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Cellular response to genetic and environmental perturbations is
often reflected and!or mediated through changes in the metabo-
lism, because the latter plays a key role in providing Gibbs free
energy and precursors for biosynthesis. Such metabolic changes
are often exerted through transcriptional changes induced by
complex regulatory mechanisms coordinating the activity of dif-
ferent metabolic pathways. It is difficult to map such global
transcriptional responses by using traditional methods, because
many genes in the metabolic network have relatively small
changes at their transcription level. We therefore developed an
algorithm that is based on hypothesis-driven data analysis to
uncover the transcriptional regulatory architecture of metabolic
networks. By using information on the metabolic network topol-
ogy from genome-scale metabolic reconstruction, we show that it
is possible to reveal patterns in the metabolic network that follow
a common transcriptional response. Thus, the algorithm enables
identification of so-called reporter metabolites (metabolites
around which the most significant transcriptional changes occur)
and a set of connected genes with significant and coordinated
response to genetic or environmental perturbations. We find that
cells respond to perturbations by changing the expression pattern
of several genes involved in the specific part(s) of the metabolism
in which a perturbation is introduced. These changes then are
propagated through the metabolic network because of the highly
connected nature of metabolism.
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L inking the genome to its functioning metabolism is of sub-
stantial interest not only in studying human diseases (1) but

also for identifying metabolic engineering targets in biotechno-
logical applications (2, 3). Transcriptional analysis represents a
high-throughput and genome-wide approach for linking the set
of expressed genes to functional metabolism of the cell. Indeed,
several studies using genome-wide gene-expression analysis have
shown that transcriptional regulation plays an important role in
regulating metabolism in response to perturbations (4–6). Al-
though many statistical methods and clustering algorithms pro-
vide tools to analyze such transcriptomics data (7–9), these
methods seldom provide insight into the regulatory architecture
of the metabolic networks without intelligent analysis of the
results (up!down-regulation of genes of interest or correlation
between genes of interest). This shortcoming is primarily due to
the hypothesis that there may be all-to-all interactions among the
genes being analyzed, resulting into many biologically nonsig-
nificant results. One of the ways to address this problem is to
integrate known biological interactions, e.g., protein–protein
interactions, in the analysis of transcription data (10). Such an
approach essentially reduces the degrees of freedom in data
analysis by using knowledge of molecular interactions occurring
in the cell. The organization and functioning of the cell can be
viewed as a complex network of molecular interactions. These
interactions are mediated not only by physical contacts between
individual molecules (e.g., protein–protein and protein–DNA
interactions) but also result from the functional coupling of
certain molecules or groups of molecules (11). Cellular metab-

olism thus can also be viewed as a network of functional
interactions between enzymes and metabolites. This metabolic
network represents the channels for the flow of material and
generation of Gibbs free energy, which are constrained by the
conservation laws of mass and energy. Consequently, we hy-
pothesized that the topology of the interactions involved in
metabolism can be used to understand the underlying regulatory
mechanisms (e.g., at transcriptional level) controlling this f low
of mass and energy. To test this hypothesis, we developed an
algorithm that integrates gene-expression data with topological
information from genome-scale metabolic models, which en-
abled systematic identification of so-called reporter metabolites
that represent hot spots in terms of metabolic regulation. This
study was an attempt to infer the global role of a metabolite
based on mRNA-expression patterns and metabolic stoichiom-
etry without direct measurement of metabolite concentration.
The algorithm also identifies the significantly correlated meta-
bolic subnetworks after direct or indirect perturbations of the
metabolism.

Algorithm
Fig. 1 schematically illustrates the proposed algorithm, which is
described step by step in the following.

Graph-Theoretical Representation of the Metabolic Network. The
complete metabolic network in the cell can be represented as a
bipartite undirected graph, here referred to as a metabolic graph
(Fig. 1) (also see supporting information, which is published on
the PNAS web site). In this metabolic graph, metabolites as well
as enzymes are represented as nodes, and interactions between
them are represented as edges. Thus, a metabolite node is
connected to all of the enzyme nodes that catalyze a reaction
involving that particular metabolite, and an enzyme node is
connected to all of the metabolites that take part in the
corresponding reaction. This graph is bipartite, because neither
metabolite nor enzyme nodes are directly connected among
them.

