
PRE-mRNA SECONDARY STRUCTURE PREDICTION
AID S SPLICE SITE PREDICTION

DONALD J. PATTERSON, KEN YASUHARA, WALTER L. RUZZO
Computer Science and Engineering

University of Washington, Box 352350
Seattle, WA 98195, USA

Accurate splice site prediction is a critical component of any computational approach to gene
prediction in higher organisms. Existing approaches generally usesequence-based models that
capture local dependencies among nucleotides in a small window around the splice site. We
present evidence that computationally predicted secondary structure of moderate length pre-
mRNA subsequences contains information that can beexploited to improveacceptor splice site
prediction beyond that possible with conventional sequence-based approaches. Both decision
tree and support vector machine classifiers, using folding energy and structure metrics char-
acterizing helix formation near the splice site, achieve a 5–10% reduction in error rate with a
human data set. Based on our data, we hypothesize that acceptors preferentially exhibit short
helices at thesplice site.

1 Introduction

Whole-genome analysis of a single organism or comparison of organisms depends
on correct gene annotation. Hence, accurate gene prediction from DNA sequence
data is an important goal for bioinformatics, both for purposes of providing “high-
throughput annotation” to match high-throughput sequencing, and for the insight it
may provide into the underlying biology. Accurate splice site prediction is a critical
component of eukaryotic gene prediction. Unfortunately, while current approaches
achieve accuracies above 90% with acceptable false negative rates, compounded er-
rors for multi-exonic genes contribute to a substantially higher error rate for full-
length genepredictions.1�3

Splice site prediction initially depended on very simple models involving con-
sensus sequences in narrow windows around the splice sites.4 As more data became
available, zero-th order Markov models (“Weight Matrix Models” or “Position Spe-
cific Scoring Matrices”) became possible.5 With still more data, researchers adopted
higher order Markov models(“Weight Array Matrices” or WAMs)6 and variantssuch
as the “Windowed Weight Array Matrices” of Burge and Karlin,7 and various kinds
of decision trees, such as the “Maximal Dependence Decomposition” model.7 De-
spite the increasing sophistication of these models as more training data becomes
available, they all basically exploit observed dependenciesamong nearby nucleotides
in the vicinity of thesplice site.

Much isknown about themechanismsunderlying splicing of Group II introns.8;9

In particular, it is known that certain short RNAs (the U1, U2, U4, U5, U6 snRNAs)



hybridize with each other and with complementary segments of the pre-message at
the donor, branch point, and acceptor sites. These segments are probably important
determinants of the specificity of splicing. The sequence-based models mentioned
above are appropriate for characterizing this sequence complementarity. However,
it also appears that the information content of these short neighborhoods around the
splice sites is not adequate to fully account for the observed high specificity of splicing
in vivo.

There has long been speculation that secondary structure in pre-mRNAs also
plays a role in splicing, and there have been a number of experimentally verified
cases where splicing defects have been tied to mutations that alter secondary struc-
ture near splice sites.10�16 However, no clear pattern emerges from these reports,
so although secondary structure may play a role in splice site recognition, a single,
strongly conserved structure (as found in tRNAs or other functional RNAs) is not ex-
pected. Rather, some looser structure or collection of structures might incrementally
contribute to the observed specificity of splicing.

For example, it seems plausible that initial hybridization of the spliceosomal
snRNAs to the pre-mRNA might be enhanced or inhibited by the presence of short
helices in the vicinity of the splice sites, without requiring conservation of a precisely
determined structure at an exact position relative to the splice site. This is consis-
tent with observations of Mir and Southern, who examined hybridization of a tRNA
to an oligo microarray and reported significant influence of the tRNA’s structure on
hybridization.17 In particular, strong hybridization generally seemed to require that
the oligo match the entire length of one strand of a helix in the tRNA, together with a
few adjacent unpaired bases, and additionally was stabilized by coaxial stacking with
another helix.

