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ABSTRACT
Motivation: Localizing protein binding sites within genomic DNA is
of considerable importance, but remains difficult for protein famil-
ies, such as transcription factors, which have loosely defined target
sequences. It is generally assumed that protein affinity for DNA
involves additive contributions from successive nucleotide pairs within
the target sequence. This is not necessarily true, and non-additive
effects have already been experimentally demonstrated in a small
number of cases. The principal origin of non-additivity involves the so-
called indirect component of protein–DNA recognition which is related
to the sequence dependence of DNA deformation induced during com-
plex formation. Non-additive effects are difficult to study because they
require the identification of many more binding sequences than are
normally necessary for describing additive specificity (typically via the
construction of weight matrices).
Results: In the present work we will use theoretically estimated bind-
ing energies as a basis for overcoming this problem. Our approach
enables us to study the full combinatorial set of sequences for a vari-
ety of DNA-binding proteins, make a detailed analysis of non-additive
effects and exploit this information to improve binding site predictions
using either weight matrices or support vector machines. The results
underline the fact that, even in the presence of significant deformation,
non-additive effects may involve only a limited number of dinucleotide
steps. This information helps to reduce the number of binding sites
which need to be identified for successful predictions and to avoid
problems of over-fitting.
Availability: The SVM software is available upon request from the
authors.
Contact: anirvans@physics.rutgers.edu

1 INTRODUCTION
Identifying protein binding sites within DNA sequences remains
a major goal of genomic annotation. In the case of transcription
factors, identification of their binding sites is a vital step towards an
understanding of transcription regulation networks. Unfortunately,
transcription factors often have multiple roles and bind to many
different sequences, making it difficult to describe their binding pref-
erences with a simple consensus sequence or even with a degenerate
consensus (Stormo, 2000). Weight matrices, whose entries reflect
the observed base frequencies at each nucleotide position for a given
set of binding sites [also termed position weight matrices (PWM) or

∗To whom correspondence should be addressed.

position specific score matrices (PSSM)], are able to partially over-
come such limitations, but they still suffer from the assumption that
the overall binding affinity of a given protein is made up of additive
contributions from interactions at each nucleotide position within the
binding site. The same limitation applies to simple hidden Markov
models (HMM), which represent a possible alternative to weight
matrix approaches (Stormo et al., 1982). This assumption need not
be valid and indeed a number of studies of specific proteins, not-
ably involving the Mnt repressor (Man and Stormo, 2001), and the
wild-type and variants of the EGR1 Zn-finger protein (Bulyk et al.,
2001), have shown that correlations do exist between neighboring
nucleotide positions.

It is possible to take into account such correlations by various
extensions of the methods described above, e.g. by replacing mono-
nucleotide PWM representations with those based on dinucleotides
or longer sequence elements, or alternatively, by adding hidden
layers to HMM formulations (Benos et al., 2002; Stormo, 2000).
Support vector machines (SVMs) also offer an interesting route
toward a more generalized coding of binding site information (Djord-
jevic et al., 2003). However, the main hindrance to work in this area
remains the lack of experimental data. For most transcription factors,
only a few binding sites have been experimentally characterized
(Wingender et al., 2001). Although this situation is likely to change
with the development of new high-throughput techniques, such as
DNA microarrays (Bulyk et al., 1999, 2001), genomic SELEX
(Gold et al., 1997), the so-called chip–chip approach (microarray-
based chromatin immunoprecipitation assays) (Ren et al., 2000) or
SELEX SAGE (Roulet et al., 2002), we are not yet in a position to
make a comprehensive analysis of correlation effects. This is par-
ticularly true if we wish to analyze correlation within a complete
binding site (typically containing 10–20 nt positions), rather than
limiting the study to two or three adjacent nucleotides, as in the
pioneering experimental studies of Mnt and EGR1 cited above. We
would like to get some idea about the minimal number of known
sites required for obtaining good classifiers of binding sites. It is
easy to convince oneself that the existing datasets are too small for
training reliable classifiers with dinucleotide correlations built in.
However, that exercise is not enough to suggest how many more sites
are needed, a crucial piece of information for further experimental
endeavor.

