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We have used microarray gene expression profiling and
machine learning to predict the presence of BRAF
mutations in a panel of 61 melanoma cell lines. The
BRAF gene was found to be mutated in 42 samples (69%)
and intragenic mutations of the NRAS gene were detected
in seven samples (11%). No cell line carried mutations of
both genes. Using support vector machines, we have built a
classifier that differentiates between melanoma cell lines
based on BRAF mutation status. As few as 83 genes are
able to discriminate between BRAF mutant and BRAF
wild-type samples with clear separation observed using
hierarchical clustering. Multidimensional scaling was used
to visualize the relationship between a BRAF mutation
signature and that of a generalized mitogen-activated
protein kinase (MAPK) activation (either BRAF or
NRAS mutation) in the context of the discriminating
gene list. We observed that samples carrying NRAS
mutations lie somewhere between those with or without
BRAF mutations. These observations suggest that there
are gene-specific mutation signals in addition to a common
MAPK activation that result from the pleiotropic effects
of either BRAF or NRAS on other signaling pathways,
leading to measurably different transcriptional changes.
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Introduction

Constitutive activation of the receptor tyrosine kinase
(RTK)/Ras/Raf/mitogen-activated protein kinase

(MAPK) pathway is a frequent and early event in
melanoma development (Cohen et al., 2002; Satya-
moorthy et al., 2003). Recently, mutation of BRAF (v-
raf murine sarcoma viral oncogene homolog B1) has
been shown to be the primary mechanism by which this
activation occurs (Davies et al., 2002). BRAF mutation
is arguably the most critical step in the initiation of
melanocytic neoplasia, but is insufficient to confer the
malignant potential since mutations occur as often in
benign melanocytic nevi as in invasive cutaneous
melanomas (Pollock et al., 2003). Somatic BRAF
mutations occur in 41–88% of melanomas and nevi
(Brose et al., 2002; Davies et al., 2002; Dong et al., 2003;
Gorden et al., 2003; Pollock et al., 2003; Satyamoorthy
et al., 2003) and in a variety of other tumor types,
including 36–69% of papillary thyroid cancers (Cohen
et al., 2003; Fukushima et al., 2003; Kimura et al., 2003),
5–18% of colorectal carcinomas (Davies et al., 2002;
Rajagopalan et al., 2002; Yuen et al., 2002) and 2–3% of
lung cancers (Brose et al., 2002; Davies et al., 2002;
Naoki et al., 2002; Cohen et al., 2003). All documented
mutations to date have been found in the kinase domain
of B-Raf, encoded by exons 11 and 15 of the BRAF gene
(Brose et al., 2002; Davies et al., 2002; Naoki et al.,
2002; Yuen et al., 2002). The majority of these
mutations affect one critical amino acid, resulting in a
valine to glutamic acid substitution at residue 599. The
V599E substitution is thought to lead to constitutive
kinase activity of B-Raf, potentially by mimicking the
phosphorylation of the T598 and S601 residues that
occurs during the normal activation of the kinase
(Davies et al., 2002).
In some melanomas without BRAF mutation, the

MAPK pathway is constitutively activated through
mutation of NRAS (neuroblastoma RAS viral (v-ras)
oncogene homolog) (van Elsas et al., 1996). BRAF and
NRAS mutations appear to have the same effect in
melanoma development since their occurrence in the
same tumor is mutually exclusive (Cohen et al., 2002;
Davies et al., 2002; Pollock et al., 2003; Satyamoorthy
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et al., 2003). A similar situation has also been observed
in thyroid (Kimura et al., 2003), lung (Brose et al., 2002;
Davies et al., 2002; Naoki et al., 2002) and colon cancers
(Davies et al., 2002; Rajagopalan et al., 2002; Yuen et al.,
2002), where BRAF and RAS mutations are seldom
found in the same tumor. In the few exceptional colon
(Davies et al., 2002; Yuen et al., 2002) and lung cancers
(Brose et al., 2002; Davies et al., 2002) in which both
BRAF and RAS mutations occur, the mutations in
BRAF never include the V599E change (Davies et al.,
2002; Yuen et al., 2002), indicating that substitutions
elsewhere in B-Raf may not have the same potency in
activating the MAPK pathway.
Recently, microarray gene expression profiling has