In this paper, we report positive results from a series of computational experi-
ments designed to discover such correlations between splicing and computationally
predicted secondary structure of pre-mRNAs for a sample of human genes. We iden-
tified several structure metrics showing subtle but statistically significant correlation
to acceptor splice sites (i.e., 3’ ends of introns), beyond that already accounted for by
a good sequence-based model. Comparable results were obtained with two very dif-
ferent classification methods and hence are unlikely to be simply an artifact of either
classifier. Although the net improvement in classifier accuracy was small, approxi-
mately a 5–10% reduction in misclassification rate, this could translate into a substan-
tial improvement in the accuracy of full-length gene predictions for genes with 10, 20,
or more exons. However, we feel that our most important contribution is not this di-
rect application but rather the evidence that structure does play a role in splicing, and
that current structure prediction tools are accurate enough to exploit it. Additionally,
structure might play a role in other processes, e.g., ribozyme binding18 and perhaps
mRNA stabilization and degradation. Because computational tools for discovering



informative structural features are much less well-developed than tools for features
based on primary sequence, we expect the methods outlined here to be of value in
other contexts.

In outline, the methodology we employed is as follows. From a test set of an-
notated, multi-exon human genes, we extracted acceptor splice sites and a represen-
tative sample of nearby non-sites matching the acceptor AG dinucleotide consensus.
We used Zuker’sMFOLD19;20 to predict foldings for a 100-base window centered on
each site/nonsite. Various sequence and structure features, such as per-position dinu-
cleotide frequencies and pairing probabilities, were extracted for use in our classifiers.
Each test, using 10-fold cross-validation, examined the change in accuracy between a
baseline, sequence-based model and the same model plus one or more of the structure
metrics. Tests were performed with two standard machine learning approaches—C4.5
decision trees,21;22 and support vector machines.23�26 Details of our methodology are
presented in Section 2.

Our results are described in Section 3. To briefly summarize, we obtained statis-
tically significant accuracy improvements with various combinations of three struc-
ture metrics. The first was the simplest: energy of the predicted optimal folding.
Sequences containing acceptors on average had slightly more stable structures than
nonsites. Second, for each positioni in a sequence, we computed a “Max Helix”
score, roughly an estimate of the probability of a helix within 5 bases of positioni.
We observed Max Helix scores to be relatively independent ofi for nonsites, whereas
acceptors showed a dip in Max Helix score roughly 10 bases upstream of the splice
site. For our third and most detailed metric, we determined whether each position
of a folded sequence was paired and stacked onto the nucleotide preceding it, paired
but unstacked, or unpaired, then built a second order Markov model of the resulting
ternary sequences. Again, the profiles of acceptors and non-acceptors tended to dif-
fer. For example, it appears that acceptors more often have a short helix at the splice
site. In all performance comparisons we included the score from a first order Markov
model (which we refer to as a weight array model or WAM) trained on the primary
sequence near the acceptor site. Some portion of the structural consensus noted above
is probably just a reflection of the acceptor sequence consensus. Nevertheless, in our
tests, classifiers using one or more of these structural features in addition to WAM
score consistently outperformed classifiers using WAM score alone.

2 Methods

2.1 Data Set

For training and testing, we started with 462 unrelated, annotated, multi-exon genes
with standard splicing (i.e., excluding cases of alternative or self-splicing) from a data



set proposed by Reeseet al.as a benchmark set for evaluating gene-finding software.27

Using exon annotations, we extracted a 100-base window centered on each acceptor
splice site having sufficient flanking sequence. This formed our collection of positive
samples. The non-acceptor, negative sample set was a random sampling of 100-base
subsequences centered on an AG dinucleotide that were not annotated as acceptors,
but were within 100 bases of an actual acceptor. We imposed these criteria to evalu-
ate how our structure-based methods might enhance gene prediction methods, which
must discriminate among several putative acceptor splice sites occurring close to each
other. We formed a negative sample set of the same size as our positive set, each with
1,980 subsequences, so that the machine learners gave equal weight to false negative
and false positive errors.

