Transductively L earning from Positive Examples Only
Kristiaan Pelckmans and Johan A.K. Suykéns

K.U.Leuven - ESAT - SCD/SISTA, Kasteelpark Arenberg 10, B-308fiven, Belgium

Abstract. This paper considers the task of learning a binary labeling of the vertices
of a graph, given only a small set of positive examples and knowlefitpe desired
amount of positives. A learning machine is described maximizing thegmwecf

the prediction, a combinatorial optimization problem which can be reptirase

a S-T mincut problem. For validation, we consider the movie recomntiemda
dataset of MOVIELENS. For each user we have given a collection of (ratings of)
movies which are liked well, and the task is to recommend a disjoint set aesiov
which are most probably of interest to the user.

1 Introduction

Machine learning provides a rich framework to study predicalgorithms tailored to
a task at hand. This short paper discusses some aspectdediiiag task where only
a set of positive labels are to be used to make predictionpaiticular, the setting is
adopted where we have to qualify rules which can be used fatigiing whether an
instance is relevant to a specific situation, or not. We aw®rghe example of designing
a movie recommender system. Here we have given a finite tolteof movies. For
a given user we have to predict which movies can be expectplbése the customer,
given a set of movies he has seen already. Now, an impori@igaton? in this context
is that the customer has selected his/her previous seerembased on an expectation
that he/she will have liked them. A customer wouldn’t havéhieoed to endure (or
rate) a movie which he expected (at the time) to be annoyedrhis mechanism of
selecting labels makes the nature of the task quite difféfrem classical statistical
learning settings, where the sampling may be assumed tafal random scheme
(e.g. i.i.d.). Secondly, a recommender system is not réatgrested in the number of
mistaken predictions it will make on the full collection ofomies. At the end of the
day, one is only interested how well the recommendation&e&dout. In particular, ti
would be worse to recommend positively a 'non-interestimgVvie, rather than to rate
a potentially interesting movie as negative.
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A challenging and inspiring conjecture issued in the cantéxnachine learning
is that unlabeled data can help solving supervised leajiolglems. Albeit this ques-
tion is still open theoretically (in general), this workihgpothesis led already to the
development of successful practical algorithms, an exgisiubfield which is surveyed
in [1, 2]. Transductive inference concerns a related probMdnere we restrict attention
to predicting the labels of the given unlabeled examplesis @pproach provides an
appropriate context for our learning task since we will baaaned with selecting a
good candidate from a finite collection: there is no need &orstructing a preference
function which can be evaluated on infinitely many subjet¥e. refer to [3, 4, 5] and
citations for details. A little thought reveals that ourri@iag setting can be phrased as
a problem of selective inference [3]: "given a collectionatifects and a finite collec-
tion of corresponding labels, find unlabeled objects whigh be predicted most ac-
curately”. This learning setting is conjectured to be eviempter than the transductive
case, but is not studied in detail due to (amongst otherk)dhan efficient algorithm.
This paper analyses a technique which will implement a $ipdorm of selective in-
ference which can be used for the recommendation settingpreaise setting however
is still different in that the set of observed labels is n@wdn randomly (or i.i.d.). Itis
exactly this question we will try to shed some insight in ia tbllowing.

Some notation is introduced. Let a weighted undirectedtgéap= (V, £) consist
of 1 <n < oo nodesV = {v;};_, with edgestl = {e;; }, ,; having weightsau(e;;) =

a;; > O0foranyi # j =1,...,n. Assume that no loops occur in the graph, é.g.= 0
foralli = 1,...,n. Let A € R™*"™ denote the positive symmetric matrix defined
asA;; = Aj; = ay; forall4,j = 1,...,n. The Laplacian o is then defined as

L = diag(Al,) — A € R™*"™, This paper considers problems where each ngdms
a fixed corresponding labelv;) € {—1,1} but only a subses,, C {1,...,n} with
|Sm| = m of the labels is observed. The task in transductive infexésito predict the
labels of the unlabeled nodé&s, = {1,...,n}\Sn. Letafunctiong : V — {-1,1}
denote a hypothesis. We will alternatively and interchabfeuse the vector notation
qn € {—1,1}" whereg,,; = q(v;).