been used to develop a number of phenotypic models
that predict the activity of various oncogenic signaling
pathways, including those emanating from the activa-
tion of Ha-ras, c-myc and members of the E2F family of
transcription factors (Huang et al., 2003). The models
were extremely accurate in assigning the activation
status of various oncogenic pathways after the infection
of murine embryonic fibroblasts with oncogene-expres-
sing adenoviruses. Similar discrimination was seen
between mammary tumors that arose in mice carrying
either MYC or HRAS transgenes driven by the MMTV
promoter. These findings indicate that oncogene activa-
tion can lead to highly specific and lasting gene
expression changes.
Supervised analysis methods are very powerful for

classification and prediction of cancer gene expression
profiles into predefined classes (Golub et al., 1999;
Simon et al., 2003). In these methods, expression data
from cancer samples, together with knowledge about
which class each sample belongs to, are used to
construct a classifier (prediction rule). The accuracy of
the classifier is evaluated on independent samples that
were neither used to select genes to include in the
classifier nor to construct the prediction rule. Recently,
supervised machine learning methods such as artificial
neural networks and support vector machines (SVMs)
have been used to classify cancer expression profiles
(Furey et al., 2000; Khan et al., 2001). Here, we have
used expression profiling and SVM learning as a tool to
predict the presence of BRAF activating mutations in a
panel of melanoma cell lines.

Results

Mutation data

Mutation status of BRAF and NRAS was determined
for each cell line (see Supporting Table 2 in Supple-
mentary Material at the following URL: http://www.
qimr.edu.au/research/labs/nickh/Pavey-et-al-Supporting-
Information.pdf). The following mutations were
detected:

BRAF

Four amino-acid substitutions were detected in exon 15
and none were observed in exon 11. At nucleotide

positions 1786 and 1787, a transition of a C4T and a
T4C, respectively, led to a substitution at codon 596
(L596S). At nucleotide position 1786, a transversion of a
C4G led to a substitution at codon 596 (L596V). At
nucleotide positions 1795 and 1796, a transition of a
G4A and transversion of a T4A, respectively, led to a
substitution at codon 599 (V599K). At nucleotide
position 1796, a transversion of T4A led to a
substitution at codon 599 (V599E). In the panel of 61
cell lines, L596S, L596V and V599K each occurred once
(1.6%). The V599E mutation occurred at a frequency of
69% (42/61).

NRAS

Two amino-acid substitutions were detected in exon 1.
At nucleotide position 34, a transition of a G4A led to
a substitution at codon 12 (G12S) and at nucleotide
position 37, a transversion of a G4C led to substitution
at codon 13 (G13R). Both mutations occurred once
(1.6%). In exon 2, three amino-acid substitutions were
detected affecting codon 61. At nucleotide position 181,
a transversion of a C4A led to a Q61K substitution. At
nucleotide position 182, a transversion of an A4T and a
transition of an A4G led to Q61L and Q61R
substitutions, respectively. Q61K, Q61L and Q61R
mutations occurred at frequencies of 1.6% (1/61),
6.5% (4/61) and 3.3% (2/61), respectively. In one cell
line, MM649, NRAS was homozygously deleted.

Supervised gene selection

The first pass of analysis used a supervised approach,
based on a nonparametric method to determine
differential gene expression between samples with BRAF
or NRAS mutations and wild-type samples. We used all
61 cell lines in each analysis. Using the Mann–Whitney
U-test, we expect 50 of the 5041 filtered clones to have a
P-value of less than 0.01 by chance. The BRAF mutant
versus BRAF wild-type supervised analysis yielded 135
clones from the filtered list with Po0.01 (see Supporting
Table 3), and the NRAS mutant versus NRAS wild-type
analysis yielded 48 clones (see Supporting Table 4). The
overlap between these BRAF and NRAS lists was 19
clones (see Supporting Table 4). The combined genotype
of having either BRAF or NRAS activating mutations
versus wild type for both NRAS and BRAF yielded 37
clones at Po0.01.

