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Fig. 1 Components used for deriving asso-
ciations between phenotypic features and
gene functions. Green boxes represent
databases, yellow boxes indicate the asso-
ciated concepts and red arrows represent
the associations used. The MEDLINE ver-
sion was obtained in February 2001 from
the US National Library of Medicine. It
contains 10,725,796 references. Many of
these references were annotated with the
controlled set of MeSH C and MeSH D
terms. Of these references, 1,380,733 con-
tained at least one MeSH C term and one
MeSH D term. The derived links from
MeSH C to MeSH D terms gave us phenom-
enological relations through the biological
knowledge deposited in MEDLINE. The set
of 10,329 RefSeq sequences1 was anno-
tated with a variety of 2,379 GO terms.
Each annotation with a GO term is linked
to a MEDLINE entry. This allowed us to
produce links between GO terms to MeSH
D terms, indicating phenomenological
relationships between chemical entities
and protein functionality.
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Although approximately one-quarter of the roughly 4,000
genetically inherited diseases currently recorded in respective
databases (LocusLink1, OMIM2) are already linked to a region of
the human genome, about 450 have no known associated gene.
Finding disease-related genes requires laborious examination of
hundreds of possible candidate genes (sometimes, these are not
even annotated; see, for example, refs 3,4). The public availabil-
ity of the human genome5 draft sequence has fostered new
strategies to map molecular functional features of gene prod-
ucts to complex phenotypic descriptions, such as those of genet-
ically inherited diseases. Owing to recent progress in the
systematic annotation of genes using controlled vocabularies6,
we have developed a scoring system for the possible functional
relationships of human genes to 455 genetically inherited dis-
eases that have been mapped to chromosomal regions with-
out assignment of a particular gene. In a benchmark of the
system with 100 known disease-associated genes, the disease-
associated gene was among the 8 best-scoring genes with a
25% chance, and among the best 30 genes with a 50% chance,
showing that there is a relationship between the score of a
gene and its likelihood of being associated with a particular
disease. The scoring also indicates that for some diseases, the
chance of identifying the underlying gene is higher. 
To support and rationalize the manual association of known or
inferred functional features of genes to the phenotypic features

of a disorder, we have developed a data-mining system, based
on fuzzy set theory7, which makes inferences using informa-
tion from biological and medical literature. We have applied
the system to the prioritization of candidate genes for 455
genetically inherited diseases for which no underlying gene has
yet been assigned.

The first phase of the data-mining process (see Methods for a
more complete description) involves combining the information
from MEDLINE and a protein sequence database to derive rela-
tionships between pathological conditions and terms describing
protein function. We used a three-step procedure. (i) We com-
puted the associations between pathological conditions and
chemical terms using MEDLINE, a database of indexed journal
citations and abstracts of the biomedical literature, which cur-
rently contains more than 11 million entries (Fig. 1). We consider
the relationship between associated terms as strong if they occur
together in many abstracts. (ii) We calculated the relationships
between chemical terms and terms describing protein function.
We used the NCBI RefSeq database1, which contains more than
10,000 genes whose function is annotated with terms from a con-
trolled functional vocabulary (Gene Ontology, GO6; Fig. 1).
Experimental evidence is provided for each protein-function
annotation by a pointer to MEDLINE. We consider that an anno-
tated gene relates its functional terms to the chemical terms found
in the linked bibliography. (iii) We combined the associations of
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functional terms to chemical terms with the previously estab-
lished associations of pathological conditions to chemical terms,
to derive the aforementioned relations between pathological con-
ditions and protein-function terms (Fig. 1).

Next, for each of the 455 diseases with chromosomal mapping
information, protein-function terms are associated by combin-
ing the medical terms found in the literature regarding the dis-
ease with the set of previously computed relationships. We then
score the strength of the relation of the RefSeq sequences to the
disease according to their functional annotation (hereafter
referred to as GO score; see Methods).