We also define a unipartite undirected graph, here referred to
as an enzyme (or reaction) interaction graph (Fig. 1) (also see
supporting information). In this graph, only enzymes are rep-
resented as the nodes, and the two enzymes sharing a common
substrate in the corresponding reactions are connected to each
other. Thus, edges in this graph represent the metabolites shared
by two enzymes. Some enzymes catalyze several different reac-
tions, and these enzymes are represented by a single node. This
node is linked to all enzyme nodes that are connected to the
different reactions carried out by this enzyme.

Mapping and Scoring of Transcription Data. The transcriptional data
used in this study can be classified into two categories. The first
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category includes data in which two different strains (or condi-
tions) are compared and with multiple measurements for each
strain (or condition). We refer to this data type as differential
data. The second category of data are multidimensional data,
e.g., gene expression measured over a time course or with
analysis of multiple strains, with or without multiple measure-
ments at the same time point or strain.

Differential data can be mapped on the enzyme nodes of the
metabolic or enzyme-interaction graph with a specification of
the significance of differential gene expression. Here we used the
student’s t test to obtain p values, with pi representing the
significance of the change for each enzyme. Each pi can subse-
quently be converted to a Z score of the enzyme node (Zni) by
using the inverse normal cumulative distribution (!!1).

Zni " !!1"1 # pi#

In the case of multidimensional data, the absolute Pearson
correlation coefficient, Pj is calculated between all pairs of nodes
(enzymes) connected by an edge in the enzyme-interaction
graph. The Pj of an edge can be converted to a Z score for that
edge (Zej) by using the inverse normal cumulative distribution.

Zej " !!1"Pj#

The Z score follows a standard normal distribution for random
data, where p values or Pearson coefficients follow a uniform
distribution.

Method for Identification of Reporter Metabolites. To identify the
reporter metabolites, each metabolite node in the metabolic
graph is scored based on the normalized transcriptional response
of its neighboring enzymes. In case of differential data, the

normalized transcriptional response was calculated as size-
independent aggregated Z scores of the k neighboring enzymes.

Zmetabolite "
1
#k

$ Zni

Zmetabolite scores can be corrected for the background distribu-
tion by subtracting the mean ($k) and dividing by the standard
deviation (%k) of the aggregated Z scores of several sets of k
enzymes chosen randomly from the metabolic graph.

Zmetabolite
corrected "

"Zmetabolite # $k#

%k

For multidimensional data, the neighboring enzymes of a me-
tabolite in the metabolic graph are represented as an enzyme-
interaction graph with all enzymes connected to each other, and
hereby Z scores for each edge (Zej) can be calculated as described
before. Subsequently, the Zmetabolite score can be calculated and
corrected for the background distribution in the same way as for
differential data.

The scoring used for identifying reporter metabolites is basi-
cally a test for the null hypothesis, ‘‘neighbor enzymes of a
metabolite in the metabolic graph show the observed normalized
transcriptional response by chance.’’ The metabolites with the
highest score (typically up to 10) are defined as reporter
metabolites, and they mark spots in the metabolism, where there
is substantial regulation either to maintain homeostasis (i.e., a
constant level of the metabolite) or adjust the concentration of
the metabolite to another level required for proper functioning
of the metabolic network.