Supervised classification

We used the receiver operating characteristic (ROC)
curve area to measure the prediction performance on
samples not used to train the classifier. For the SVM
committee that discriminates cell lines according to
BRAF mutation status, we got an area of 82%
(Supporting Figure 1). Regardless of the number of
samples in each class, a random classifier will on average
result in an area of 50% (ideally the area is 100%).
When we performed the same analysis with randomly
permuted sample labels, we got better or equal
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performance only 29 times out of 10 000 replicates
(P¼ 0.0029), which strongly suggests that there was no
overfitting in our classification procedure. Hence, there
is a strong correlation between gene expression profiles
and BRAF status that can be used to predict signifi-
cantly the status of samples not used to train the
classifier.
Next, we ranked the genes (refer to Supporting Table

3) and built a new classifier using only the N top-ranked
genes (see Materials and methods). In addition, we built
a classifier based on N randomly selected genes.
Performing this for different values of N, we got a
significantly better performance using genes from the
ranking than from random selections (Figure 1). The
difference was most significant when we used a small
number of genes. This conclusion is expected since
choosing more random genes increases the number of
selected top-ranked genes. Hence, it is probable that we
had some overlap between the 100 genes selected by
random and the 100 top-ranked genes. Using the top 80
genes, we get a performance of similar quality as when
using all the genes. Thus, to get a list of BRAF
discriminatory genes, we selected genes that were ranked
in the top 80 by at least 25% of the SVMs, which
resulted in a total of 83 genes (Figure 2 and Supporting
Table 5).
Hierarchical clustering using these 83 BRAF discri-

minatory genes was performed in both the sample and
clone dimensions (Figure 2). This provided clear
clustering of the cell lines carrying BRAF activating
mutations. The relationships of the genotype classes are
further illustrated in a multidimensional scaling (MDS)
visualization (Figure 3). This plot again demonstrated
clear discrimination between the samples carrying

BRAF activating mutations to samples wild type for
BRAF, while allowing observation of the samples
carrying the NRAS mutation as lying somewhere
between the BRAF wild-type and the BRAF mutated
samples.

Quantitative RT–PCR (qRT–PCR)

To assess the reliability of the array hybridization
results, transcript levels of nine differentially expressed
genes were measured using qRT–PCR analysis. Intra-
and interassay variation was 2.9 and 6.8%, respectively,
and the qRT–PCR duplicate assays had a coefficient of
variation less than 0.05. The concordance between the
qRT–PCR and the microarray expression levels was
determined (Figure 4) for each of the genes validated
(see Supporting Tables 6a–i for raw data) as follows: for
each gene expression ratios determined by microarray
analysis and qRT–PCR were grouped into three ‘bins’,
defined as upregulated genes (42.0-fold expression
ratio), genes with equal expression (within 0.5- to 2.0-
fold) and downregulated genes (o0.5-fold). When
microarray and qRT–PCR expression ratios were in
the same ‘bin’, the methods were regarded as con-
cordant. The two methods were highly concordant, with
an average of 75% concordance between genes upregu-
lated in association with a BRAF mutation, and 79% for
genes downregulated in BRAFmutant samples. The lack
of concordance between a small proportion of the
samples may be due to a number of possible factors,
including minor divergence between replicate spots on
the microarray, variation in distribution and intensity of
pixels within each spot or lack of dynamic range across
expression levels in microarray data in comparison to
the qRT–PCR expression range. Fold changes in
transcript levels were generally more compressed using
microarrays, in agreement with previous reports
(Rajeevan et al., 2001; Chuaqui et al., 2002).

Discussion

Mutation status of BRAF and NRAS was determined
for 61 melanoma cell lines. BRAF mutations were
detected in 44 samples (72%). All mutations occurred in
exon 15 and all but three resulted in a V599E
substitution. NRAS activating mutations were found
in nine samples and another cell line had a homozygous
deletion of this gene. No cell line with a BRAF mutation
also carried an intragenic mutation of NRAS, in keeping
with previous reports that have found RAS and BRAF
mutations to be almost mutually exclusive in a variety of
cancer types (Brose et al., 2002; Cohen et al., 2002;
Davies et al., 2002; Naoki et al., 2002; Yuen et al., 2002;
Kimura et al., 2003; Pollock et al., 2003; Satyamoorthy
et al., 2003).
Using SVMs, we have built a classifier that based on

gene expression profiles discriminates between melano-
ma cell lines according to whether they carry mutations
in BRAF. As few as 83 genes are able to discriminate
between BRAF mutant and BRAF wild-type cell lines.

