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ABSTRACT

Chromosomal numerical aberrations (CNAs), particularly regional ampli-
fications and deletions, are a hallmark of solid tumor genomes. These
genomic alterations carry the potential to convey etiologic and clinical signif-
icance by virtue of their clonality within a tumor cell population, their
distinctive patterns in relation to tumor staging, and their recurrence across
different tumor types. In this study, we showed that array-based comparative
genomic hybridization (CGH) analysis of genome-wide CNAs can classify
tumors on the basis of differing etiologies and provide mechanistic insights to
specific biological processes. In a RAS-induced p19Arf�/� mouse model that
experienced accelerated melanoma formation after UV exposure, array-CGH
analysis was effective in distinguishing phenotypically identical melanomas
that differed solely by previous UV exposure. Moreover, classification by
array-CGH identified key CNAs unique to each class, including amplification
of cyclin-dependent kinase 6 in UV-treated cohort, a finding consistent with
our recent report that UVB targets components of the p16INK4a-cyclin-
dependent kinase-RB pathway in melanoma genesis (K. Kannan, et al., Proc.
Natl. Acad. Sci. USA, 21: 2003). These results are the first to establish the
utility of array-CGH as a means of etiology-based tumor classification in
genetically defined cancer-prone models.

INTRODUCTION

Identification of etiological factors and associated genetic events
underlying malignant transformation and progression remains a cen-
tral focus in the field of cancer. Chromosomal imbalances, particu-
larly amplifications and deletions, are common in solid tumors,
including melanoma (1–3). In human melanoma, conventional cyto-
genetic methods have detected specific CNAs,4 most prominently
LOH of 1p, deletion of 6q22–27, amplification of 7, LOH or deletion
of 9p21, and LOH of 10q24–26 (2, 3). The notion that recurrent
CNAs represent selected genetic events driving specific processes in
the evolution of cancers suggests that the patterns of CNAs may
convey etiologic and prognostic information; thus, characterization of
such CNAs will provide insight on the molecular mechanism under-
lying such processes.

Recent advances in microarray technology have revolutionized our
ability to catalogue chromosomal imbalances and gene expression
patterns present in tumors. Microarray-based expression studies have
established the feasibility of tumor classification based on gene ex-
pression patterns (4, 6, 7–12). In addition, profiling studies in human

tumors, such as melanomas, have implicated tumor suppressor genes
(13) and oncogenes with plausible links to metastasis (14), suggesting
that genome-wide expression profiles might serve as a means of
identifying genes and pathways governing specific cancer-relevant
processes. Although array-CGH has been highly effective in catalog-
ing recurrent CNAs associated with a number of different tumor types
in humans (15–20) and in engineered cancer-prone mouse strains
(21–24), array-CGH analyses have not yet been assessed as an ap-
proach to segregate tumors on the basis of differing etiologies or
genetics or to identify those CNAs with potential links to specific
tumor biological processes. To investigate whether array-CGH pro-
files can be used for these purposes, we compared the scope and
nature of the chromosomal CNAs by array-CGH in phenotypically
and histopathologically homogeneous melanomas arising spontane-
ously or after exposure to UVB in mouse models.

A Tyr-RAS transgenic model of melanoma has demonstrated that
activated RAS mutation can cooperate with loss of p16INK4a, p19ARF,
or both to drive melanoma formation.5 To explore the role of neonatal
UV exposure in melanoma development, we subjected Tyr-RAS�
p16Ink4a �/� and Tyr-RAS� p19ARF�/� animals to a single erythro-
genic dose of UVB on postnatal day 1 and compared the latency and
incidence of melanoma in these UV-treated animals with that in the
untreated cohort (26). We found that UV exposure greatly accelerated
melanoma formation in Tyr-RAS� p19ARF�/� animals but not in
Tyr-RAS� p16Ink4a �/� mice. Despite different germ-line mutations
(p16INK4a or p19ARF deficiency) and etiologies (spontaneous versus
UV treated), the resultant melanomas were histopathologically indis-
tinguishable and frequently sustained mutations that inactivated the
Rb or p53 pathways in the p19ARF or p16INK4a mutant mice, respec-
tively (26). Given their common tumor biological end points, these
highly related melanomas from genetically equivalent Tyr-RAS�
p19ARF�/� mice, differing only in their history of UV exposure,
provided a stringent system in which to test the hypothesis that
profiles of CNAs contain discriminatory information on tumor etiol-
ogy and pathogenesis, and such unbiased information can uncover
molecular events underlying etiologic difference and lead to new
mechanistic insights.