We randomly partitioned the 3,960 subsequences into 10 equal-sized groups for
cross-validated training and testing, with each group containing an equal number of
positive and negative samples. The same groups were used for all tests, allowing
comparison of results on a per-group basis, as well as averaged over the 10 groups.

2.2 Sequence-based Metric

Weight Array Model (WAM).6 A first order WAM models a primary sequence pattern
by storing, for each base offset, the probability of observing each base conditioned
on the previous base. Given WAMs trained on positive and negative example sub-
sequences and an unclassified subsequence, a log likelihood score can be computed
that reflects the likelihood that the subsequence contains a splice site. As in Burge’s
work,28 we scored sequences using positions -21 to +3 relative to the putative acceptor
site. To ensure that overfitting did not occur, we trained each WAM on 9 groups and
scored the remaining group with this model. Cross-validated testing with an optimal
threshold classifier confirmed that widening this window by 5 positions on either side
did not improve accuracy.

2.3 Pre-mRNA Structure Prediction and Structure Metrics

For each subsequence, we usedMFOLD to produce a comprehensive set of foldings,
typically hundreds in number, each annotated with a free energy. Low free energy
is correlated with folding stability and likelihood. The equilibrium partition function
can be used to calculate the probability that a folding will occur in nature, given its
free energy and the total free energy of all possible foldings.29 In computing structure
metrics from a given subsequence’s many predicted foldings, we used these proba-
bilities to weight each folding’s contribution to an aggregate score. More probable
foldings (i.e., ones with lower free energy) are accordingly weighted.

For each subsequence, we computed the following structure metrics:



Optimal Folding Energy (OFE).Our simplest metric was the free energy of the
optimal folding. This number roughly reflects the stability of the fold and typically is
lower with more paired bases.

Max Helix (MH).For each position around the putative splice site, we calculated
the probability, according to the equilibrium partition function, of a helix starting or
ending at that position. To relax the positional specificity of this metric, for each posi-
tion, we recorded the maximum probability of a helix start/end within a neighborhood
of 5 positions up- and downstream.

Neighbor Pairing Correlation Model (NPCM).A folded structure can be summa-
rized by a string over the three symbol alphabetfS;P;Og, corresponding to whether
each position is paired and stacked onto the nucleotide preceding it, paired but un-
stacked, or unpaired, respectively. The string’s length is equal to the length of the
original pre-mRNA sequence. For example, a three-base helix flanked by unpaired
regions would be represented by: : :OPSSO: : :

Given a set of RNA sequences of equal length, we converted each predicted fold-
ing of each sequence into a structure string and a corresponding folding probability.
This collection of strings was used to train a second order Markov model, forming an
aggregate model of the structure of the collection of sequences.

Although a Markov model can not fully describe the set of structure strings, we
believe it can approximate many local features reasonably well. (The extra descriptive
power afforded by using a stochastic context-free grammar30 did not seem warranted
at this stage.)

We trained two Markov models as described above—one on acceptor splice site
sequences and the other on non-acceptor sequences. We scored the structure string of
an unclassified pre-mRNA sequence by computing the posterior probability that each
model generated this structure string. We then computed the log of the ratio of the site
model probability over the non-site model probability, i.e., the log likelihood ratio.

2.4 Machine Learning Methods

We evaluated our structure metrics by aggregating them into real-valued feature vec-
tors and training two machine learning classifiers, support vector machines (SVMs)
and decision trees, on them.

SVMs perform binary classification by partitioning the feature space with a sur-
face implied by a subset of the training vectors near the separating surface called
support vectors.24 SVMs are efficient with multi-dimensional data, subsume many
other learning methods, and are solidly grounded in statistical theory. (See Hearst
et al.26 for a gentle introduction and Burges’ tutorial25 for a more formal, extensive
introduction with further references.) In this study, we used Noble’s implementation,
svm 1.1.31



Decision trees are another form of supervised machine learner that classify fea-
ture vectors hierarchically. When predicting the class of a vector, a decision tree
passes a vector down the tree from the root to a leaf. At each node, the decision tree
examines one feature of the vector to determine which branch the vector should re-
cursively travel down. Every leaf on the tree has an associated prediction, which is
the classification that is ultimately assigned to the vector.