Figure 1 Prediction performance from SVM classification of
BRAF mutation status. SVM prediction performance, as measured
by the ROC area, of BRAF status using varying numbers of top-
ranked genes as input to the SVMs. Black curve – ROC area as a
function of the number of top-ranked genes used; gray curve –
results obtained when selecting the same number of genes
randomly from the filtered data set; dotted gray curves – one
standard deviation from the average random result
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Hierarchical clustering using these discriminatory genes
gives good separation of the samples (Figure 2).
Initially, we considered there might be a common
MAPK activation signature (resulting from either
BRAF or NRAS mutation); however, we found no
overabundance of discriminatory genes for the com-
bined group of samples having either BRAF or NRAS
mutations. Furthermore, we built SVMs for discrimi-
nating samples with mutation of either BRAF or NRAS
from samples being wild type for both BRAF and
NRAS, and obtained results comparable to random
predictions. Moreover, using MDS, we found clear
separation of BRAF mutant samples and samples wild
type for both BRAF/NRAS, and observed a tendency
that NRAS mutant samples generally clustered between
these two groups. This observation suggests that there
may be some genes that specifically discriminate
between the three genotypic classes, but more samples
are required to establish a specific NRAS mutation

signature. Nonetheless, our findings suggest that the
transcriptional consequences resulting from mutation of
BRAF or NRAS are different, presumably through their
differential capacity to receive input signals and
transduce them through various effectors. Indeed, since
all cell lines were grown in the presence of serum at the
time of RNA extraction (hence the MAPK pathway
would be expected to be constitutively activated in every
line), the genes that discriminate BRAF or NRAS
mutant cells are independent of this common MAPK
activation. This notion implies that some of the genes on
the BRAF discriminating gene list may not necessarily
be the direct targets of the transcription factors (e.g.
Elk-1) that are ultimately activated by MAPKs. This
hypothesis has important ramifications for the develop-
ment on new melanoma treatments, as it would open up
the possibility of identifying novel therapeutic targets
outside of the MAPK pathway that could be used to
treat melanomas carrying BRAF mutations. In a highly

Figure 2 Hierarchical clustering of 61 melanoma cell lines and genes, using the BRAF discriminatory genes (n¼ 83). Spearman’s
correlation was used to cluster samples and genes based on centralized data. Expression ratios (see color scale bar) used to color the
dendrogram were derived from normalized values. Branches pertaining to individual cell lines carrying a BRAF mutation are colored
blue (BRAF mutant/NRAS wild type), cell lines carrying an NRAS mutation colored green (NRAS mutant/BRAF wild type) and cell
lines that are wild type at both loci colored red. Asterisks in the GenBank accession column refer to probes where no data were
obtained during sequence validation by the array manufacturer (refer to http://www.microarray.ca/support/glists.html)
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analogous situation to that we have described here,
Huang et al. (2003) built expression models to predict
the activation status of E2F1, E2F2 and E2F3, and
showed that the models could readily discriminate
between the activation of these three very closely related
transcription factors.
Of the 83 BRAF discriminatory genes, 42 have known

function and the remainder encode hypothetical pro-

teins or are simply ESTs. Notably, five of the known
genes encode phosphatases, enzymes with key functions
in regulating signal transduction pathways. PTPRA for
example, is a member of the protein tyrosine phospha-
tase (PTP) family involved in regulating cell cycle
transition from G2phase to mitosis and has been shown
to dephosphorylate and activate Src family tyrosine
kinases (Mustelin and Hunter, 2002). PTPRA has also
been implicated in the regulation of integrin signaling,
cell adhesion and proliferation (Zheng et al., 1992;
Harder et al., 1998; Zheng and Shalloway, 2001). The
higher expression levels seen in BRAF mutant samples
supports a role for PTPRA in melanoma cell prolifera-
tion.
While space prohibits the discussion of all named

genes on the discriminating list, brief summaries of few
key genes that have biological relevance to melanoma
follow. ANXA7 is a member of the annexin family of
Ca2þ -dependent phospholipid-binding proteins and has
a postulated role in suppressing prostate cancer (Srivas-
tava et al., 2001). We found reduced ANXA7 mRNA
expression in BRAF mutant samples, supporting a
similar tumor suppressor role for ANXA7 in melanoma.
The related ANX1 and ANX6 have also been assigned
tumor suppressor roles in other cancer models (Bastian,
1997), including a loss of ANX6 expression during
progression from benign to malignant melanoma
(Francia et al., 1996).
The gene encoding melanoma cell adhesion molecule

