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Abstract: We describe a bioinformatics tool that can be used to predict the 
position of phosphorylation sites in proteins based only on sequence 
information. The method uses the support vector machine (SVM) statistical 
learning theory. The statistical models for phosphorylation by various types of 
kinases are built using a dataset of short (9-amino acid long) sequence 
fragments. The sequence segments are dissected around post-translationally 
modified sites of proteins that are on the current release of the Swiss-Prot 
database, and that were experimentally confirmed to be phosphorylated by any 
kinase. We represent them as vectors in a multidimensional abstract space of 
short sequence fragments. The prediction method is as follows. First, a given 
query protein sequence is dissected into overlapping short segments. All the 
fragments are then projected into the multidimensional space of sequence 
fragments via a collection of different representations. Those points are 
classified with pre-built statistical models (the SVM method with linear, 
polynomial and radial kernel functions) either as phosphorylated or inactive 
ones. The resulting list of plausible sites for phosphorylation by various types of 
kinases in the query protein is returned to the user. The efficiency of the method 
for each type of phosphorylation is estimated using leave-one-out tests and 
presented here. The sensitivities of the models can reach over 70%, depending 
on the type of kinase. The additional information from profile representations of 
short sequence fragments helps in gaining a higher degree of accuracy in some 
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phosphorylation types. The further development of an automatic 
phosphorylation site annotation predictor based on our algorithm should yield a 
significant improvement when using statistical algorithms in order to quantify 
the results. 
 
Key Words: Kinase Substrate Prediction, Profile-Profile Sequence Similarity 
(PSI-BLAST, FFAS), Library Of Protein Motifs (Local Structure Segments 
Database), Database of Phosphorylation Sites, Swiss-Prot Database, Support 
Vector Machine 
 
INTRODUCTION 
  
The rapid increase in the breadth of available genomic information has led to a 
need for new automatic techniques to predict protein function. Bioinformatic 
techniques identify signaling domains within protein sequences, but only limited 
success is achieved in predicting the positions of phosphorylation sites. Here, we 
describe a machine learning algorithm that, within a support vector machine 
framework, classifies biological functional information acquired from the Swiss-
Prot database. The classification models can be used to predict new, unknown 
phosphorylation sites in proteins. 
Phosphorylation processes are crucial for living processes and whole metabolism 
in cells; they are an important mechanism for controlling intracellular processes. 
Many protein kinases are known, but the identification of their potential 
biological targets is still ongoing research. The appropriate substrate specificity 
of protein kinases ensures the correct transmission of signals in cells. The 
primary sequence information in substrate proteins is crucial for determining 
protein kinase specificity, but we lack an efficient method for identifying these 
sequences. 
There are a number of tools which were designed to predict the functional 
annotation of proteins based on sequence information (such as ScanSite [1] or 
the ELM server [2]). Our system does not use the motif methodology, instead 
focusing on direct residue representation and frequencies. The regular 
expression search is more permissive (i.e. gives a large number of false 
positives) because of the inherent difficulties in describing the phosphorylation 
site using a simple letter pattern. Our tool is more conservative, so it can be used 
as an additional filter to remove some of the false positives. The databases 
available on the Internet [3, 4] provide information on a large collection of 
phosphorylable residues in proteins, and data about peptide phosphorylation by 
protein kinases. This data suggests that sequence specificity determinants are not 
that strict; nevertheless, they are located within a 9-amino acid segment around a 
phosphorylation site. Our tool uses the same 9-amino acid sequence window 
around the phosphorylation site to predict annotation. Most of the 
phosphorylation sites are located on the surfaces of the target proteins. The 
neural network-based tools predicts the position of phosphorylation sites in 
independent sequences with a sensitivity of over 70% [5]. Our service is a 
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natural complement to those tools. It uses different machine learning 
methodology, which makes it possible to build an independent list of plausible 
phosphorylation sites for a given query protein. Both lists can be compared and 
used to build a consensus result, which allows for a higher quality of predictions. 
Our next paper will be a report on a detailed comparison of the SVM results on 
the PhosphoBase database using this tool, and on the details of the consensus 
algorithm with sensitivity/specificity scores. 
Protein phosphorylation affects most cellular processes. The main question in 
the area is how specificity in substrate recognition is achieved. Herein, we 
present a machine learning approach, which predicts the position of 
phosphorylation sites with a sensitivity of over 70%, depending on the type of 
kinase. In our approach, the method for predicting a plausible phosphorylation 
site's position is based on the classification of known experimental instances. It 
uses only sequence information as the input, because in most cases, only the 
sequence of a potential target protein is known. The Swiss-Prot database [6] 
contains a large number of annotated phosphorylation sites. That is the main 
reason for our developing and testing this method of prediction of 
phosphorylation site positions using sequence information from this database. 
For our initial tests, we selected proteins that are phosphorylated by PKA, PKC, 
CK, CK2 and CDC2 kinases. Those types of phosphorylation processes have the 
largest number of known experimental instances, and thus could provide 
sufficient statistical data. We neglect here all those residues with 
phosphorylation annotated: “by similarity”, “hypothetical” or “predicted”. 
In the “Materials & Methods” section, we provide detailed information about the 
preparation of the database of short protein fragments and describe the automatic 
annotation algorithm for the prediction of post-translational modification sites in 
proteins. In the “Results & Discussion” section, we present the benchmarks used 
for the statistical analysis of local structure prediction quality. We describe the 
local sequence composition of segments around phosphorylated sites together 
with predicted structural information. We also include the analysis of the 
background sequence and structural preferences of LSSs not annotated in the 
Swiss-Prot database. Finally, we present conclusions and discuss possible future 
developments. 
 