Decision trees are generated (“trained”) by examining a collection of labeled
vectors and statistically determining which feature contains the most information rel-
evant to the classification. A node is formed to partition the training vectors into
subsets based on this feature. These subsets are independently used to train the next
lower level of the tree. When a subset’s elements all belong to the same class or
the amount of information in the subset is statistically insignificant, a leaf is formed,
whose classification is equal to the majority classification of the subset.

We evaluated our feature sets with the C4.5 decision tree software package.21

C4.5 forms decisions based on axis-parallel hyperplanes, corresponding to threshold
tests on one feature at each node of the tree.

2.5 Testing Methodology

In all tests, we used accuracy (fraction of samples classified correctly) as our perfor-
mance metric; observed false negative and false positive rates were roughly equal.
We employed slightly different testing methodologies for decision trees and SVMs.

The decision tree methodology began with cross-validated tests of trees trained
on WAM score alone, resulting in 10 per-group accuracies, our baseline. For each set
of structure metrics, we then repeated the cross-validated tests, allowing the decision
tree to train on WAM score in conjunction with combinations of structure metrics.
If we observed a significant increase in accuracy relative to the baseline tests, we
concluded that the structure metrics contained useful information that the WAM could
not capture.

To avoid potential problems comparing performance of SVMs with different di-
mensionality, we used amixed/matchedmethodology that only involved comparing
results for models trained on data of the same dimensionality. For each of the 10
cross-validations, we trained two models. Thematchedmodel was trained on feature
vectors that contained WAM score and the structure metrics. Themixedmodel was
trained on the same data modified by randomly permuting (“mixing”) the structure
metrics. That is, for each training vector consisting of a WAM score and at least one
structure metric, the structure metric components were replaced with those of another
training vector, randomly selected (without replacement) independently of the vec-
tor’s class. The mixed and matched models were then tested on the reserved test set,
and significantly lower accuracy with the mixed model evinced useful information in



Table 1: Results of 10-fold cross-validated decision tree testing with Weight Array Model (WAM) and var-
ious structure metric combinations: Optimal Folding Energy (OFE), Neighbor Pairing Correlation Model
(NPCM), and Max Helix scores (MH). NPCM was scored on positions -50 through +3, and MH scores are
taken for positions -10 and +3 only. Mean accuracy (fraction of samples classified correctly), improvement
over baseline WAM accuracy (�� one standard deviation) and paired Wilcoxon testp-values are shown.

features mean acc. (%) � p

WAM (baseline) 92.73 - -
WAM, OFE 93.13 +0:40� 0:87 0.066
WAM, OFE, NPCM 93.16 +0:43� 0:80 0.022
WAM, OFE, MH 93.21 +0:48� 0:90 0.009
WAM, OFE, NPCM, MH 93.13 +0:40� 0:84 0.016

the structure metrics not captured in the WAM score.
With no reason to assume the observed accuracy distributions were Gaussian, we

conservatively tested statistical significance of accuracy differences using the paired
Wilcoxon signed rank test, a nonparametric analogue of the pairedt-test. For the
paired Wilcoxon test, thep-value is the probability of obtaining test results as extreme
as those we observed, assuming the null hypothesis—that the differences between
paired accuracies have median zero.

3 Results

We trained decision trees and radial basis kernel SVMs with many combinations of
the structure metrics we formulated. Testing with cross-validation as described in
Section 2.5, we identified optimal folding energy (OFE), Max Helix, and Neighbor
Pairing Correlation Model (NPCM) scores as useful metrics for acceptor recognition.

Decision tree test results in Table 1 show that training on WAM and OFE with
each of the remaining structure metrics yielded statistically significant accuracy im-
provement, relative to training on WAM score alone. Because overfitting causes
decision tree performance to degrade with the addition of features with redundant
information, we chose only two Max Helix positions (-10 and +3). Adding the com-
bination of OFE and these Max Helix scores yielded a 7% reduction in classification
error rate.