Finally, we prioritize the candidates for a given mapped disease
by carrying out a sequence comparison between the respective
region (on average 30 Mb) and the set of scored RefSeq sequences.
The hits in the region are then sorted according to the GO score of
the RefSeq homologous sequence. This means that candidates in
the respective region may be associated with a disease phenotype
through a homologous sequence in the RefSeq set. Owing to the
heterogeneity of the literature and gene annotation, the maxi-
mum GO score observed in the RefSeq set changes from disease to
disease. To have a measure independent of this effect, we used a
score relative to the distribution of GO scores (R score). For a

sequence with a given GO
score, its R score is computed as
the fraction of sequences in the
RefSeq set having a higher GO
score; sequences scoring well
have an R score of zero or close
to zero, irrespective of the dis-
ease considered.

To test the performance of
our system, we analyzed 100
genes for which disease-causing
mutations had already been
reported (see Web Fig. A
online). The disease-related
gene was identified in 55 cases
(being on average among the
best-scoring 3% of genes). The
computations were done auto-
matically excluding the papers
related to the disease, to ensure
that we would not find the rela-
tion directly from the papers
that described the connection
of the gene to the correspond-
ing disease (see Methods).
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Fig. 2 Example of the analysis of ‘spinocerebellar ataxia-8, infantile, with sensory neuropathy’. The red/blue/green colored boxes indicate different protein func-
tions. a, Spinocerebellar ataxia-8 was linked to a number of medical terms (left column, MeSH C terms; the number in brackets indicates the number of papers in
which the terms were present). Using the previously derived relations, we could evaluate the more-related functional terms (right column, GO terms). For exam-
ple, the strength of the association of the pair (hypogonadism, translation activator) is defined by a path through the MeSH D term ‘gonadotropins’, which gives
a value of 0.0687 × 1.0000 = 0.0687 (see Methods). Taking into account that the MeSH C term ‘hypogonadism’ was associated with one of four papers describing
the disease, the corresponding value for the weighted association µT2

W (hypogonadism, translation activator) is 0.0687 × 1/4 = 0.0171. As this value is the maxi-
mum µT2

W pointing to ‘translation activator’ from any MeSH C, the corresponding GO term ‘translation activator’ receives a score µT2
W (translation activator) of

0.0171. b, Regions of homology to the 10,000 RefSeq sequences were searched on a region of chromosome 10 (positions 92–105 Mb) where the disease had been
mapped. The four sequences that best match the disease, according to their annotations (GO terms, indicated as in a) and for which homology was found, are
shown on the left. The first two sequences are homologous and therefore point to the same region. The graph on the right indicates the GO score of the match-
ing sequence versus the position in the hit in the region. The color (red/green/blue) to the right of the sequence annotation box indicates the region of the
match. The three hits pointed in the graph by the arrows stand well above the rest: one of them is likely to correspond to the gene underlying this disease.
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Diseases for which genes have been associated in the past tend to
be well characterizedthat is, there is more information retriev-
able from the literature for those diseases than for those more
recently discovered. To determine the extent of this effect, we tested
the system with diseases for whom underlying genes were identified
during the years 2000 and 2001 (a total of 27), using a version of
MEDLINE without literature corresponding to that period (see
Web Note A online). In 7 of the 27 cases, the newly identified genes
were not located in the corresponding chromosomal region where
the disease had been mapped (as given by LocusLink), and could
thus not be detected. This was probably a result of the incomplete-
ness of the current draft of the human genome. In another 10 cases,
the disease-related gene gave no hit to a RefSeq sequence with GO
annotation revealing any significant association to the disease. Of
the remaining 10 cases, the correct gene was among the best-
scoring 5% of genes in four cases, and among the top 15% in
another five. As might be expected, the analysis of more recently
resolved diseases is more difficult. This effect was probably influ-
encing the performance of the analysis of the set of 455 diseases,
but can be easily detected using our scoring system.