MATERIALS AND METHODS 
 
The dataset of proteins known to be phosphorylated by various kinases 
As the training dataset for our automatic prediction method, we used proteins 
that are from the Swiss-Prot database and that have at least one site 
experimentally verified to be phosphorylated by any kinase. In order to 
maximize the classification accuracy of models, we neglected all sites annotated 
“by similarity”, “partial”, “potential”, “probable” or “predicted”. The remaining 
phosphorylation sites were used to create a positive instance dataset which 
includes all the sequence segments from the parent proteins dissected within a 9-
amino acid window around the phosphorylation site. All the redundant segments 
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with the same sequence were removed from the database. We used 67 proteins 
with PKA phosphorylation (86 different segments), 49 proteins with PKC 
phosphorylation (56 different segments), 18 proteins with CDC2 (41 different 
segments), 35 proteins with CK2 (62 different segments) and 44 proteins 
phosphorylated by CK kinase (85 different segments). 
Those sequence segments that have the proper central residue according to the 
type of phosphorylation process, but which are not annotated as functional ones, 
were used as the negative cases for our method. For example, in the case of PKA 
and PKC phosphorylation, in order to obtain background preferences for sites 
with known structures, we extracted 14353 PKA-negative and 14369 PKC-
negative sequence segments with the correct central residue (S or T amino 
acids). Those negative instances were randomly chosen as sequence segments 
from proteins found in the Swiss-Prot database, and annotated to have at least 
one site phosphorylatable by any type of kinase.  
Both the positive and negative datasets of segments were projected (see 
“Materials & Methods” section) into one abstract multidimensional space in 
order to build a detailed sequence model for each type of kinase. Then, the 
statistical learning theory was used to classify all the cases, and to construct the 
separation border between the positives and negatives. 
 