We also saw statistically significant accuracy improvements in mixed/matched
SVM testing when Max Helix scores for each position from -20 to +3 were combined
with OFE. This result independently supports the decision tree results with Max Helix
above. To examine the degree of variability of these results due to the randomized
mixing step, we repeated the 10-fold cross-validation runs ten times. For each of
these ten runs, Table 2 shows the mean accuracy with the mixed models and by how



Table 2: Results of radial kernel SVM mixed/matched testing with Weight Array Model (WAM) score,
optimal folding energy (OFE) and Max Helix (MH) scores for each position from -20 to +3. 10-fold cross-
validation runs were repeated ten times. For each run, mean mixed model accuracy, improvement with
matched model (�� one standard deviation) and paired Wilcoxon testp-values are shown. Accuracy with
the matched model was 92.90%.

c.v. mean accuracy (%)
run mixed � p

1 91.61 +1.29�1:18 0.006
2 92.15 +0.76�0:76 0.014
3 92.27 +0.63�0:62 0.012
4 92.25 +0.66�0:71 0.014
5 91.84 +1.06�0:99 0.010
6 92.12 +0.78�0:73 0.009
7 91.99 +0.91�0:74 0.009
8 92.22 +0.68�0:71 0.028
9 92.07 +0.84�0:47 0.006
10 92.53 +0.38�0:63 0.072

mean 92.10 +0.80 -

much it differs from the mean accuracy with the matched models. Properly matching
WAM score and structure metrics improved accuracy in all ten of the cross-validation
runs, withp < 0:05 in nine of the ten runs and with improvements exceeding 1% with
p < 0:01 in two of them. On average, the improvement was 0.8%, approximately a
10% reduction in misclassification rate.

Figure 1 presents three views of the structure metrics we developed. In each
graph, the solid and dotted lines are the mean and standard deviation, respectively, of
the metric, calculated across all 10 cross-validation groups. The top graph shows the
log10 likelihood ratio of a base pairing (either stacked or unstacked) with any other
base within the folding window. From this graph it can be observed that there is an
approximately 25% smaller chance of a pair forming at position -5 in an acceptor
splice site than in a non-site. This effect is reversed in the region from -2 to +1, where
acceptors demonstrate a 25% greater chance of pairing.

The middle graph of Figure 1 further investigates this trend by showing the prob-
ability of a stacked pair,S, at a given position, conditioned on the previous two po-
sitions beingOP, i.e., an unpaired base followed by a paired base. This can be inter-
preted as the probability that a helix will continue given that it has recently started.
From positions -30 to -7 there is a roughly equal chance that such a continuation will
occur regardless of whether the sequence is an acceptor or not. Then at positions -6
to -4 the likelihood of a helix continuing drops by approximately 20% in acceptors



relative to non-acceptors. Just before the splice site, the trend reverses for the accep-
tors, suggesting a bias toward helix formation at position -3 and -2. Shortly after the
splice site there is a bias away from helix formation.

Finally, the bottom graph shows the conditional probability of a stacked pair,S,
directly following two other stacked pairs,SS. This can be interpreted as the proba-
bility that a helix of length 3 or greater will continue. There is a bias at positions -5 to
-3 prior to the splice site for termination of helices, but once a helix extends into the
splice site region, there is a strong bias toward continuation. After the splice site, the
bias is reversed briefly.

Collectively, these three graphs suggest that acceptor sequences are more likely
than our non-acceptor sequences to form a short helix at the splice site.

4 Conclusion

We have presented evidence that valuable information can be extracted from predic-
tions of pre-mRNA structure that aid in the location of acceptor splice sites. Mul-
tiple machine learners were able to utilize this information to produce statistically
significant improvements in accuracy. While specific structural signatures were not
detected, general trends toward helix formation in the region of the splice site suggest
the possibility of greater exploitation of structural cues by gene finding algorithms.