MATERIALS AND METHODS

Tumor Genomic DNA Isolation. Genomic DNA was isolated from mel-
anomas using the PUREGENE DNA isolation kit (Gentra Systems). Five �g
of gDNA were digested with EcoRI, extracted with phenol:chloroform, ethanol
precipitated, and resuspended in sterile distilled water.

Labeling and Hybridization to Arrays. Array-CGH experiments were
performed with SpectralChip arrays (Spectral Genomics, Houston, TX) ac-
cording to the manufacturer’s protocol. These arrays comprise 976 mapped
mouse BACs from the RPCI11 BAC library. One �g of tumor and normal
genomic DNA was labeled with Cy3-cCTP or Cy5-dCTP (Amersham Phar-
macia Biotech). Fluor-reversal experiments were performed in all cases. Hy-
bridizations were performed in sealed chambers for 20 h at 60°C. After
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hybridization, slides were rinsed in 2 � SSC, 0.5% SDS at room temperature;
washed for 40 min in 2 � SSC, 0.5% SDS at 65C; washed for 10 min in
0.2 � SSC at 65°C; and washed for 1 min in 0.2 � SSC at 2°C. Slides were
then air dried by centrifugation before imaging.

Image and Data Analysis. Sixteen-bit TIF images were collected using an
Axon 4000B scanner and processed initially using GenePix Pro. Subsequently,
custom software was used to exclude spots that demonstrated low signal:noise
ratios or poor spot morphology. Data were normalized to the ratio of medians
of Cy3 and Cy5, and the normalized values converted to log2 ratios to weight
gains and losses equally. Dye swap experiments were merged to calculate the
mean and SD for each BAC.

Clustering and Classification. Cluster (http://rana.ibl.gov/) was used to
cluster log2 values for array-CGH data processed as described above, using all
BACs. Subsequently, BACs were excluded if the processing software gener-
ated at least one “missing value” for any tumor. Under this condition, 874
BACs were included in additional hierarchical clustering and classification
experiments. The data were standardized so that BACs had common mean and
variance.

A method based on the linear SVM (27, 28) was used to classify tumors using
their array-CGH profiles for the remaining 874 BACs. Given a training set, in this
case, tumors whose UV status is known, SVM builds a linear classifier:

f �x� � �
i

wi xi � b,

where xi is the observed log florescence ratio for one tumor for BAC i sample,
and wi is its corresponding weight in the classifier. If f(x) � 0, the sample is
assigned to class 1; otherwise, it is assigned to class 2. SVM minimizes the
number of misclassifications in the training data and maximizes the separation
margin between the two classes. f(x) is based on the subset of training samples
that best defines the separation between the two classes. These informative
samples are called support vectors.

A software package, written by X. Z. and W. H. W., was used to implement
the recursive classification and feature selection procedure introduced in
“Results.” This package incorporates the SVMTorch (29) software. Initially,
SVMTorch is used to build an SVM on the 874 BACs identified above. The
BACs with the largest contribution to the classifier are then selected. The
contribution for a given BAC is measured by the difference between its two
class means weighted by its coefficient in the SVM. A new SVM is generated
on the reduced set, and a subset of these BACs is selected using the same
procedure. This is done recursively, resulting in a series of nested subsets of
BACs and a series of SVM models built using these BACs. For the current
purpose of evaluating the feasibility of classification, we arbitrarily set the
number of selected BACs in the above successive stages to be 500, 200, 100,
50, 30, and 20.

Cross-validation is implemented by removing one tumor sample from the data
set and performing the above procedure on the remaining 37 samples. The series
of models obtained at different selection levels are then applied to the excluded
sample to predict its UV status. This process is duplicated for each tumor in the
sample. The accuracy of the predictions across experiments is summarized for
each size of classifier.