Local segment sequence and structure preferences around phosphorylated 
sites 
In our previously published findings [7], we developed a library of local 
structural segments and a profile-profile matching algorithm that predicts the 
local structure of proteins from their sequence information. The fragment library 
prediction method server (FRAGlib, publicly available at http://ffas.ljcrf.edu/ 
Servers/frag.html) allows for prediction of the local structural conformation of 
sequence segments around phosphorylated sites. This algorithm has also been 
successfully applied to the characterization of the local structure around 
phosphorylation sites in proteins [8, 9]. Our results strongly suggest that 
sequence information is the crucial source of information for the successful 
predictions of phosphorylation site positions in proteins. It can be supplemented 
by additional structural context information, predicted using our segment 
similarity method. Unfortunately, only proteins phosphorylated by PKA and 
PKC kinases represent the largest number of instances in the Swiss-Prot 
database, and therefore only they can be used as the benchmark and test dataset 
for the automatic annotation method. The structural counterpart of the prediction 
is evaluated using the database of all real and experimentally confirmed 
structures of parts of the main Cα chain around the phosphorylation sites. The 
real structures are collected using the PSI-Blast server running on the PDB 
database (PDB-Blast) (http://www.bioinfo.pl/). 
In order to quantify the local sequence and structural preferences around the 
phosphorylation sites in proteins, we used the collected database of sequence 
segments. For PKA and PKC phosphorylation, we obtained real structures of 
proteins around phosphorylation sites with the PDB-Blast server developed by 
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our group (http://www.bioinfo.pl/). It is a PSI-Blast program that compares the 
sequence of a query protein with all the sequences from the PDB database within 
very strict thresholds in order to get the one true structure of a protein, and it 
makes use of crystallized protein data. We collected models for 56 proteins with 
PKA phosphorylation sites and 38 with PKC phosphorylation sites. However, 
we found only 11 structural segments crystallized around sites with both PKA 
and PKC phosphorylations. Most of the phosphorylation sites are located in 
unstructured parts of proteins; these are difficult to crystallize, and frequently, 
those coordinates are missing in the PDB. 
To sample the background sequence preferences, we took 17718 sites not 
annotated as PKA phosphorylated, and 18799 sites not annotated as PKC 
phosphorylated, with the appropriate central amino acids. In order to obtain the 
background preferences for the sites with known structures, we also extracted 
340 PKA-negative and 141 PKC-negative sites from protein segments with 
assigned coordinates and correct central residues (S or T). We analysed the 
sequence and local structure composition of those positive and negative cases. 
While the sequence composition of both types of instance displays clear 
differences, much less significant differences could be observed between the 
local structures of each type [8]. The predicted local structure of both types is in 
qualitative agreement with the real structures. A comparison with other available 
structure prediction was also performed [7]. The differences between the results 
of those methods and our results in the modelling of local structural preferences 
around phosphorylation sites are within the accuracy of our method. 
 
Local structural preferences 
Our test shows [9] that, in the case of PKA and PKC phosphorylation, our 
method has large recall efficiency. In the test cases, almost all the actual 
positions of the phosphorylation sites were predicted using our algorithm. There 
is also a clear and significant difference between the mean prediction score 
values for true predictions and those for false ones. The proper cut-off value, 
which depends on the type of phosphorylation process, can provide a better 
percentage rate of precision, losing only a small subset of annotated sites, i.e. 
those with lower recall values. However, there are more false predictions than 
true ones. That is why more refined statistical methods, such as the support 
vector machine approach to classification and prediction, described in the 
following section, are needed to further improve the overall benchmark results 
for our method. This will also help to discriminate between false positives and 
true ones. The structural part of the prediction score is helpful in predictions, but 
the main difference for those two types of phosphorylation (by PKA and PKC 
kinases) is observed for only the sequence part. This is the reason for utilizing 
the SVM statistical learning theory, using only sequence information and 
skipping the local structural part of it. The results for other types of kinases (CK, 
CK2, CDC2 not included here) show that the short protein fragment has a 
greater structural preference towards kinase than the sequence one does. 
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However, the statistics for those cases are rather poor, so a strict statement 
cannot be made. 
 