We propose to overcome this difficulty by using a theoretical
approach to obtain the necessary binding site data. Our approach
uses a recently developed methodology for analyzing protein–DNA
recognition mechanisms termed ADAPT (Lafontaine and Lavery,
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2000a,b; Paillard and Lavery, 2004). ADAPT allows the principal
sequence-dependent components of the protein–DNA complexation
energy to be calculated sufficiently fast that it becomes possible to
scan the full combinatorial set of potential binding sequences for a
given protein. Since protein binding sites typically range from 10
to 20 nt positions, this implies studying 410–420 (i.e. ∼105–1011)
sequences. Two of the present authors have already shown that by
extracting the set of sequences corresponding to the most stable
complexes (typically those within 5 kcal/mol of the best sequence),
we can generate a simple weight matrix that can be compared with
experimental results. Results published recently on 18 different pro-
teins (Paillard and Lavery, 2004), suggest that ADAPT yields results
which are very close to experimental consensus sequences.

The energy calculations performed by ADAPT take into account
the two terms within the binding free energy which are likely to be
the most sequence dependent, namely, the protein–DNA interaction
energy (Eint) and the DNA deformation energy (Edef ), i.e. the energy
necessary to deform a free DNA segment to the structure it adopts
when bound to the protein. It is possible to equate these two energy
terms to the so-called direct and indirect components of protein–
DNA recognition: the protein–DNA interaction energy accounts for
‘direct’ recognition due to the formation of specific hydrogen bonds,
steric contacts or other interactions at the interface between the two
macromolecules, while the DNA deformation energy accounts for
the ‘indirect’ recognition linked to the ease with which the protein
can induce the bound conformation of the double helix.

Until recently, direct recognition was thought to dominate protein
binding specificity, except in cases where binding induced severe
DNA deformation, a good example being the TATA-box binding
protein (TBP), which must open up the minor groove and bend the
double helix away from the approaching protein in order to establish
a large binding interface (Kim et al., 1993; Nikolov et al., 1996). It
has been shown experimentally that prebending DNA could enhance
TBP binding (Starr et al., 1995) and also that binding was related
to the flexibility of the targeted sequences (Singer et al., 1990). The
results obtained with ADAPT confirm the importance of the indirect
term (Edef ) for TBP, and also suggest that this term plays a significant
role in determining the specificity of almost all the protein complexes
studied (Paillard and Lavery, 2004).

This surprising result is particularly interesting in the light of ana-
lyzing non-additive effects in protein binding since these effects
are expected to be linked to protein-induced DNA deformation
and to reflect changes in the interactions between neighboring
nucleotide pairs (base stacking energies, in particular) following
complexation. Since the formulation of ADAPT ignores sequence-
dependent conformational changes in unbound DNA (by using a
single, sequence-averaged B-DNA reference conformation) and also
uses a pairwise additive force field for its energy calculations, cor-
relations within these theoretical results can indeed arise only from
the DNA deformation term. It should be added, however, that
correlation can only arise for nucleotide positions where there is
some degeneracy in the sequence preference, therefore significant
DNA deformation is a necessary but an insufficient condition for
correlation to occur.

In the present study, we look at the correlation effects on the
binding specificity of some prototypical protein–DNA complexes
and also investigate how effectively correlation can be incorpor-
ated into binding site prediction methods. The fact that ADAPT data
agree well with the available experimental results for the complexes

we study, encourages us to believe that although we are dealing
with a theoretical model of binding affinity, the results should be
close to those which will become accessible in the future using
high-throughput experimental techniques.

2 METHODOLOGY

2.1 Calculating protein–DNA binding energies
Binding energies as a function of DNA base sequence were calculated using an
all-atom representation of the complex derived from available high-resolution
crystallographic data (see below). The protein–DNA interaction energy (Eint)

and the DNA deformation energy (Edef ), corresponding to the passage from
a sequence-averaged B-DNA conformation to the bound conformation, were
calculated using the AMBER parm98 force field (Cheatham et al., 1999).
A distance-dependent dielectric function with a sigmoidal form was used to
represent solvent damping of electrostatic interactions (Hingerty et al., 1985;
Lavery et al., 1995). A detailed description of the ADAPT methodology can
be found in Paillard and Lavery (2004).