qPCR and RT-PCR. Primers for PCR and RT-PCR corresponded to the
primers for the indicated MIT markers or were designed from the 3�untrans-
lated region of the indicated genes using Primer 3. Reverse transcription was
performed on 3 �g of total RNA from each tumor using the Superscript reverse
transcriptase kit (Stratagene) and an oligo-dT primer according to the manu-
facturer’s specifications in 20 �l of total volume. PCR was performed using
100 ng of genomic DNA or 1 �l of reverse transcriptase reaction mix with
marker- or gene-specific primers for 17 cycles of 95°C for 30 s, 56°C for 1
min, and 72°C for 45 s. PCR products were run on a 1% agarose Tris-borate
EDTA gel and transferred to Hybond N�. cdk6 and glyceraldehyde-3-phos-
phate dehydrogenase were not visible on eithidium bromide-stained gels and
only detected by hybridization to specific probes. Probes were generated from
pooled normal genomic DNA from the mice of origin for each tumor by PCR
using the same primers as for the quantitative PCR analysis. Random-primed
32P-labeled probes were hybridized for 2 h at 65°C in RapidHyb (Amersham
Pharmacia). Quantification was performed using a phosphorimager.

Mapping of Genes and Markers. Physical map positions of genes and
markers were obtained from the Ensembl mouse genome database v4.1.1,
January 31, 2002.

RESULTS AND DISCUSSION

UV-induced and spontaneous melanomas from Tyr-RAS transgenic
animals on p19ARF�/� and p16Ink4a�/� backgrounds were subjected to
array-CGH analysis (Table 1). For each tumor, regional chromosomal
CNAs in tumor genomic DNA were compared with somatic DNA from
the same mouse. The threshold for defining a CNA was based on the
distribution of log ratios in self-self hybridizations (data not shown).
Regions were scored as significantly increased/decreased if the CGH
ratio was 4 SDs above/below the mean (�/� 0.35, log base 2).

Analysis of the overall genomic integrity, as measured by fre-
quency of CNAs detectable by array-CGH, revealed a significantly
higher rate of CNAs in spontaneous (non-UV) than UV-induced
tumors from p19ARF�/� animals. On average, 4.2% of the informative
genomic regions showed detectable copy number changes in sponta-
neous p19ARF�/� tumors, compared with 0.6% among UV-induced
tumors (P � 0.001; Table 1). This global difference in genomic
profiles suggests that UV exposure significantly affected the nature of
accumulated mutations in p19ARF�/� melanomas and that different
patterns of CNAs are likely to be identified in UV versus non-UV
tumors. In contrast, UV treatment did not alter the frequency of CNAs
in melanoma from Tyr-RAS� p16Ink4a �/� animals (Table 1), con-
sistent with the lack of biological impact by UV exposure in
p16INK4a�/� animals (as measured by incidence, latency, and clinical
behavior of melanoma, as well as status of the pRB and p53 pathways
in the tumors; Ref. 26).

We first used a method based on the linear SVM to classify the
non-UV and UV-induced p19ARF�/� tumors based on their array-
CGH profiles (see “Materials and Methods”; Refs. 27 and 28). Thirty-
eight p19ARF�/� tumors with high quality array-CGH data were used
for this part of the analysis. Only 874 BACs showed valid readings in
all 38 of these tumors. This filtering procedure eliminated the need to
make assumptions about the causes of the low information content in
the discarded tumors or BACs. Hierarchical clustering of these 38
tumors using 874 BACs was virtually identical to that based on the
full set of 931 BACs (data not shown), suggesting that the ability to
classify tumors is not substantially reduced by this filter.

Because the number of descriptive spots (BACs) exceeded the
number of tumor samples tested, we reduced the number of BACs
considered in the classification scheme by feature selection. In de-
signing a feature selection procedure to form classifiers based on
smaller numbers of BACs, an optimal SVM model was built using all
available BACs, and the BACs were ranked according to their con-
tribution to this model. A subset of the BACs that made the largest
contribution to this model was selected, and a new SVM model was
built with these selected BACs. The selected BACs were then
reranked according to their contribution to the new model, and the
selection was repeated. For each model, the performance of SVM can

Table 1 Array-CGH analysis of Tyr-RAS� p16INK4a�/� and p19ARF�/� melanomas

A. Genotype UV Rx No. tumors Mean instabilitya SE

p19ARF�/� � 20 4.2% 0.83
� 20 0.6% 0.22

p16Ink4a�/� � 11 1.5% 0.42
� 7 1.6% 1.02

Controlb 0.1%

B.