Local sequence fragments representation 
In order to use the Support Vector Machine approach to the classification of 
various types of phosphorylation processes, we should represent short sequence 
fragments using abstract multidimensional space. This representation does not 
change the information content of the database. 
There are at least six basic ways to represent the sequence of a short protein 
segment. The first one is a binary representation (called here BIN), which 
encodes each position of the segment into a long 20-dimensional vector of 0 and 
1. The 1 value is taken if the corresponding type of amino acid is present at a 
certain position of the segment. The single residue Tyr (T) is represented here as 
a vector with the coordinates [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], assuming 
that T is marked as the first dimension of the space. For 9-residue long 
segments, the representation space has a dimension equal to 180.  
The second method (BLOSUM) is a simple extension of the previous one. It 
uses the BLOSUM62 matrix, which evaluates the similarity between amino 
acids. Therefore, each position of the segment is represented by the 20-
dimensional vector of the substitution scores of similarity between the amino 
acid found in the represented segment at this position and all 20 amino acids. 
The dimension for this embedding is the same as for the previous binary method.  
For each amino acid found at certain position of a segment, the LOOKUP 
method uses the scalar value describing the normalized sequence preference for 
it. Normalized preferences are calculated by dividing the frequencies for all the 
types of amino acid and all their possible positions within a segment for the 
positives dataset by the frequency for the negatives dataset. The background 
preferences for negative instances are calculated for proteins with the considered 
type of kinase. The dimension of this method is only 9 in the case of 9aa 
segments; one normalized sequence preference for each position of a segment. 
The same dimension of the abstract space of embedding is gained for another 
method, here called SUM_PROF. Instead of the normalized preference for only 
one amino acid found at a certain position of the query sequence segment, this 
embedding uses the sum over all the normalized preferences of amino acids, 
each multiplied by the BLOSUM62 similarity factor between it and the actual 
amino acid type found in the projected segment.  
The profile method (PROF) uses the same normalized preferences, but taken as a 
single 20-dimensional vector of normalized preferences instead of summing 
them up. In that case the dimension of the embedding space is equal to 180 (9aa 
segments).  
The last method (SPARSE) is similar to the BIN method, but instead of binary 
values, it takes real values equal to the normalized preferences for each position 
of a segment – the ratio of preference for positive instances and the preference of 
negative ones – and otherwise, the 0 value. Therefore, it has the same dimension 
as the first two methods (180). 
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We also tested various combinations of the above methods, such as 
BIN+LOOKUP and SPARSE+BLOSUM, adding to the first method the 
additional dimensions from another one, i.e. the Cartesian product of two vector 
spaces merged into a larger one. This resulting projection has additional 
information which may help us to achieve higher test accuracy. 
 
The support vector machine approach for the classification of short 
sequence fragments 
Our algorithm utilizes various types of projection of short sequence segments 
into one abstract multidimensional feature space. The classification of all known 
instances is done within the support of the vector machine SVM framework. 
SVM is a statistical learning method with a good performance record, and it is 
easier to implement than neural networks. This method was proposed as an 
effective machine learning approach by Vapnik and Cristianini [10, 11]. The 
theory of SVM in the case of pattern recognition with the discussion of 
regression and the learning of a ranking function was extensively reported on by 
Vapnik [10, 12]. The SVM method was successfully applied to various problems 
including text classification [13, 14], image recognition [15] and medical 
applications [16, 17]. The SVM approach was also used in bioinformatics [18, 
19], especially in the analysis of gene expression data [20], the classification of 
microarray data [21, 17], the inference of gene functional classification [22-24] 
and the analysis of proteins [25-27]. 
Most of those tasks have the property of sparse instance vectors. The SVM 
approach has the ability to construct predictive models with a large 
generalization power, even in the case of a large dimensionality of the data when 
the number of observation available for training is low. SVM always seeks a 
globally optimized solution and avoids over-fitting, so the large number of 
features, as in our binary representation of sequence segments, is permitted. Our 
work is based on the SVMlight implementation code in C language created by 
Thorsten Joachims [28, 29], and also used widely in the field of bioinformatics 
[30]. It uses sparse instance vector properties to obtain compact and efficient 
representation. The efficiency of the constructed prediction models is estimated 
here using the leave-one-out method. 
In order to extract the relevant information from the heterogeneous biological 
data, we used statistical learning theory in terms of the SVM approach. SVM 
tries to separate a given set of binary labeled training vectors with an optimal 
hyperplane. The optimum is reached for the hyperplane that maximizes the 
separating margin between the two classes of the training vectors with a 
relatively small number of support vectors.  
The output of the training phase for each type of kinase for the phosphorylation 
site is a classification function (model). It consists of the set of D support 
vectors, Tj and iα , which are nonzero, positive real numbers. Those constants are 
obtained from the optimization procedure, called the quadratic programming 
problem (QP problem) used to find the maximal margin hyperplane. For any 
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embedding T of the input space of segments [x] into the representations space, 
all models are given in the form of the cost function: 
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where ( )iTTK ,  is the proper kernel function that defines the feature space, Ω is 
a nonlinear mapping function from the embedding space into the feature space, 
and li are known a priori class labels for the support vectors. We used li = +1  
for positive cases and li = -1 for negative cases. The kernel function is a positive 
defined function reflecting the similarity between a given input sample and the 
set of support vectors Ti. We built all the models of the phosphorylation sites 
using three kinds of kernel in SVM learner:  
• a linear one, given by the linear inner product in the feature 