Present tests were carried out on three protein complexes: the human TBP
(Nikolov et al., 1996), the endonuclease BamH1 (Newman et al., 1995) and
the bZIP protein GCN4 bound to its ATF/CREB site (Keller et al., 1995).
These three complexes are henceforth referred to as TBP, BamH1 and GCN4,
respectively. In each case, the binding energy was calculated for the full com-
binatorial set of base sequences within the DNA fragment employed. Those
sequences falling within 5 kcal/mol of the energy of the optimal sequence
were considered to constitute potential binding sites. Sequences with energies
between 5 and 10 kcal/mol were considered to constitute a set of non-binding
sites. For TBP, 881 binding sites and 6515 non-binding sites were selected
using these criteria. Similarly, for BamH1 there were 368 binding sites and
1582 non-binding sites and, for GCN4 there were 476 binding sites and 4091
non-binding sites.

It may be noted that, it is possible to convert the number of sequences
selected by the energy cutoff into an effective binding site length (expressed
as a number of base pairs). This length, denoted by Ltot , is simply obtained as
Ltot = N − (log M/log 4), where N is the total length of the DNA fragment in
the complex studied and M is the number of sequences with energies less than
the cutoff energy. This expression can be derived by noting that N base pairs
are associated with 4N possible base sequences. Therefore, if M sequences
fall below the cutoff, it is equivalent to B base pairs remaining undefined after
protein binding (where 4B = M). Given B = log M/log 4, subtracting this
number from N gives the effective length of the protein binding site (Paillard
and Lavery, 2004).

2.2 Analyzing correlation between nucleotide
positions

We will limit our analysis to the correlation between neighboring nucleotide
positions within the protein binding site. Any such correlation will show up
as the difference in the probability of given dinucleotide base combinations
compared with the sum of the corresponding mononucleotide bases. This can
be calculated as a change in entropy

�Si,i+1 = Si,i+1 − (Si + Si+1),

where the corresponding mononucleotide and dinucleotide entropies are
defined as:

Si = −
∑
α

piα log2(piα)

Si,i+1 = −
∑
α

∑
β

piα,(i+1)β log2(piα,(i+1)β ).

Herepiα is the probability of baseα appearing at position i in the set of binding
sequences selected using their binding energies computed with ADAPT and
piα,(i+1)β is the probability of base α appearing at position i followed by
base β in position i + 1. Note that α and β are indices running over the four
nucleic acid bases (A, C, G and T) and that, 0 ≤ Si ≤ 2 and 0 ≤ Si,i+1 ≤ 4.
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We also introduce two other overall measures quantifying the correlation,
namely the binding site lengths, Lm and Ld. These are related to the length
Ltot defined above, but are calculated, by assuming that there is no correlation
between neighboring sites or that only nearest-neighbor correlation exists.

Lm = l +
l∑

i=1

∑
α

piα log4(piα)

Ld = l +
∑
α

p1α log4(p1α) +
l−1∑
i=1

∑
αβ

piα,(i+1)β log4

(
piα,(i+1)β

piα

)
.

Note that, Ltot measures the binding site length taking into account cor-
relations between any nucleotides within the target oligomer. By definition
Lm ≤ Ld ≤ Ltot . These three lengths yield a quantitative measure of
correlation effects.

2.3 Extracting weight matrix parameters from
binding site data

A popular method of characterizing binding motifs is the information theor-
etic weight matrix. Given a set of sequences to which a given protein binds,
a simple mononucleotide weight matrix can be constructed and used to score
a chosen sequence σ as follows (Stormo, 2000):

Wm(σ ) = −
l∑

i=1

∑
α

ωiασiα − C0,

where Wm(σ ) is the negative of the ‘information score’ of the sequence σ (of
length l) and σiα is 1 if the i-th base is of type α and 0 otherwise. The ωiα are
given by log2(piα/pα), where piα is the probability of base α appearing at
position i in the set of binding sequences and pα is the background probability
of finding the base α. A constant shift, C0, is chosen so that the best binding
site scores zero (poorer sites having positive scores).