Similar structural biases were observed at the donor splice site in the same data
set, but not with sufficient strength that statistical significance could be ascribed to
them. Future research is warranted toward the development of models that capture
structural features at the donor splice site, as well as improving upon the acceptor site
models we have presented and their biological interpretation.
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13. Béatrice Clouet d’Orval, Yves d’Aubenton Carafa, Pascal Sirand-Pugnet,
Maria Gallego, Edward Brody, and Joelle Marie. RNA secondary structure
repression of a muscle-specific exon in HeLa cell nuclear extracts.Science,
252:1823–1828, June 1991.

14. James O. Deshler and John J. Rossi. Unexpected point mutations activate
cryptic 3’ splice sites by perturbing a natural secondary structure within a yeast
intron. Genes & Development, 5:1252–1263, 1991.

15. Andrés F. Muro, Massimo Caputi, Rajalakshmi Pariyarath, Franco Pagani,
Emanuelle Buratti, and Francisco E. Baralle. Regulation of fibronectin EDA
exon alternative splicing: Possible role of RNA secondary structure for en-
hancer display.Molecular and Cellular Biology, 19(4):2657–2671, April 1999.

16. Luca Varani, Masato Hasegawa, Maria Grazia Spillantini, Michael J. Smith,
Jill R. Murrell, Bernardino Ghetti, Aaron Klug, Michel Goedert, and Gabriele
Varani. Structure of tau exon 10 splicing regulatory element RNA and desta-



bilization by mutations of frontotemporal dementia and parkinsonism linked
to chromosome 17. Proceedings of the National Academy of Science USA,
96:8229–8234, July 1999.

17. K.U. Mir and E.M. Southern. Determining the influence of structure on hy-
bridization using oligonucleotide arrays.Nature Biotechnology, 17:788–792,
1999.

18. M. Amarzguioui, G. Brede, E. Babaie, M. Grøtli, B. Sproat, and H. Prydz.
Secondary structure prediction andin vitro accessibility of mrna as tools in the
selection of target sites for ribozymes.Nucleic Acids Research, 28(21):4113–
4124, 2000.

19. M. Zuker, D.H. Mathews, and D.H. Turner. Algorithms and thermodynamics
for RNA secondary structure prediction: A practical guide. In J. Barciszewski
and B.F.C. Clark, editors,RNA Biochemistry and Biotechnology, NATO ASI
Series, pages 11–43. Kluwer Academic Publishers, 1999.

20. D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence
dependence of thermodynamic parameters improves prediction of RNA sec-
ondary structure.Journal of Molecular Biology, 288:911–940, 1999.

21. J. R. Quinlan.C4.5: Programs for Empirical Learning. Morgan Kaufmann,
1993.

22. J. R. Quinlan. Bagging, boosting, and C4.5. InProceedings of the Thir-
teenth National Conference on Artificial Intelligence, pages 725–730, Cam-
bridge, MA, 1996.

23. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
24. V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
25. C.J.C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–67, 1998.
26. M. Hearst (Ed.), S.T. Dumais, E. Osuna, J. Platt, and B. Sch¨olkopf. Trends &

controversies: Support vector machines.IEEE Intelligent Systems, 13(4):18–
28, 1998.

27. Martin Reese, David Kulp, Andrew Gentles, and Uwe Ohler. GENIE gene
finding data set.http://www.fruitfly.org/sequence/human-datasets.html.

28. C.B. Burge. Modeling dependencies in pre-mRNA splicing signals. InCompu-
tational Methods in Molecular Biology, pages 129–64. Elsevier Science, 1998.

29. J. McCaskill. The equilibrium partition function and base pair bindings proba-
bilities for RNA secondary structure.Biopolymers, 29:1105–1119, 1990.

30. Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.Bio-
logical Sequence Analysis: Probabilistic models of proteins and nucliec acids.
Cambridge, 1998.

31. W.S. Noble (formerly W.N. Grundy). svm 1.1.http://www.cs.columbia.edu/
˜noble/svm/doc/.