Comparisons

PGenotype Treatment

p19ARF�/� UV vs. non-UV �0.001
p16Ink4a�/� UV vs. non-UV 0.931
p19ARF�/� vs. p16Ink4a�/� Non-UV 0.013

a Instability 	 % of valid BACs with change � 4 SD from the mean of self-to-self
hybridizations.

b Control 	 self-to-self hybridization.
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be assessed. For our current study, we have arbitrarily chosen the
numbers of selected features (BACs) for this recursive procedure to be
500, 200, 100, 50, 30, and 20. As shown in Fig. 1, the 874-features
classifier achieved a higher accuracy in the UV-treated cohort alone,
whereas the 20-feature classifier achieved a higher accuracy in the
non-UV cohort. However, the overall classification accuracy (com-
bined for both cohorts) is similar for both. The observation that a
small-feature classifier was able to achieve similar accuracy as the
large data set suggests the likelihood of identifying key stereotypical
changes that may serve as potential prognostic/predictive markers.

Cross-validation was used to assess the quality of the SVM classi-
fication models given the small set of tumor profiles. For each tumor,
the feature selection procedure described above was performed to
establish the SVMs using the remaining set of 37 tumors. At each
step, the classifier was applied to the excluded tumor, and the accu-
racy of the classification was recorded. Fig. 1 shows the results of this
validation procedure for the 38 tumors, where the data are standard-
ized so that each BAC has common mean and variance. This analysis
revealed that we were able to achieve a maximum overall accuracy of
classification of 76.5%. To assess the significance of this finding, we
repeated the cross-validation procedure on 100 random permutations
of the UV labels for all of the 38 tumors. We found that none of the
100 runs of R-SVM permutation test achieved a better cross-valida-
tion error rate than that observed in the actual classification, indicating
that the 76.5% accuracy is significant. In other words, UV exposure
history can be predicted retrospectively based on the array-CGH
profiles of the resulting tumors. This finding is particularly encour-
aging in view of the fact that detailed histopathological and classical
analyses were not able to distinguish tumors with or without UV
exposure history, suggesting that array-CGH profiles reveal aspects of
cancer etiology that are not detectable by standard approaches. Fi-
nally, it is unlikely that array-CGH merely identified a UV signature
profile, because SVM analysis was unable to distinguish the UV status
of melanomas arising from Tyr-RAS� p16INK4a�/� animals (data not
shown). This lack of distinction on the genomic level is consistent
with the absence of any observed UV effect in melanoma genesis on
the p16Ink4a�/� background (26). In summary, the computational
analysis of array-CGH profiles was capable of correctly classifying

tumors that exhibited differences in biological behavior (p19ARF�/�

UV versus non-UV) but could not differentiate among tumors with
similar biological behavior (p16Ink4a�/� UV versus non-UV).

Having shown that the array-CGH profiles contain statistically
significant information to predict the UV etiology, we asked whether
we could identify a subset of CNAs that are most informative at
telling the two classes of tumors apart and whether such signature-
CNAs can provide clues to the mechanism of UV’s melanoma-
promoting activity. SVM is a powerful tool for the identification of
classifying information among linear combinations of BACs, but it is
not designed to test the classification power of individual BACs.
Because most loci identified by array-CGH at the current resolution
are represented by changes in a single BAC, we investigated an
approach that could be applied to individual BACs to identify ones
with the greatest classification power.

For this exercise, we chose to focus on regions of gain rather than loss
attributable to the greater sensitivity of array-CGH to copy number
increase, which can be many-fold, than typical single copy losses in
regions of deletion. BACs were scored as “amplified or gained” if the
CGH ratio was 4 SDs above the mean log ratio for self-self hybridization
controls (�0.35, log base 2). For each BAC, we calculated the difference
in the number of tumors that show copy number increase (i.e., “ampli-
fication” or “gain”) in the UV versus non-UV cohorts. Next, we rank
ordered all of the informative BACs by the magnitude of such difference
and listed the top 20 in Table 2. In other words, the BACs listed are those
with the greatest classification power (i.e., most informative in separating
the UV and non-UV tumors) and may thus point to gene(s) governing
biological differences between the two tumor classes. It is also notewor-
thy that these top classifying features are found not only in the cohort with
significant higher frequency of CNAs (e.g., the spontaneous cohort) but
also in the cohort with low frequency of CNAs. This indicates that the
primary driving force of this classification is recurrence of specific
CNAs, and significant predictors are not dependent on the frequency of
CNAs.