This paper assumes that an underlyinge labelingy exists (but is unknown). This
simplification will simplify the exposition considerablnd extension to the case where
the observed output is a random variable itself can be aixaising standard results (at
least computationally). A second important assumptiohas thecomplexityof ¢ (i.e.
an intuitive measure of how plausihjés), is measured by how many edges connect the
subgraphs correspondingtol and—1 labeled vertices. From the above definitions, it
follows that the graphcut associate to a grgpand a labeling; of the vertices can be
written as

1
cut(q) = Y ay= Z(JSL%- (1)
q(vi)#q(v;)

This short paper is organized as follows. Section 2 desstibe formal learning
setting and illustrates how one can implement risk minitzaby a min cut- max flow
algorithm. Section 3 gives some insight in the practicalafgbis technique applied on
the movielens recommendation task.



2 Learningfrom Positive Labels

2.1 Learning Setting

Next, we spend some time on formalizing the precise objeativour learning task.
The transductive risk term is given as

R(q) =P (y(V) #q(V)), 2

whereV denote a randomly selected nodec V and its corresponding labg(V') €
{-1,1}. Given the labels of a random subset&®f C V, its empirical counterpart
becomeR,(¢,Sm) = = Yics. 1(q(vi) # y(vi)), and the testerror iR, (¢, S,,) =
o 2igs,, L(a(vi) # y(vi)). Here the empirical risk term can serve as a proxy to the
(unknown)R(gq) whenever the sampling follows a random sampling schemes ighi
the case when the different vertices which are labeled aependently sampled from
an underlying, fixed distribution (as in [3]), or when the $d@s are uniform without
replacement (as in transductive inference, see e.g. [4¢&atibns).

In our learning setting, we argue that a more natural ohjedti recommender
systems would be the rate of false positives. phecisionamounts to the number of
actual positives amongst the positive predictions. Thiasuee is equal to one minus
the False Discovery Rate (FDR). In the movie recommenddeggrthis amounts to the
number of recommendations actually enjoyed by a customerfeltowed the systems
recommendation. Lef" = {i : q(v;) = 1}. Formally the precisioire(q) € [0, 1] of
aresulty is defined as

Pre(q) = Pa(V) = y(V) | (V) = 1) = 81+| S i) =1, @)

where the probability concerns a uniformly randomly seddchodeV € V given
q(V) = 1. We adopt the convention th#tre(q) = 0 if S = {}. Since we can-
not evaluate all values af(v;) with v; € S;f, it appears hard to evaluate this quantity
or to estimate it from a final sample set. We do however wanétafize the number of
nodes with positive label predicted as being negative, hadsize|8q+|. On the other
hand, we have theecall qualifies how many actual positives are recover by the predic
tion ruleq. In the setting of our recommender system that would be tbbatility of

the system recommending a movie which should really be &idedr

Rec(q) = P(q(V) =y(V) [y(V)=1). (4)

Given a set of positively labeled vertic€s, C {v; : y(v;) = 1}, its empirical coun-
terpart becomesec,,(q) = + > iest I(q(vi) = 1). Now one sees thakec,,(q)
approximatesiec(q) when the observed labels,, is a random subset frof,” =
{v € V : y(v) = 1}. It should be remarked that this sg} is deterministic only if
y is fixed, and relaxing the labeling to be random as well willience a theoretical
analysis considerably.



2.2 Reformulation asa MINCUT problem

When designing a learning machine, it is paramount to thinkerappropriate col-

lection of possible solutions - or laypothesis spaceWhen the data is organized in
a directed (weighted) graph, a natural choice is to condateslings which separates
parts of the class which are not too strongly connected ascteized by the graphcut
of a labeling (see equation 1).

H, = {Qn €{-1,1}": ¢/ Lgy, < p}- (5)

In [5], it was shown how the cardinality of this class can berted in terms of the
eigenvalue spectrum a@f. Now, the one minimizing the rate of false negatives is given
by the following optimization problem.