space: ( ) { } { }ii TTTTK ΩΩ= ,, ,  
• a polynomial one, described by the kernel function: 

( ) { } { }( )d
ii cTTaTTK +ΩΩ= ,, ,  

• a radial basis kernel: ( ) { } { } { } { }( )iii TTTTTTK ΩΩΩΩ−= ,,exp, γ .  
Those types of kernel are the most standard ones, and have also been extensively 
studied in the field of bioinformatics [18, 19, 30]. 
The number of free parameters of the QP problem is equal to the number of all 
instances in the training dataset. The non-zero parameters αi describe the 
strength of this particular i-th support vector in the decision function. SVM 
chooses as support vectors those points that lie closest to the separating 
hyperplane. The mapping function Ω need not be explicitly defined, because in 
the kernel function, only the inner product of it is used. 
 
The automatic phosphorylation site position predictor 
The sequence-based automatic phosphorylation site position predictor is a 
complement to our previous work [9]. It uses the knowledge database of short 
sequence segments phosphorylated by various types of kinases. This database is 
built from segments with known sequence profiles (from the Swiss-Prot 
database). The automatic annotating service receives a sequence from a query 
protein as an input, and predicts the positions of its phosphorylation sites for 
kinases of a certain type. It uses the SVM classification models constructed as 
described in the previous section.  
The prediction method is as follows. First, we dissect a query protein into 
overlapping short segments of length 9aa. For each segment xj, we assign a label 
using an SVM-constructed model according to the decision function given by: 
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where K(Tj, Ti) is the proper kernel function that defines a similarity in the 
feature space, T is the embedding, i.e. mapping, function from the input space of 
the segments to the representation space, and b is a bias value (score cut-off 
value). {αi} are nonzero, positive real numbers that define the maximal margin 
hyperplane, with Tj as the set of D support vectors of the model. All those 
constants are separately computed during the optimization phase on a training 
set for each type of phosphorylation process by a certain kinase. 
Using the cost function (see Eq. 1), we described the reliability of the 
predictions. As the output of our method, we took only those sites which have a 
score (the value of the cost function from Eq. 1) larger than b. This means that 
points representing sequence segments centered on those sites lie in the region 
classified as positive by the SVM model’s hyperplane with a given b as the 
margin value. 
For the purposes of the Web server, we use polynomial kernels. As the output, 
all the predictions with the appropriate sign for the decision function are listed 
(Eq. 2). Our method is a simple one-vote wins approach, where we take the best 
model for each predicted segment. The Sk score for each segment is given by the 
cost function (Eq. 1) for the k-th method: 

[ ] [ ]( )jkjk xTfxS = ,      (3) 
The overall reliability of predictions is also described by the numeric values of 
the precision Pk and the recall value Rk (see below, Eq. 4) for the k-th method. 
 