To test whether the top 20 prioritized CNAs carry any biological
significance, we focused on the region of gain with the greatest
representation in our sample set. When sorted by their chromosomal
locations, the top 20 list of most informative BACs revealed an
overrepresentation of those mapping to chromosome 5 (Table 2).
Specifically, 5 of the top 20 BACs localized to chromosome 5, and in
total, these 5 BACs were amplified 28 times in 19 UV-induced tumors
(indicating that the regions of amplification involved more than one
BAC in some tumors; Fig. 2) versus only once among the non-UV
tumors (Table 2). Moreover, three of these five BACs (D5MIT249,
D5MIT102, and D5MIT346) were localized to a contiguous region at
the proximal end of chromosome 5 (Table 2 and Fig. 2). Gain of the
proximal end of chromosome 5 was apparent even when the log ratio
threshold for defining amplification was raised or lowered by 50%
(data not shown). It is also worth noting that the same three BACs
from proximal chromosome 5 were identified in the list of top 20
generated when BACs were rank ordered based on metrics that
account for both amplifications and deletions, including T-score and
the related correlation metric defined in Golub et al. (data not shown;
Ref. 8). From these data, we surmised that gain of a gene or genes
residing on proximal chromosome 5 represented an important genetic
event in the development of UV-induced melanomas in this model
system.

To map more precisely the target gene within this locus, 13 UV-
treated tumors were analyzed further by combined array-CGH and
quantitative PCR (see “Materials and Methods”). These assays de-
fined the minimal region of gain (i.e., common overlapping region
among the 13 tumors) to be 1.5 Mb at the telomeric end of chromo-
some 5 (Fig. 2). Bioinformatic analysis of the mouse genome se-

Fig. 1. UV Status of melanomas is predicted by array-CGH profiles. The ability of
linear SVM to predict accurately whether a tumor is UV treated (UV�) or untreated
(non-UV) is indicated for classification analyses performed with different numbers of
BACs as described in the text and “Materials and Methods.” Black bars, the combined/
overall accuracy of identifying tumors as either UV treated or untreated; hatched bars, the
accuracy with which UV-treated tumors were classified as UV treated; grey bars,
accuracy with which untreated tumors were classified as untreated. Note, the 874-features
classifier achieved a higher accuracy in the UV-treated cohort alone, whereas the 20-
feature classifier achieved a higher accuracy in the non-UV cohort. However, the overall
classification accuracy (combined for both cohorts) is similar for both.
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quence (Ensembl mouse genome database v4.1.1, Jan. 31, 2002)
revealed three annotated genes residing within the minimal region,
namely, cdk6, cyp51, and ccm1.

The finding of cdk6 within this locus is remarkable in view of recent
reports demonstrating that components of the Rb pathway are critical
targets of UV’s melanoma-promoting action (26). Indeed, in this p19ARF-
deficient model, a frequent acquired lesion in non-UV melanomas is loss
of p16Ink4a expression or function. In contrast, p16Ink4a expression and
function is retained in a greater proportion of the UV-treated tumors,
which instead appear to preferentially amplify the cdk6 locus on chro-
mosome 5 (Fig. 3A). Moreover, cdk6 amplification and p16Ink4a loss
were mutually exclusive (Fig. 3A; Ref. 26). The cdk6 gene amplification
was confirmed in each tumor that showed proximal chromosome 5
amplification by array-CGH (Fig. 3B). cdk6 amplification was also iden-
tified in two tumors in which none of the proximal chromosome 5
array-CGH markers were amplified (tumors 16 and 19; Fig. 3B). This
more focal amplification strongly suggests that cdk6 is the target of the

amplification event. Moreover, cdk6 gene amplification is associated with
cdk6 overexpression as determined by quantitative RT-PCR, which
showed increased cdk6 mRNA levels in UV-treated tumors that exhibited
cdk6 amplification by comparison with normal melanocytes and by
comparison with non-UV-treated tumors (Fig. 3C). In addition, cdk6 is
overexpressed in UV-treated tumors in the absence of amplification of
proximal chromosome 5 or the cdk6 gene, suggesting that UV treatment
can enhance cdk6 expression through multiple mechanisms (tumor 9;
Fig. 3, B and C). In contrast, cdk6 amplification was not detected in
tumors arising in p16Ink4a�/� mice spontaneously or as a result of UV
exposure (data not shown). In conclusion, the combined use of compu-
tational and array-CGH methods in this study has established that
genome-wide CNA patterns can be used for tumor classification. Fur-
thermore, prioritization of key features distinguishing between two sub-
classes of melanoma in this study has revealed cdk6 as an important target
associated with UV exposure. This is consistent with recent reports
identifying components of the Rb pathway, including Cdk6, as critical
targets of UV’s melanoma-promoting activity (26).