(MCAM/MUC18/CD146) was found to be expressed at
higher levels in BRAF mutant samples. MCAM func-
tions as a Ca2þ -independent cell adhesion molecule
involved in homotypic and heterotypic adhesion be-
tween melanoma cells and endothelial cells, respectively
(Johnson et al., 1997; Shih et al., 1997). Our data are
consistent with higher expression of MCAM being
associated with increased tumor growth and metastatic
potential of melanoma cells (Luca et al., 1993; Xie et al.,
1997).
The SKI protein has been implicated as a key

regulator of melanoma tumor progression (Medrano,
2003). Ski-interacting protein (SKIP), together with
SKI, interacts with pRb, resulting in the repression of
pRb-induced cell cycle arrest (Prathapam et al., 2002).
We found generally increased SKIP expression in BRAF
mutant samples, suggesting the possibility of abrogated
pRb activity with concomitant cell cycle progression in
BRAF mutant melanomas.
The genes encoding the E2 (DLAT) and E3 (DLD)

components of pyruvate dehydrogenase were in the top
83 ranked discriminating genes. Both genes showed
increased mRNA expression in BRAF mutant samples,
which may reflect altered energy production in mela-
noma cells carrying these mutations.
A number of microarray studies in various types of

cancer have identified gene expression patterns indica-
tive of the mutational activation of oncogenic pathways
or inactivation of tumor suppressor pathways. Typical
examples include signatures underlying germline
BRCA1 or BRCA2 mutations in breast (Hedenfalk
et al., 2001) and ovarian cancer (Jazaeri et al., 2002), as

Figure 3 MDS plot using the BRAF discriminatory genes (n¼ 83).
Each spot represents an individual sample, with cell lines carrying a
BRAFmutation colored blue (BRAFmutant/NRAS wild type), cell
lines carrying an NRAS mutation colored green (NRAS mutant/
BRAF wild type) and cell lines that are wild type at both loci
colored red

Figure 4 Concordance between gene expression levels measured
by microarrays and qRT–PCR. Gene expression levels obtained
using microarrays were confirmed by qRT–PCR for nine different
transcripts. Concordance was deemed to occur if the gene
expression ratios (relative to the reference sample) were assessed
to be within the same ‘bin’, namely, upregulated (42.0-fold
upregulated); roughly equal (within 0.5- to 2.0-fold); or down-
regulated (o0.5-fold), by both methods. Samples for which
expression ratios fell into separate bins for each method were
regarded to be nonconcordant. The percentage of samples
concordant between the two methods are shown for each gene.
Genes with a higher average expression in BRAF mutant samples
compared to wild-type samples are denoted by open bars and genes
that have a lower average expression in BRAF mutant samples
compared to wild-type cell lines are shown as solid bars
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well as somatic mutations of TP53 in breast cancer
(Sorlie et al., 2001), and a variety of mutations/
translocations in T-cell acute lymphoblastic (Ferrando
et al., 2002) or acute myeloid leukemia (Schoch et al.,
2002). The work we have presented in this study has led
to the identification of an expression signature that
predicts BRAF mutation status in melanoma. While this
finding points to underlying structure in global gene
expression profiles, it is only through further analysis of
the individual genes that discriminate between mutated
and wild-type samples that we may hope to better
understand the molecular events controlling melanoma
development. Importantly, some of the genes on the
BRAF discriminating gene list may prove to encode
useful new therapeutic targets to treat melanomas
carrying BRAF mutations.