The information theoretic weight matrix has been formulated as a
maximum-likelihood estimation of parameters, by assuming that the prob-
ability of binding to a sequence is proportional to the exponential of the
information score. In our study, the training set sequences are sampled from
those with a binding free energy below a cutoff. This distribution need not
be well approximated by the aforementioned exponential distribution. In fact
the maximum-likelihood method for distributions with sharp cutoffs has been
described in Djordjevic et al. (2003). This method is an SVM. A mononuc-
leotide SVM can be used to determine the binding energy of the protein to
the sequence σ , as:

Em(σ ) = ε · σ =
l∑

i=1

∑
α

εiασiα ,

where εiα is the free energy contribution from the i-th base. The parameters
εiα are chosen to minimize the variance of ε · σ over the background distri-
bution of sequences, subject to the constraints ε · σ (j) ≤ −1 for the set of
binding sequences σ (j), j = 1, . . . , N . Sequences satisfying ε · σ ≤ −1 are
then declared to be binding sites, although for the purposes of comparison
with the weight matrix method, one can consider a more general threshold
ε ·σ ≤ µ. In practice, the distribution of free energies is taken to be Gaussian
and the quantity to be minimized is given by,

χ2 ≡
l∑

i=1

∑
α

pαε2
iα

subject to the constraints,
∑

α pαεiα = 0, for each i.
Generalization of the weight matrix and SVM approaches to include

dinucleotide terms yields the following two expressions:

Zd(σ ) =
l∑

i=1

∑
α

ωiασiα −
l−1∑
i=1

∑
αβ

ωiαβσiασi+1,β − C0

Ed(σ ) =
l∑

i=1

∑
α

εiασiα −
l−1∑
i=1

∑
αβ

Jiαβσiασi+1,β

where ωiαβ is log2(piα(i+1)β/(piαp(i+1)β )) and piα,(i+1)β is the probability
of base α appearing at position i followed by base β in position i + 1. The
energies εiα and the Jiαβ are chosen to minimize the variance:

χ2 =
l∑

i=1

∑
α

pαε2
iα +

l−1∑
i=1

∑
αβ

pαpβJ 2
iαβ

subject to the constraints,
∑

α pαεiα = 0,
∑

α pαJiαβ = 0 and
∑

β pβ ×
Jiαβ = 0 for each i.

3 RESULTS AND DISCUSSION

3.1 Evidence for non-additivity in binding
We begin by asking whether the binding energies calculated with
ADAPT show significant non-additivity effects. The first test was
performed for TBP which, given the strong DNA deformation
induced by the protein (Nikolov et al., 1996), is a likely candid-
ate for correlations to be observed between adjacent nucleotide pair
positions. After calculating the binding energy Etot (= Eint + Edef )

for the full combinatorial set of sequences within a 12 nt pair frag-
ment bound to the protein, we extracted the sequences lying within a
5 kcal/mol interval of the optimal sequence (880 cases) and con-
structed a mononucleotide weight matrix, Wm. This matrix, the
corresponding sequence logo (Schneider and Stephens, 1990) and
the experimental sequence logo, based on the binding sites lis-
ted in the TRANSFAC data (Wingender et al., 2001), are shown
in Figure 1. We then used the Wm matrix to score all possible
sequences within our TBP complex, that is to say the 412 pos-
sible sequences that can fit in the 12 bp DNA target used here. As
an example, using the data in Figure 1A and the first equation in
Section 2.3, the sequence AGTATAATTAAA gives an initial sum
of −[log2(0.512/0.25) + log2(0.323/0.25) + · · · ] = −15.5. Since
this sequence has the most negative sum, C0 in the equation is set
to this value and the score of this sequence becomes zero. All other
sequences consequently give positive scores.