More broadly, this study demonstrates that distinct etiologies driv-
ing oncogenesis are embedded within the pattern of cytogenetic
alterations present in fully established tumors, that such alterations
convey prognostic information and that characteristic alterations dif-
ferentiating tumor classes can be identified through combined array-

Fig. 2. Mapping of the minimal amplicon on chromosome 5. Black bars, the extent of
the region of amplification at proximal chromosome 5 for 13 UV-treated tumors that
contained amplifications in this region. Names of the markers (open boxes) and their
positions along chromosome 5 (defined by Ensembl mouse genome database v4.1.1, Jan.
31, 2002) are as indicated.

Fig. 3. Amplification of cdk6 represents the Rb lesion in UV-treated melanomas. A, table
indicates the inverse correlation between loss of p16 expression or function and amplification
of cdk6. Loss of p16 was determined as described previously (26). Amplification of cdk6 was
determined by array-CGH and quantitative PCR. B, quantitative PCR illustrating the genomic
status of cdk6 in each tumor. D6MIT104 serves as a loading control because the copy number
of D6MIT104 was not changed in any tumor. Tumor identification numbers are indicated
above each lane. Asterisks, tumor with gain of proximal chromosome 5 by array-CGH. C,
quantitative RT-PCR illustrates the level of cdk6 mRNA in the indicated tumors. Glyceral-
dehyde-3-phosphate dehydrogenase was used for loading control. Tumor identification num-
bers are indicated below each lane and correspond to those in B. Asterisks, tumor with gain of
proximal chromosome 5 identified by array-CGH.

Table 2 List of the top 20 BACs differentially amplified in UV and non-UV melanomas

BAC ID Chromosome

Melanoma with gain by array-CGH

UV treated Spontaneous

D1MIT243 1 3 0
D1MIT369 1 5 0
D2MIT167 2 0 3
D5MIT249 5 13 1
D5MIT103 5 12 0
D5MIT346 5 4 0
D5MIT160 5 8 0
D5MIT122 5 4 0
D8MIT258 8 4 0
D8MIT232 8 3 0
D9MIT24 9 0 3
D10MIT218 10 3 0
D10MIT163 10 3 0
D12MIT237 12 0 3
D12MIT54 12 3 0
D12MIT275 12 0 3
D16MIT178 16 3 0
D17MIT113 17 3 0
DXMIT211 X 0 3
DXMIT100 X 3 0
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CGH and computational means. Although the classification power of
array-CGH at present is inferior to that of transcription profiling, the
increasing density of BAC arrays used for chromosomal profiling
should greatly enhance the predictive power of such data sets. Along
this line, it should be noted that, within our sample set of 19 UV-
induced melanomas, two of them harbored focal amplifications on
Chr 5 involving Cdk6 that were not detectable by array-CGH. Higher
resolution arrays with denser coverage of BACs in the genome will
likely be able to identify these two lesions, hence increasing the
overall accuracy of the classification.

Additionally, there are several distinct advantages to array-CGH
over expression profiling. First, the increased stability of DNA over
RNA may permit the use of archival or poor quality tumor specimens
from which RNA cannot be obtained, as well as samples with high de-
grees of stromal contamination where laser capture micro-dissection
is necessary. In addition, RNA expression profiling is limited in its
ability to analyze complex heterogeneous tissues because of the lack
of a “normal” control, particularly in cases of tumors where cells of
origin are yet to be identified. In contrast, diploid somatic tissue is
generally available from cancer patients or normal pool. Finally, array
CGH measures information about a tumor not necessarily captured by
expression profiling, e.g., cytogenetic complexity, regardless of the
specific genetic lesions identified, has been shown to correlate with
adverse outcome in both solid and hematological malignancies (5, 30,
31). In summary, through the analysis of array-CGH patterns, we were
able to distinguish genetically and histopathologically homogeneous
tumors, predict their UV-induced versus spontaneous etiologies, and
identify novel pathogenic lesions, such as cdk6 amplification in these
tumors.
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