Materials and methods

Cell culture and RNA extraction

A panel of 61 melanoma cell lines derived from cutaneous
melanomas or nodal metastases were used. Of these, 38 cell
lines have been described previously (Castellano et al., 1997).
Of the remaining lines, the series A2–A15 and D4–D25 were
established by Dr Christopher Schmidt, Professor Kay Ellem,
Professor Michael O’Rourke and co-workers; ME1007,
ME1402, ME4405, ME10538, Mel-FH, Mel-RM and Mel-
RMU were established by Professor Peter Hersey and co-
workers, and MM470, MM537 and MM629 were established
by Dr Peter Parsons and co-workers. All cell lines were
cultured in RPMI1640 in the presence of 10% fetal bovine
serum from the same batch. Total RNA was extracted using
Qiagen RNeasy Midi-kits from cells in log phase growth at
70% confluency lysed directly on the plate. Cell lysates were
stored at �701C until extraction, which was carried out as per
the manufacturer’s instructions (further information is avail-
able as Supporting Text 1).

Genotyping of cell lines

Since all BRAF mutations to date have been reported to occur
in exons 11 and 15 (Brose et al., 2002; Davies et al., 2002;
Naoki et al., 2002; Yuen et al., 2002), each line was screened
for variants in these exons by PCR sequencing. NRAS was also
screened for mutations in codons 12, 13 and 61, which have
been found previously to activate the potential of NRAS to
transform cultured cells (Schleger et al., 2000) and have been
found in a variety of human tumors including melanomas (van
Elsas et al., 1996). For further information refer to Supporting
Text 2.

Microarray probe preparation, hybridization and scanning

Each sample was cohybridized on the arrays together with that
of a common reference cell line, MM329, derived from a
primary melanoma and which is wild type for BRAF, NRAS
and CDKN2A. Probes were prepared using 40mg of RNA for
test samples and 50mg of reference RNA. RNA was reverse
transcribed into fluorescently labeled cDNA by direct dye
incorporation, using Cy5-dUTP in the test samples, and Cy3-
dUTP in the reference. Each sample was hybridized to
commercially available cDNA arrays printed on glass slides
by the Microarray Centre, University Health Network, Ontario,
Canada (http://www.microarrays.ca). The slides were Human

19K Arrays (v2.0) containing 19 008 human ESTs, derived by
PCR amplification of inserts, representing 18 107 separate
cDNAs spotted in duplicate across two slides. Details of clone
identity and sequence verification are available at http://
www.microarray.ca/support/glists.html. Hybridization was car-
ried out at 421C for 16–18h, and the slides were washed
according to the manufacturer’s protocol. The chips were
scanned by a GMS418 confocal scanner (Affymetrix/Genet-
icMicrosystems) with SoftMax Pro software to obtain raw
images. Refer to Supporting Text 3 for further information.

Microarray data analysis

Expression profiles from the 61 cell lines were used in each
analysis. Raw images were imported into ImaGene v4.2
(BioDiscovery), and mean pixel intensities were extracted
and spots with poor/absent signal were flagged. For each
clone, the logarithm of the ratio between the intensity in the
sample (red) channel and the reference (green) channel was
averaged over the duplicates and used as the expression value
for the clone. As saturated and low-intensity data tend to be
noise dominated, we used quality control criteria that required
clones to have all four intensities (red and green for both
duplicates) between 50 and 64 000 fluorescence units. Of 19 200
clones in duplicate, 5041 survived this filter across all 61
samples. The data were centralized sample by sample such that
the average expression value for a sample was zero. MDS
analysis was performed as described by Khan et al. (2001) in
three dimensions using Euclidean distance measures. Hier-
archical clustering was performed on data centralized such that
the average expression for each gene was zero using Gene-
Spring v5.0 (Silicon Genetics, Redwood City, CA, USA) with
default settings. Data analysis incorporating mutation status
and expression data from each cell line were undertaken by
supervised analysis methods (outlined below).

Supervised gene selection

The filtered set of clones was investigated for clones that
displayed statistically significant differences between the two
BRAF genotype groups (BRAF wild type and BRAF mutant)
and the two NRAS genotype groups (NRAS wild type and
NRAS mutant). For this purpose, a supervised approach using
the Mann–Whitney U-statistic was used to generate a list of
clones that satisfied statistical significance between genotype
groups to a P-value of less than 0.01. The Mann–Whitney U-
statistic has been demonstrated to be robust and conservative
(low Type I error) in its application to the identification of
discriminatory genes from expression data (Troyanskaya et al.,
2002).

