signatures [7,8] and possibly also the similar

wi
∗
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reproducibility problems of recent association studies in
complex diseases [16]. Moreover, it suggests that this lack
of reproducibility need not be problematic.

We have developed and validated a statistical hypothesis
testing framework that for the first time provides false dis-
covery rates control for signature discovery. In application
to cancer gene expression, we have showed that reliable
signature discovery is feasible with currently available
sample sizes. Many important problems in bioinformatics
are prediction problems and may benefit from reliable
signature discovery. We therefore hope that our method
will be of general interest.

Methods
Signature stability is defined as the normalized expected
overlap between two signatures S, S' derived from inde-
pendent, replicate experimental data sets,

where  denotes statistical expectation. The stability is
always between 0 (no expected overlap) and 1 (complete
overlap).

Simulations were performed with data drawn from two-
class multivariate Gaussian distributions f (x | y) = N (y ,

) with equal class frequencies, covariance matrix  inde-
pendent of the class (phenotype) variable y and varying
degrees of class separation to achieve different effect sizes.
Results were averaged over 100 randomly selected Gaus-
sian distributions. for each parameter setting tested. We
measure the effect size of the resulting prediction problem
by the expected SVM accuracy. Here the accuracy was com-
puted exactly for each SVM from the data density: for any
given  and , a separating hyperplane with normal vector
w has classification accuracy

where  is the error function.

To evaluate signature error rates, we used the fact that for
f (x | y) = N (y , ), the optimal separating hyperplane has
normal vector w* = -1 , and so the optimal set S* can be

determined as the nonzero components  of this vector.

For hypothesis testing, we used a parametric bootstrap
with B = 50 repetitions, fitting a Gaussian distribution N

( i, i) to the observed  prior to computing

two-sided p-values. In preliminary studies, the difference
between this method and a nonparametric bootstrap with
B = 1000 was negligible, while the parametric version is
computationally more efficient since a much smaller B
can be used. The SVM [18], KFD [19] and VW [2] methods
were implemented as previously described. In all experi-
ments, the SVM C-parameter and the KFD regularization
parameter were set to 1. Recursive Feature Elimination
(RFE) was performed as previously described [20], using
the radius-margin bound [26] as accuracy measure and
removing 20% of the genes in each iteration.

Microarray data sets [1-5] were preprocessed by removing
genes displaying small variation, keeping the 5,000 most
variable genes in each case, except for the data sets by van't
Veer et al. [4] and Alon et al. [1] which were preprocessed
in a similar fashion by the original authors. Genes were
normalized to zero mean and unit standard deviation
prior to SVM training, following standard practise for ker-
nel methods. Independent test data sets [27-29] were nor-
malized in the same fashion. No other preprocessing was
done prior to classifier training or testing.

Since many data sets were had low minor class frequencies
are (Table 1), performance was evaluated with the bal-
anced accuracy measure

where Acc+ and Acc- are the accuracy measures for each
class. Except for the independent test sets, these were
measured by cross-validation, where in each round a ran-
domized set consisting of 2/3 of the samples was used for
training, and the remaining 1/3 was used for testing. Splits
were balanced so that class frequencies were equal
between training/test data. Mean and standard deviation
of the balanced test error over 50 cross-validation repeti-
tions are reported.
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