Fig. 1. Illustration of the proposed algorithm for identifying reporter metabolites and subnetwork structures signifying transcriptionally regulated modules.
A metabolic network (set of reactions) is converted to bipartite (metabolic) and unipartite (enzyme-interaction) graph representations. Gene-expression data
from a particular experiment then is used to identify highly regulated metabolites (reporter metabolites) and significantly correlated subnetworks in the
enzyme-interaction graph.
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Method for Identification of Highly Correlated Subnetworks. As the
next step in uncovering the transcriptionally correlated parts of
the metabolism after a perturbation, we addressed the problem
of identifying highly correlated connected subgraphs (subnet-
works) within the enzyme-interaction graph. First we define the
score Zs of a connected subnetwork s, which characterizes the
biological activity, or the aggregate transcriptional response of
the subnetwork as:

Zs "
1
#k

$
n/e!s

Zni/ej.

We used the Z score of the node, Zni, in case of differential data
and Z score of the edge, Zej, in case of multidimensional data.
As in case of the reporter metabolites, we corrected the Zs score
for the background distribution of the subnetworks of the same
size, randomly sampled from the same network.

Finding the subnetwork with the highest score is a nondeter-
ministic- polynomial-hard problem and was approached by using
a simulated annealing algorithm (12) (see supporting informa-
tion for the details of the implemented algorithm). Within the
identified subnetwork, additional subnetworks may be searched
by repetition of the algorithm over the subnetwork previously
obtained (subnetworks reported in Table 1 was obtained after
applying the simulated annealing to larger subnetworks resulting
from analysis of the whole metabolic network). We also note that
simulated annealing is a stochastic method and does not guar-
antee that the global optimal solution is found. Moreover, the
resulting subnetwork solution might differ depending on the
initial conditions and parameters. We addressed these problems
by repeating the simulated annealing search several times ($10)
and selecting the subnetwork with the highest score. We ob-
served that it was possible to obtain robust solutions with high
scores and biological significance by optimizing the parameters
of simulated annealing.

Results
We implemented the algorithm for analysis of transcription data
from the yeast Saccharomyces cerevisiae. Besides its use as a cell
factory, this yeast is used extensively as a model system for
studying human diseases (13). We used the recently recon-
structed genome-scale metabolic network of S. cerevisiae (14) to
generate the metabolic and the reaction–interaction graphs and
subsequently applied the algorithm to many yeast gene-
expression data sets to illustrate the algorithm.

Deletion of a Gene Encoding an Enzyme. We first analyzed transcrip-
tion data from a wild-type strain of S. cerevisiae and a mutant with
deletion of the gene GDH1, which encodes for NADPH-dependent
glutamate dehydrogenase, an enzyme that plays an important role
in ammonia assimilation. Physiological analysis of this strain dem-
onstrated an effect on redox metabolism, as observed through
increased ethanol yield and decreased glycerol yield (15). However,
conventional transcriptome analysis of this mutant, in which dif-
ferentially expressed genes are identified by using a statistical test
(e.g., t test analysis with Bonferroni correction), did not enable
identification of the overall effect of this genetic perturbation on the
metabolism. Despite these results, using our algorithm we identified
several key reporter metabolites, which include: ammonia, glucose
6-phosphate, fructose 6-phosphate, and sedoheptulose 7-phosphate
(Table 2). The fact that ammonia (both intracellular and extracel-
lular ammonia) is identified as a reporter metabolite is biologically
reasonable, because ammonia assimilation has been altered. It may
intuitively be more difficult to understand why the three sugar
phosphates appear as reporter metabolites. However, these three
metabolites represent branch points between the Embden–
Meyerhof–Parnas and pentose-phosphate pathways. After deletion
of GDH1, the requirement for NADPH in connection with cellular
growth is reduced by %40% (16), which reduces the requirement for
shunting glucose through the pentose-phosphate pathway, which
acts as the primary source for NADPH in S. cerevisiae.