As there is a correlation between the R score of a candidate
gene and its likelihood to be the target gene, we can create a list of
candidates for each disease to have a high chance of identifying
the underlying gene. The benchmark indicates that, for example,
there is a 25% chance of finding the target gene within the candi-
dates with an R score below 0.01, or a 50% chance for candidates
with an R score below 0.05. For the 455 unknown cases, this cor-
responds to an average of 8 and 30 genes, respectively (see Web
Note A online).

Beyond the intrinsic limitations of the system described above,
there are complications derived from the application of functional
assignment by sequence similarity: (i) domain problems, (ii) pres-
ence of paralogous genes, (iii) identity thresholds and (iv) the pre-
sent status of the human draft sequence (see Web Note A online).

Despite its limitations, the system should be useful for assigning
priorities to candidate genes. The selection of candidates depends
on both the fuzzy associations and the sequence-similarity analysis.
This implies that the system’s performance is of a varying nature.
The derived relations are often obvious, the most straightforward
being based on a strong similarity between the candidate gene and
another gene known to produce a slightly different variant of the
disease. In some cases, less apparent associations can be verified
easily by examining the literature from which the association origi-
nated. In other cases, however, the relationship is hidden in a small
number of papers and could be overlooked without the explicit
suggestion of the system. Moreover, the system detects even weak
associations that may, for example, only be based on the similarity
of a domain within the protein. In such a case, a background of
worse associations of other genes in the region (as indicated by their
R scores) might call for further exploration of these weak associa-
tions. Finally, the system can overcome some of the problems
caused by current gene prediction schemes that seem to be too con-
servative and tend to overlook genes8. For details and examples, see
Web Note A online.

The use of this system can be demonstrated with one of the 455
cases analyzed, spinocerebellar ataxia-8 (LocusLink id 3648).
The medical term most frequently associated with papers about
this disease is ‘spinocerebellar degenerations’ (Fig. 2a). The
related protein-function terms refer to the neurotransmitter glu-
tamate, because levels of glutamate dehydrogenase (Gdh), an
enzyme central to glutamate metabolism, are significantly
reduced in individuals with neurological disorders affecting the
cerebellum and its connections9. Accordingly, the top candidate
gene is human glutamate dehydrogenase 1 (GLUD1), located in
this region (Fig. 2b).

The data-mining system described here is highly dependent
on the information associated with both genes and diseases,
and relies on homologythat is, it is impossible to estimate
the exact accuracy of an individual prediction. Thus, the prior-
itization given by the system requires a manual inspection of
the context of both the disease and the candidate genes. For
that purpose, the detailed data regarding the analysis of each
disease, including the criteria for selection of candidates, can
be examined using a public web-based server (see Methods).
We expect that the performance of the system will improve in
future regular updates as a result of the advent of additional lit-
erature, better gene and protein annotation, enhanced releases
of the human genome sequence and a widespread production
of standardized expression data.

Our approach evaluates and scores multiple associations
between gene functions and monogenic disease phenotypes.
However, the system could be adapted to detect other relation-
ships between phenotype and genotype. For example, it could
also propose the association of multiple genes to a disease or to
other phenotypes, such as longevity, from a whole genome. Even
if hundreds of candidates are proposed, recent developments in
large-scale gene screening techniques (see, for example, ref. 10)
will make their analysis feasible.