Supervised classification

We used linear maximal-margin SVMs (Cristianini and Shawe-
Taylor, 2000) to classify the samples according to mutational
status. SVMs were trained in a threefold crossvalidation
scheme, in which samples were randomly split into three
groups, and two groups were used for training an SVM and
the remaining group was used for validation. This was
repeated three times such that each group (and consequently
each sample) was used for validation once. A committee of
SVMs was created by repeating this entire procedure 10 times.
Hence, for each sample there were 10 SVMs for which the
sample was not used in the training. The average of the outputs
from these 10 SVMs was used as prediction output for the
sample.
We used the ROC curve area (Hanley and McNeil, 1982) to

measure the prediction performance of the SVM committee.
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As we used linear maximal-margin SVMs that have no user-
tunable parameters, the risk of overfitting in our cross-
validation procedure was small. Nevertheless, in order to rule
out overfitting and to validate the significance of the
performance of the committee, we performed a random
permutation test. We randomly relabeled the samples keeping
the class proportions, and with these new labels performed the
full crossvalidation procedure described above. This was
carried out for 10 000 random sample labelings and an
empirical probability distribution of the ROC curve area with
random labels was generated. Using this probability distribu-
tion, the actual ROC area was assigned a P-value correspond-
ing to the probability to obtain this prediction performance or
better under the null hypothesis of gene expression patterns
randomly associated with the classes.
Next, we ranked the genes using the Mann–Whitney statistic

and investigated how many genes were needed to get good
performance. For each SVM, genes were ranked based on a
Mann–Whitney test applied only to the subset of samples used
when training the SVM. Since we have a total of 30 SVMs, this
results in 30 ranks assigned to each gene, one for each SVM.
To achieve a consensus gene ranking, we used the 25th
percentile of these 30 ranks.
To check the significance of the gene ranking the cross-

validation procedure was redone using only the top N genes
from the rankings. Here, we used the individual gene ranking
for each of the 30 SVMs. Thus, the validation samples were
not used in the selection of genes to use in the training and
there was no information leak. We did this classification for
different numbers of top-ranked genes in steps from using only
one gene to using all 5041 genes. In addition, we checked the
performance of the crossvalidation when we randomly selected
N genes for each SVM committee. For each N we did this
random selection 100 times.

Quantitative RT–PCR

To further confirm the validity of the microarray expression
data, the mRNA levels of nine unique transcripts selected from

the 83 highest ranking genes from the SVM consensus gene list
were assessed by qRT–PCR. Selections were based on the
potential roles of the genes in melanocyte biology, the MAPK
pathway or cell cycle regulation (see Supporting Table 1). To
obtain an appropriate control, we looked for genes that
showed minimal variation across the reference and control
channels, that is, within 0.7- to 1.4-fold of the reference value
in all test samples. Only eight ESTs satisfied this criterion. Of
these, two encoded GAPDH, a common historical control in
RT–PCR experiments. The reference cell line MM329 was
used to establish the qRT–PCR efficiencies of each gene
(Pfaffl, 2001). Briefly, the same RNA samples extracted for the
microarray experiments were used in the qRT–PCR experi-
ments. cDNA was made using Superscript III reverse
transcriptase (Invitrogen). Subsequent PCR reactions were
carried out on a Corbett RotorGene 3000 (Corbett Research,
Australia) using a QuantiTect SYBRsGreen PCR kit (Qiagen,
Germany). Test cell lines and the reference cell line were
amplified in parallel reactions using specific primers (for
primer sequences, see Supporting Table 1 and for qRT–PCR
conditions see Supporting Text 4). To confirm the accuracy
and reproducibility of qRT—PCR, the intra-assay precision
was determined in 10 repeats within one run. Interassay
variation was investigated in 10 different experimental runs.
Specificity of PCR products obtained was characterized by
melting curve analysis. Gel electrophoresis and DNA sequen-
cing was carried out on PCR products for each primer set to
confirm identity.
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