The result is plotted against the calculated binding energies of
these sequences in Figure 2. If the TBP complex was characterized
by additive contributions to the binding energy, one would expect
all sequences plotted in this figure to lie close to a single diagonal
line. A diagonal, implying a perfect correlation between Wm scores
and binding energies, would indicate that dinucleotide (or higher)
dependencies are not required to explain the variations in total bind-
ing energies. In reality, we see that identical Wm scores correspond
to multiple binding energies, leading to distinct clusters of sequences
lying along vertically shifted diagonals. For well-separated clusters,
it is possible to generate sequence logos (shown on the right-hand
side of Fig. 2) which reveal that each group of sequences is asso-
ciated with a particular combination of bases, mainly involving the
four nucleotide positions starting from the last A of the TATA-box.

Figure 3A shows a more detailed view of the poor predictions
made using the Wm score for TBP for the subset of 880 sequences
lying below the energy cutoff, and defined in this study as good
binding sites. We can now go further and isolate the origin of these
effects by recalculating the ADAPT binding energies excluding all
interactions between neighboring nucleotides within the term Edef .
This leads to the plot shown in Figure 3B which is much closer to the
single diagonal line expected. If we reintroduce energetic interactions
only between neighboring nucleotides we recover almost exactly
the same results as in Figure 3A (data not shown). This confirms
that non-additivity arises from DNA deformation during binding
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Fig. 1. (A) The Wm for human TBP (Nikolov et al., 1996) deduced from the binding sites with energies within 5 kcal/mol of the minimum, calculated using
ADAPT; (B) the corresponding sequence logo; (C) the experimental sequence logo for human TBP from TRANSFAC (Wingender et al., 2001).

Fig. 2. TBP binding energies plotted against the corresponding Wm score. The sequence logos corresponding to well-defined clusters of sites are shown on the
right-hand side of the figure.

and is dominated by the interactions between adjacent nucleotides.
Figure 3C confirms this conclusion in another way by scoring the full
ADAPT binding energies using the dinucleotide weight matrix Wd.
The inclusion of nearest-neighbor effectively eliminates virtually all
of the clustering seen in Figure 3A.

3.2 Analyzing non-additivity within the binding site
We can get an overall view of non-additivity for our three test proteins
by calculating the binding sites lengths formulated in Section 2. The
results, given in Table 1, confirm that TBP exhibits the strongest
correlations, leading to an increase in the effective binding site length
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Fig. 3. (A) TBP binding energies, for sequences falling below the energy cutoff, plotted against the corresponding Wm score; (B) TBP binding ener-
gies (Edef → Edef∗ ), excluding nearest-neighbor contributions, plotted against the corresponding Wm score; (C) TBP binding energies plotted against the
corresponding Wd score.

Table 1. Binding site length under the hypothesis of no correlation between
positions (Lm), correlation with nearest neighbors (Ld) or correlation with
every position (Ltot)

Length TBP BamH1 GCN4

Lm 5.8 7.2 7.1
Ld 6.7 7.5 7.2
Ltot 7.1 7.7 7.5

by 1.3 bp (i.e. Ltot − Lm). It can also be seen that, as shown above,
virtually all of these effects (0.9 bp, i.e. Ld − Lm) are explained by
nearest-neighbor interactions. Using these same measures, BamH1
exhibits a moderate increase of 0.5 bp, of which the majority (0.3 bp)
is explained by nearest-neighbor interactions, while GCN4 shows the
smallest increase (0.4 bp) of which only 0.1 bp can be attributed to
nearest-neighbor interactions.

Using the nearest-neighbor entropy difference �S defined in
Section 2, we can now ask exactly which dinucleotide steps within a
given binding site exhibit significant correlations. The results for the
three test proteins are given in Table 2. The first thing to note is that
none of the test proteins show correlation all along the binding site.
As expected, TBP shows the largest entropy changes, but even for
this strongly distorted binding site, there are only significant correl-
ation effects for the last four dinucleotide steps of the site (note that
the TATA-box lies at positions 3–6). This is in line with the logos for
the sequence clusters shown in Figure 2, which also indicate correl-
ations involving the last A of the TATA-box and the three following
nucleotide positions (steps 6–7, 7–8, 8–9 and 9–10).