Methods
Inference system based on fuzzy relations. To identify and score rela-
tionships between terms, we used an approach from fuzzy set theory7. In
this application, three different sets of items are related: the Medical
Subject Headings (MeSH) terms of the ‘Diseases’ category (C), the
MeSH terms of the ‘Chemical & Drugs’ category (D) and the set of ‘Gene
Ontology’ terms (GO). A subset of MeSH terms were excluded because
they were noninformative (see Web Note A online). Two different fuzzy
binary relations were defined in C × D and D × GO, referred as R(C,D),
and S(D,GO), respectively. They were used to measure the ‘degree of
association’ between medical and chemicals terms, R(C,D), and between
chemicals and protein-function terms, S(D,GO). We assume that two
terms are highly related in some context if they appear frequently
together. Accordingly, the strength of term association is estimated by
counting the co-occurrences of both items in the same ‘transaction’. The
value of the membership function for the (x,y) pair in the fuzzy binary
relation Q(X,Y) is

where X = C and Y = D, or X = D and Y = GO, and |.| denotes set cardinali-
ty. In the case of R(C,D), the set of transactions considered was the MED-
LINE subset of abstracts annotated with both C and D MeSH terms. For
the computation of S(D,GO), each LocusLink entry was considered as a
transaction relating its GO annotation terms with the MeSH D terms
indexed on the MEDLINE abstracts linked to that entry. Next, to obtain
the associations between C and GO terms, we define another fuzzy binary
relation in C × GO, T(C,GO), given by the ‘max-product composition’ of
R(C,D) and S(D,GO), with membership function:

for every (c,go) in C ×GO. T(C,GO) models the association between symp-
toms or manifestations of diseases with protein-function terms.

Gene scoring based on Gene Ontology annotation. We consider the set
of proteins from RefSeq1 annotated with GO terms. Given a particular
disease, a score for each gene, based on its GO terms, is computed (GO
score). The set of abstracts A dealing with the disease is considered, and

T
(c, go) = max{   

R
(c, d) ⋅   

S
(d, go); c ∈C, go ∈GO}µµ µ

d∈D

Q
(x, y) = µ

|X ∩ Y|

|X ∪ Y|
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the corresponding subset of MeSH C terms (CA) is extracted. If one mani-
festation is characteristic of the disease, it will occur more often in A than
a casual symptom. Thus, the frequency of occurrence in A of each MeSH
C term is considered, and the obtained weighting vector is incorporated
into the model through its semi-scalar product by µT(c,go), resulting in a
weighted fuzzy relation TW(CA,GO). To assign a score to each GO term,
we compute the second projection of TW(CA,GO), which is a fuzzy set in
GO whose membership function is given by:

The value of this score is associated with each single GO term, and this is
used to score and rank the whole set of RefSeq genes that receive a score
equal to the average of their GO term scores (GO score).

Homology searches in the chromosomal region. We extracted the cytoge-
netic map location from LocusLink1. We obtained the corresponding base
coordinate positions from the Golden Path5 human genome assembly. In
the benchmarks, a region of 30 Mb was taken around the disease-related
gene. For the 455 non-associated diseases, regions smaller than 10 Mb were
expanded to this size to compensate for possible marker dislocations (see
Web Fig. B online). The RefSeq set is ordered as a hash list by the GO
scores. The best-scoring 30% of sequences are compared with the chromo-
somal region (masked for low-complexity regions) using TBLASTN11.

Prioritizing the candidates. The sequences identified in that region under
an E-value threshold of 10e–10 are prioritized according to the GO score of
their corresponding homologous sequence in RefSeq. To make the scoring
given to the analysis of different diseases comparable, we introduced the R
score, which accounts for the fraction of GO annotations of the RefSeq set
giving a better GO score.

Automating queries in MEDLINE. The starting point for the analysis of
a disease is selecting a set of papers to obtain MeSH C terms that
describe the phenotype of the disease. To set up an automated protocol,
we simply used the name of the disease for a query in MEDLINE. If less
than five abstracts were selected by the query, the query was simplified
step-wise until a minimum of five abstracts was obtained. We used the
[tw] flag after each single word to carry out a search only in ‘text words’

(title, abstract, and MeSH terms). Synonym tables created by MeSH
developers apply to this search.

URL. Detailed data regarding the analysis of each disease can be examined
using a public web-based server (see http://www.bork.embl-heidelberg.de/
g2d/).

Note: Supplementary information is available on the Nature
Genetics website.
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