Looking at the highly correlated metabolic subnetwork, we
found the high-scoring subnetwork to consist of 181 genes
distributed in 68 Munich Information Center for Protein Se-
quences (MIPS) functional categories (17) (supporting informa-
tion), of which 31% belong to MIPS functional categories amino
acid metabolism and transport, carbohydrate utilization, and
nucleotide metabolism. Additional analysis of the 181-gene
subnetwork resulted in identification of a 34-gene subnetwork
(Table 1). This subnetwork consists of 10 genes (apart from
GDH1) encoding enzymes catalyzing oxidoreductive reactions
involving the cofactors NADPH!NADH, clearly demonstrating
the effect of GDH1 deletion on redox metabolism. In fact, these
cofactors represent the main links in this subnetwork, which
involves two key nodes in the cellular metabolism (Fig. 2): (i) the
node between the Embden–Meyerhof–Parnas pathway and the
pentose-phosphate pathway and (ii) the node around &-keto-
glutarate. The first node is known to be controlled by the
requirement for NADPH. The decrease in expression of genes
of the pentose-phosphate pathway is consistent with a decreased
flux through this pathway in a similar mutant (18). The second
node is directly perturbed, and it makes sense that this change
results in a transcriptional response of enzymes around this node.
It has indeed been shown that in a &gdh1 mutant, the level of
&-ketoglutarate is increased (19), which is consistent with a
decreased expression of the genes KGD and LSC, both encoding
enzymes downstream of &-ketoglutarate.

Deletion of a Gene Encoding a Regulatory Protein. To further
evaluate the method, we also analyzed transcription data from a
&grr1 mutant of S. cerevisiae compared with a wild-type strain,
both grown at high glucose concentrations (20). Grr1p is a
ubiquitin-protein ligase that plays a role in glucose repression

Table 1. Genes included in the subnetworks obtained by analysis
of gene-expression data sets for "gdh1, "grr1, and
carbon sources

Data set Genes

&gdh1 PFK2, PMP2, PFK1, QNS1, MEP2, GDH1, ADE3, PFK26,
HTS1, UGP1, SAM1, BIO3, ERG6, SAH1, PCT1, PRS2,
TKL1, TRP5, TPS3, GND1, ALD6, SCS7, BNA1, HOM6,
PUR5, YML082W, ASP1, KGD1, LEU4, LSC1, ARG5,
MET13, PUT4, UGA4

&grr1 HXK1, HXT3, MAL32, STL1, DIP5, YGL186C, TAT2,
MUP1, SHM2, ADE3, YER053C, FBP1, ARO2, GLC3,
ARO3, ADE6, HIS7, GUA1, RIB1, ACS2, HIS1, PFK2,
YDR341C, URA6, ARG1, ADE12, CPA2, PDC5, LEU2,
LEU1, MDH3, YAR075W, ADH5, GAD1, ASN2, MET22,
SER2, GDH3, PNC1, ILV1, YMR293C, LYS21, LYS20,
KGD1, NDI1, RIP1, CYB2, ACH1, XKS1, PGI1, INO1,
PGM2

Carbon source HXK1, HXT2, ACS1, MET22, ARO2, THR4, SER1, GSH1,
INM1, TOR1, PRO1, PIK1, PRS2, FUR1, QRI1, LYS20,
NAT2, HMGS, HMG1, PAN5, ERG3, YJR078W, ERG11,
ERG25, YBR006W, ERG2, CAT2, CIT2, AAT2, BAT2,
BAP2, SAM3, BIO2, MDH2, FDH1, GCV1, DFR1, GND2,
GND1, PCK1, SOL3, NDH2, YFL030W, ICL1, SFC1,
MLS1, ACH1, PGM1

The subnetworks listed were obtained through a simulated annealing
search in a larger subnetwork (see algorithm description and supporting
information). For the subnetwork from the &gdh1 data set, bold names
represent enzymes directly involved in redox metabolism.
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(21). Overall, it is known that Grr1p deactivates the Rgt1p
transcriptional repression of several hexose transporters, and the
important role of Grr1p in regulating sugar transporters is clearly
seen from the list of reporter metabolites identified in this case
(Table 2). Among the 10 most important reporter metabolites,
six are hexoses, all transported by the group of HXT genes in S.
cerevisiae. The other reporter metabolites include glutamine,
orthophosphate, and glycogen. Glutamine plays a key role in the
nitrogen metabolism, which is normally considered also to be
regulated by Grr1p, although a direct link has not been estab-
lished (22). Orthophosphate is involved in a large number of
reactions in the central carbon metabolism, and the identifica-
tion of this reporter metabolite is a clear indication of the
multitude of effects caused by deletion of GRR1. In the &grr1
mutant, a high-scoring metabolic subnetwork of 204 genes was
identified, and additional analysis of this network resulted in
identification of a 52-gene subnetwork (Table 1). Besides several
genes encoding sugar and amino acid transporters that are