For BamH1, the six bases of the GGATCC binding site (lying
at positions 4–9) are all strongly selected and consequently cannot
show any correlation. However, the impact of considerable DNA
deformation can be seen within the flanking positions of the bind-
ing site, which have been shown experimentally to exhibit sequence
selectivity (Engler et al., 2001). It is thus not surprising to find
some correlation outside the binding site at junctions 2–3 and 10–11.
Finally, for GCN4, the TGACGT binding site lies at positions 3–8.
The only significant correlation occurs at steps 6–7, where the

Table 2. Entropy differences between mononucleotide and dinucleotide ana-
lyses as a measure of non-additive effects along the binding sites of three test
proteins

Dinucleotide TBP BamH1 GCN4

1–2 0.01 0.02 0.00
2–3 0.00 0.27 0.00
3–4 0.00 0.00 0.00
4–5 0.00 0.00 0.00
5–6 0.00 0.00 0.00
6–7 0.52 0.00 0.11
7–8 0.17 0.00 0.01
8–9 0.79 0.00 0.00
9–10 0.18 0.00 0.00
10–11 0.02 0.17 0.00
11–12 0.02 0.01 0.01

Shading indicates dinucleotide steps showing significant correlation (�S ≥ 0.1).

sequence logo shown in our earlier publication (Paillard and Lavery,
2004), confirms a weaker selectivity for C and G than for the other
bases within the site.

3.3 Predicting binding sites taking non-additivity into
account

We begin with the example of TBP. We have chosen 200 bind-
ing sequences randomly, out of the 880 sequences with energies
within 5 kcal/mol of the minimum, to be used as inputs to the
weight-matrix and SVM approaches. The resulting weight matrices
and energy matrices were then used to assign information scores
and predicted binding energies, respectively, to any candidate site.
Sites with information scores or binding energies beyond a chosen
threshold are ‘predicted’ to be binding sites by the weight matrix
or SVM algorithm. Candidate sites with binding energies calculated
by ADAPT <5 kcal/mol cutoff were considered to be ‘true’ binding
sites, while those with energies above the cutoff were considered to
be true non-binding sites. A false positive (FP) arises when one of
the algorithms declares a true non-binding site to be a binding site,

2258



Non-additivity in protein–DNA binding

Fig. 4. Performance of mono- and dinucleotide weight matrix and SVM approaches for TBP using a training set of 200 sequences.

while a true positive (TP) arises when the algorithm correctly iden-
tifies a binding site as such. Similarly, a false negative (FN) arises
when one of the algorithms declares a true binding site to be a non-
binding site, while a true negative (TN) arises when the algorithm
correctly identifies a true non-binding site. We estimate the rates of
misclassification (either FP or FN), by using the classifier on a large
number of sequences, which were not in the original training set (of
size 200).

Figure 4 shows the curves representing the trade-off between the
FN rate and the FP rate as the threshold varies, with or without the
consideration of nearest-neighbor correlations (for all dinucleotide
steps). The FP rates that are shown, indicate the fraction of the set of
all (∼412) non-binding sites misclassified. The performance of either
of the methods, weight matrix or SVM, clearly indicates the import-
ance of taking nearest-neighbor non-additive effects into account for
TBP. In addition, when this is done, it can be seen that the SVM
approach performs considerably better, notably in terms of elimin-
ating FPs. This is confirmed by the results in Table 3, where the
weight matrix threshold was chosen to minimize the overall per-
centage of false attributions and the SVM threshold was the default
value (µ = 1). In Table 3, it may be noted that, we quantify the
propensity to find TPs, rather than FPs, in terms of positive pre-
diction value (TP/(TP+FP)). The common practice is to use the FP
rate (FP/(FP+TN)). Unfortunately, in this particular context, FP rate
tends to be very small for all reasonable methods (since the total
number of predicted positives is a small fraction of TNs) producing
a false impression of accuracy.