G = arg max Pre(q). (6)
q.?:L‘Zn <B

There are however a number of problems with this formulati@ there is a trivial
solution whereg,, = 1,,, moreover there is no direct way to manipulate how many
negative predictions one should make. (B) the precigten(q) cannot be estimated
directly, and (C) for many values @ the solution is not unique, and values for which
the optimum is unique are entirely data-dependent. Therefe consider a slightly
different formulation

S I(q(ui) =1) < p

7
q(v)) =1 Vo; € St %

1
¢ = argmin fq;";an s.t. {
¢ 4

where precisiorPre(q) improves wherp is taken smaller. This problem formulation
has the problem that (A) the parameteis not often known in advance; (B) observed
positive labels can be mistaken or are not typical (discotetketo the set of nodes of
interest). For trade-off parameteys> 0 and\ > 0, the algorithm under consideration
implements the following optimization problem.

X 1o -
4= argqrmn ne Lg, +~ % I(q(vi) = —1) + A;f@(w) =1) 8)
i€SH =

One can consider the termsand A as the Lagrange multipliers corresponding to the
constaints in (7) of the hard constramin +,. As in [6], this combinatorial optimiza-
tion problem can be implemented efficiently as follows.

1. Extendg with two verticesv™ andv™.

2. Connect the vertices with given positive labels withwith weight-y.
3. Connect alh nodes withv—, with weight .
4

. Find a min S-T cut between sourgce and sinkv™.



5. Assign to the nodes € V still connected tov™t a positive label, and to the
remaining ones a label1.

This can be seen by simply counting the total weight of the=sdig the extended graph
which are cut by an optimal solution, a number which will espond with the value
of the objective eq. (8). Observe that we will obtain a tiigalutiong, = —1,, if

A > ~, and useful solutions are typically obtained by choosing: v. The algorithm
for calculating the minimal cut between a Source and Sinkenlggbs at the core of
combinatorial optimization, see e.g. [7, 8]. the pushirelanaximum flow algorithm
has a time complexity 0O (n?|E|) where|E| denotes the cardinality of the set of
nonzero edges. It is also classical that the above problenbeaolved by a convex
linear program, a technique which was employed in [5].

3 Experiments

In order to illustrate the technique, we employ the impletagon of the push-relabel
algorithm for computing the min S-T cut as given by MatlabB&lin turn using the
Boost Graph Library. At first, we conduct an artificial example, described in Fagi..
Secondly, we consider a simple experiment on the MOVIELE&®Smmendation task.
The data consist on the preferences of 943 different usach, giving ratings on some
of the IDs of 1682 movies. For each user, we consider the thskcommending 4+
rated movies, given a subset of movies rated by this usequrslyi as 4+. This task is
repeated for all users, and the precision and recall of esehspecific recommendation
is computed. The design of the graph in which the movies arargzed is paramount.
We found empirically that computing the weight of an edge = |In(#(M;, M;))]
for all moviesM; and M; works well. Here#(1;, M;) equals the number of users
in the dataset both rating the 2 movigf and M; as 4+, organizing almost:% of
the movies in a connected graph. We found precisions umibsi20%. The average
precision precision i8.45%, and the average recall 1$.98%, averaged over the 943
users. A naive algorithm recommending the 10 movies clasgsiected in the graph to
the given positively labeled vertices, yields a precisif6.62% and an average recall
of 10.01%.

4 Conclusion

This short paper discussed the learning task of recommgrabijects which are also
positive, given a collection of purely positively labelebjects. We gave some insight
into the nature of the learning problem, and its comparisdreinsductive and selective
inference. The resulting combinatorial optimization gesb was found to be solvable
by using a min cut - max flow algorithm. Results on the MOVIELEMN:commendation

dataset are given. A most interesting question still is haw oan validate (model

selection) a recommender system. This issue is approacredusing observational
data, but the usefulness of a recommender system should &sunad really online

(and actively).

3http:/mww.stanford.eddgleich/programs/matlabgl/
4http://iwww.boost.org/
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Fig. 1: Artificial example with 280 negative samples (red) and 20tpes (blue). Only

3 positively labeled vertices are given to the learning aiidpon. The graph was ob-
tained by a 2-nearest neighbor rule based on the positiomef300 nodes sampled
from M ((—2,-2),I3) and N ((2,2), I) corresponding with the two classes. (a) the
true labels, and (b) the estimated labels. This precise pia@chieves a precision of
69% and a recall 0f72%.
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