known to be regulated by Grr1p, this subnetwork also contains
many other genes involved in amino acid metabolism.

Multidimensional Data. To illustrate the application of the method
for analysis of transcription data measured over several different
environmental conditions, we analyzed transcription data for S.
cerevisiae grown on four different carbon sources, glucose (a
hexose), maltose (a disaccharide), and two C-2 compounds,
ethanol and acetate (23). For analysis of this type of data set, it
is intuitively more difficult to interpret the results in terms of the
changes in physiology, because the data span a multidimensional
space. However, the reporter metabolites (Table 2) still reflect
the metabolic reprogramming in response to the changes in
carbon source. Maltose is an obvious reporter metabolite,
because enzymes involved in uptake and metabolism of this
sugar are induced only in the presence of maltose. The presence
of glyoxylate and carnitine as reporter metabolites is due to the
key roles of these metabolites during growth on C-2 compounds
(24). Appearance of H' as a reporter metabolite illustrates the
ability of the algorithm to identify metabolites indirectly involved
in metabolism, because transport of maltose and acetate is
coupled with proton transport across the cell membrane. We also

Table 2. Reporter metabolites for "gdh1, "grr1, and carbon
source data sets

Metabolite
No. of

neighbors
No. of

KEGG pathways

&gdh1
Fructose 6-phosphate 15 5
Glucose 6-phosphate 11 6
NH3xt 3 —
NH3 32 7
GABAxt 2 —
CTP 8 1
Fructose 1,6-bisphosphate 4 4
Sedoheptulose 7-phosphate 5 2
CO2M 12 —
N-Acetyl-L-glutamate

5-semialdehydeM
2 —

&grr1
L-Glutamine 20 5
Glucose-xt 14 —
Mannose 15 2
Fructose 14 3
Fructose-xt 12 —
Glycogen 4 —
Orthophosphate 65 3
Glucose 28 6
Mannose-xt 11 —
Homocitric acid 2 2

Carbon source
Maltose 4 1
Carnitine 3 1
(R)-Pantoate 2 1
Glyoxylate 6 5
6-phospho-gluconate 5 1
Episterol 2 —
3-Demethylubiquinone-9M 2 —
H'EXT 42 —
3-Phosphonooxypyruvate 3 1
1-Phosphatidyl-1–D-myo-

inositol 4-phosphate
4 2

Only the top scoring 10 metabolites are shown. Data show the number of
neighbors to the reporter metabolite (or the number of reactions in which the
reporter metabolite participates) and the number of KEGG pathways in which
the reporter metabolite appears. The metabolite names ending with ‘‘M’’ and
‘‘xt’’ indicate that the metabolite is present in mitochondrial compartment
and extracellular medium, respectively. Because KEGG pathways do not clas-
sify metabolites in this fashion, the corresponding fields in the table are
empty. —, data not available.

Fig. 2. Parts of S. cerevisiae metabolism that are represented in the subnet-
work identified for the &gdh1 data set. Genes present in the subnetwork are
shown in boxes.
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performed a pairwise comparison of the four carbon sources,
and the results are provided in the supporting information.