To some, Figure 4 might suggest that the single base model was
good enough, with an FN rate of 0.1 and an FP rate of 0.0002 for
some setting of the threshold. So, why bother about correlations?
Unfortunately, an FP rate of 0.0002 leads to hundreds to thousands
of false hits for the yeast genome depending on how much of the
upstream regions are being searched. In the human genome, the
number would be an order of a still larger magnitude. FN rate of 0.1
for TBP corresponds to hundreds of missed hits in yeast, with the

Table 3. Performance of the mononucleotide and dinucleotide versions of
the weight-matrix and SVM approaches for TBP

approach Positive prediction value FN probability

Wm 0.69 0.86
SVMm 0.26 0.09
Wd 0.79 0.38
SVMd 0.82 0.16

extremely conservative estimate (Cliften et al., 2003) that only 15%
of yeast genes have a TATA-box (based on perfect conservation in
sensu stricto Saccharomyces). The actual number possibly runs from
several hundreds to a thousand, once more. Thus, the smallness of
the probabilities does not mean much, if not taken in the context of
the total number of false predictions.

The two plots in Figure 5 show the improvement in SVM perform-
ance for training sets ranging from 2 to 200 TBP binding sites. As the
size of the training set increases, the dinucleotide model clearly out-
performs the mononucleotide model. In fact, as the size of the training
set increases the fraction of misclassified sequences (given by the sum
of FPs and FNs divided by the size of the test set) increases quite
sharply unless nearest-neighbor correlations are taken into account.
This can be seen in Figure 6A and is explained by the fact that the
mononucleotide model must adopt a lax threshold to ensure that all
sites in the training set are correctly classified as good binding sites.
Note that the error bars in this figure correspond to different training
sets (of a fixed size) chosen from the full set of ADAPT binding
sites.

We can now contrast this situation with the results for GCN4,
which has been shown to have almost no nearest-neighbor cor-
relations within the binding site. The results in Figure 7 for a
training set of 200 sites now show little gain from the inclusion
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A

B

Fig. 5. Performance of the SVM approach for TBP as a function of training-set size: (A) mononucleotide model; (B) dinucleotide model.

of dinucleotide terms. This is confirmed for the fraction of mis-
classified sequences in Figure 6B as a function of training set
size. Although the dinucleotide model outperforms the single-base
approach at large training-set sizes, when fewer examples are avail-
able for training, the additional parameters in the model lead to
over-fitting, with the result that the single-base model becomes sig-
nificantly better. A minimum number of binding sites is therefore
required before it becomes advantageous to introduce correlations.
The contribution of dinucleotide terms to the overall binding energy
(discussed in Section 3.2) is the most important factor determining
the minimum number of sites required to justify the more complex
model.

We can demonstrate this behavior clearly in the case of BamH1
which was shown to have only two dinucleotide steps with signi-
ficant correlation effects (Table 2). Figure 6C contrasts the fraction

of misclassified sites as a function of the size of the training set
for three different models: mononucleotide (with no correlations),
dinucleotide (with correlations at all dinucleotide steps) and partial
dinucleotide (where correlations are only introduced where neces-
sary, in the case of BamH1 only at junctions 2–3 and 10–11). The
results show that the partial dinucleotide model outperforms both the
full dinucleotide model and the mononucleotide model even at small
training-set sizes.

3.4 Experimental signature of correlations from
experiment

A comprehensive analysis of correlation effects using experimental
data is currently impossible. Although pioneering studies have
demonstrated the existence of correlation at chosen positions within
protein binding sites (Bulyk et al., 2001; Man and Stormo, 2001), it is
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A

B

C

Fig. 6. Fraction of misclassified sites as a function of training-set size for the mononucleotide and dinucleotide SVM. The vertical error bars correspond to
different choices of binding sites from the full set defined by the ADAPT calculations: (A) TBP, (B) GCN4 and (C) BamH1, including the results for a hybrid
SVM treatment with dinucleotide parameters only at steps 2–3 and 10–11.
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Fig. 7. Performance of mono and dinucleotide weight matrix and SVM approaches for GCN4 using a training set of 200 sequences (logarithmic plot).

Fig. 8. Nearest-neighbor entropy differences for 76 experimentally confirmed sites and their reverse complements compared with sets of 76 artificial sites and
their reverse complements, which were generated using a binding model in which mononucleotide terms account for the entire binding specificity.

difficult tofindenoughdata toanalyze thepatternofcorrelationwithin
an entire site. This problem certainly applies to the three proteins we
have studied above. However, it has been possible to make at least
a preliminary analysis in the case of the dimeric protein CAP which
binds to a 16 bp site. A careful literature study has led to the creation of
adatabaseof76confirmedbindingsites for thisprotein (Thayer,2004,
http://linus.chem.wesleyan.edu/∼kthayer/capDB_index.htm).