Large-Scale Reporter Metabolite Analysis. To further evaluate the
algorithm, we performed reporter metabolite analysis of 47 tran-
scriptional data sets (see supporting information). In all these cases,
reporter metabolites provided useful information about the meta-
bolic changes underlying the particular experiment, e.g., the re-
porter metabolites identified for the comparison of carbon- and
nitrogen-limited conditions clearly show the underlying metabolic
changes in major pathways for utilization of these substrates. We
also found that relatively few metabolites were identified as reporter
metabolites for many of the conditions analyzed, which is due to the
fact that similar types of perturbations are introduced in many of
these studies (e.g., change in substrate, comparison between aerobic
and anaerobic conditions). Nevertheless, it is interesting to note that
one third of all the metabolites in the metabolic graph were
identified as a reporter metabolite in at least one of the studies (see
supporting information for the complete distribution). Moreover,
the average rank of any metabolite (defined as arithmetic average
of ranks of a metabolite, based on Zmetabolite score, from all
conditions analyzed) was found to be %150, further illustrating the
uniqueness of reporter metabolites for the particular experiment.

Discussion
Reporter metabolites and corresponding subnetworks from all
three cases, representing three different types of perturbations
(namely deletion of a gene-encoding enzyme, deletion of a gene-
encoding regulatory protein, and change in environment of a cell)
clearly project the metabolic changes after these perturbations.
Because the transcriptional changes at individual gene levels are
small, they are not identified by using conventional statistical
significance tests or clustering methods (see supporting informa-
tion), whereas our hypothesis-driven analysis of transcription data
enables identification of small and coordinated changes in expres-
sion levels. We also note that several of the identified reporter
metabolites are involved in a relatively large number of reactions
(Table 2) that are distributed in several different Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (25) pathways. Thus,
mapping of transcriptional changes onto KEGG pathways, as is
often done for visual representation of the transcriptional changes,
may be misleading.

The metabolic graph of S. cerevisiae consists of 2,000 nodes
(825 metabolites and 1,175 reactions) and 4,196 edges, whereas
the reaction–interaction graph has 1,175 nodes and 57,217 edges.

Notably, a large fraction of these edges represents interactions
caused by energy and redox cofactors giving highly connected
graphs (the average path length between any two nodes is 5.17
and 2.49 for the metabolic and reaction–interaction graphs,
respectively) with ‘‘small-world properties’’ (26, 27). The high
degree of connectivity of the metabolic network implies that the
disturbance at any node in the network can affect all branches of
the metabolism and hence demands a global control, which can
be seen from the subnetwork analysis in which we found large
significant subnetworks spanning all branches of the metabolism
(supporting information). Such changes, however, are centered
on the perturbed node (!s), as can be seen from the reporter
metabolite analysis that identifies such nodes in the metabolism.

Because of the high connectivity of the metabolic network, the
here-reported algorithm is found to be quite robust to alterations
in the metabolic graph (e.g., removal of certain metabolites). To
evaluate this robustness, we removed some of the highly connected
cofactors from the graph and studied the effect on the network
connectivity and subnetworks obtained for the GDH1 data set (see
supporting information). It was possible to obtain $75% overlap
with the original subnetwork even after the removal of both redox
cofactors (NAD'!NADH and NADP'!NADPH) and an ATP!
ADP pair, which resulted in 27% reduction in the number of edges.
The result was most sensitive to the removal of NADP'!NADPH,
which is consistent with the fact that GDH1 encodes for a NADPH-
dependent enzyme. It is notable that the removal of NAD'!NADH
did not influence the results significantly, although it resulted in a
substantial decrease in the number of edges in the network

Although the regulatory network structure defines the details
of how the transcriptional regulatory program is executed, the
metabolic network itself seems to guide this machinery, which we
see as the consequence of the fact that metabolic regulation has
been designed and evolved for and around the metabolites. We
exploited this hypothesis by developing an effective algorithm
that enables understanding the transcriptional changes of the
metabolism after genetic and environmental perturbations.
Apart from uncovering the architecture of the transcriptional
changes after known perturbations, our approach will be useful
also in identifying the effects of unknown or poorly characterized
disturbances, e.g., deletion of an ORF with unknown function or
exposure to a drug, and hereby provide clues to the role of the
ORF or the drug on the cellular metabolism.
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