These 76 sites and their reverse complements were used to con-
struct a mononucleotide energy matrix using the procedure described
in Section 2. This energy matrix was used to generate 10 000 sets
of 76 theoretical binding sites, each of which would bind, at least

as strongly as the weakest site in the set of 76 confirmed sites, if
mononucleotide contributions to the binding energy were sufficient
to describe the sequence specificity of the CAP protein. The need
to incorporate dinucleotide terms into the binding model can then
be established by detecting statistically significant nearest-neighbor
effects in the experimental dataset which are not present in the
artificially generated sites.

We can now analyze the nearest-neighbor entropy differences
along the CAP binding site using the formulae given in the
methodology section and either the experimental or the gener-
ated sites. For the experimental sites, nearest-neighbor entropy

2262

http://linus.chem.wesleyan.edu/


Non-additivity in protein–DNA binding

differences were calculated for the set of 152 sequences consisting of
the confirmed sites and their reverse complements. For the theoret-
ical dataset, the mean and standard deviation of the nearest-neighbor
entropy differences were calculated for the 10 000 sets, each consist-
ing of 76 generated sites and their reverse complements. The results
are shown in Figure 8. Significant nearest-neighbor effects can be
seen at positions 3–4, 8–9 and 13–14, indicating that these are the
locations at which dinucleotide terms introduced into the binding
model would provide a better description of the binding specificity.

4 CONCLUSIONS
By using a theoretical approach to estimate protein–DNA binding
energies, we have characterized a sufficient number of binding sites
to allow an analysis of non-additive effects on binding specificity.
The results confirm that DNA deformation within a protein complex
can lead to significant non-additivity. These effects are shown to be
almost exclusively limited to nearest-neighbor interactions. A more
detailed analysis has also shown that, even in the case of significant
deformation, non-additivity may only be important for a limited num-
ber of dinucleotide steps within the target site. It should be stressed
that using theoretically estimated energies to obtain large enough
datasets of binding and non-binding sites is clearly an approximation.
The ADAPT approach only accounts for protein–DNA interaction
energies and DNA deformation energies and is naturally limited by
the precision of the force field employed. However, it should also
be noted that ADAPT has successfully reproduced the experimental
weight matrices determined for a wide variety of DNA-binding pro-
teins. As concerns non-additivity effects, we have shown their origin
is dominated by the interaction energy between neighboring base
pairs, energies which are well estimated using the AMBER force
field (as shown by numerous earlier modeling studies) and largely
independent of the solvent, counterion and entropic effects which
are excluded from our study.

Non-additivity can be taken into account within both weight mat-
rix and SVM approaches to site prediction by the introduction of
additional parameters to account for dinucleotide interactions. For
the examples studied here, SVMs are shown to outperform weight-
matrix techniques whether or not nearest-neighbor interactions are
included. However, the improvement in predictive power is achieved
only if sufficient data are available and, in this connection, it is
important to take non-additivity into account only for those steps
where it is really needed. Failure to do this can lead to over-fitting
of dinucleotide models and consequently to poor predictive power.
In general, the dinucleotide SVM with an insufficient training set
results in many FNs, while its mononucleotide version will result in
many FPs, even with a large training set. The present study suggests
that, as a rule of thumb, the SVM approach performs well when
the number of binding sites available for training is 1–1.5 times the
number of parameters to be estimated. This implies that 135 sites are
needed to develop a full dinucleotide description of the TBP binding
site (compared with only 36 for a mononucleotide model). How-
ever, this number can be almost halved (72 sites) by only taking into
account steps showing significant non-additivity.

As a corollary to the results presented here, when high-throughput
techniques begin to provide much more extensive data on protein
binding sites, it will become possible to detect the presence of

non-additive effects both at the level of overall target sites and at the
level of individual dinucleotide steps and, consequently, to deduce
the existence and the distribution of significant DNA deformation.
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