RESULTS AND DISCUSSION 
 
The SVM approach provides the fast optimization algorithm with working set 
selection based on the steepest feasible descent. It uses a "shrinking" heuristic 
caching of kernel evaluations and folding in the linear case. The overall 
efficiency of the constructed model is described by solving classification, 
regression, and ranking problems. XiAlpha estimates are computed at essentially 
no computational expense, but they are conservatively biased [29, 31]. Almost 
unbiased estimates are provided by leave-one-out testing. The results of most 
leave-one-outs (often more than 99%) are predetermined and need not be 
computed; this is exploited by the SVMlight code [29]. The generalization 
performance efficiency is described here by the second efficient estimation 
method in terms of the error rate, the precision and the recall. The algorithm 
includes the learning ranking functions [32], which learn a function from 
preference examples, so that it orders a new set of objects as accurately as 
possible. It also handles several hundred-thousands of training examples and 
many thousands of support vectors, which is crucial in the case of large datasets 
of positive and negative instances. It supports standard kernel functions like 
linear, polynomial or radial ones.  
The performance of our tool is described here with three measures of accuracy: 
classification error E, recall R and precision P: 



CELL. MOL. BIOL. LETT.        Vol. 10. No. 1. 2005 
 

82 

%100*
fntnfptp

fnfpE
+++

+
= ,      (4a) 

%100*
fntp

tpR
+

= ,       (4b) 

%100*
fptp

tpP
+

= ,       (4c) 

where tp is the number of true positives, fp is the number of false positives, tn is 
the number of true negatives and fn is the number of false negatives. The 
classification error E provides an overall error measure, while the recall R 
measures the percentage of correct predictions, i.e. the probability of obtaining a 
correct prediction, and the precision P gives the percentage of observed positives  
 
Tab. 1. SVM learning results with a linear kernel. 
 

    Recall 
 
 
Precision 

Number of 
positives/ 
negatives 

BIN BIN 
+LOOKUP 

SPARSE SPARSE 
+LOOK 
UP 

BLOSUM 
+LOOK 
UP 

LOOKUP BLOSUM 
+SUM 
_PROF 

SUM 
_PROF 

PROF PROF 
+LOOK 
UP 

Dim  
(9aa) 

 180 189 180 189 189 9 189 9 180 189 

86/14353 0% 36.05% 13.95% 37.21% 17.44% 38.37% 0% 0% 0% 0% PKA 
(9)  - 86.11% 75.00% 91.43% 88.24% 80.49% - - - - 

56/14368 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% PKC 
(9)  - - - - - - - - - - 

41/14375 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% CDC2 
(9)  - - - - - - - - - - 

62/11746 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% CK2 
(9)  - - - - - - - - - - 

85/11739 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% CK 
(9)  - - - - - - - - - - 

1101/10000 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% PHOSPH 
(9)  - - - - - - - - - - 
 

The prediction efficiency for predictions of the sites of various types of phosphorylation 
processes obtained using SVM learning with a linear kernel. Here, we present two error 
estimators for all the types of projection and post-translational modification. The first 
one is the recall R, which measures the percentage of correct predictions (the probability 
of correct prediction). The second one is the precision P, which gives the percentage of 
observed positives that are correctly predicted (the measure of the reliability of positive 
instances prediction). Recall equals 0% and precision is not well defined (marked by “-”) 
if the SVM training phase cannot be finished. For some types of phosphorylation sites or 
types of projections, the training procedure fails. In such cases, we chose recall equal to 
0% (no positives found), and precision is marked by “-”. The most stable methods are 
the simple LOOKUP or mixed SPARSE+LOOKUP approaches. Other types of method 
have some advantages in particular types of phosphorylation, but they have a lower 
efficiency (recall/precision). 
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Tab. 2. SVM learning results with a polynomial kernel. 
 

   Recall 
 
 
Precision 

Number of 
positives/ 
negatives 

BIN BIN+ 
LOOK 
UP 

SPARSE SPRASE 
+LOOK 
UP 

BLO 
SUM+ 
LOOK 
UP 

LOOK 
UP 

BLO 
SUM+ 
SUM_ 
PROF 

SUM_ 
PROF 

PROF PROF+ 
LOOK 
UP 

Dim  
(9aa) 

 180 189 180 189 189 9 189 9 180 189 

86/14353 11.63% 43.02% 36.05% 37.21% 41.86% 41.86% 39.53% 37.21% 41.86% 41.86% PKA 
(9)  76.92% 58.73% 55.36% 74.42% 69.23% 85.71% 80.95% 68.09% 75.00% 76.60% 

56/14368 1.79% 16.07% 14.29% 14.29% 17.86% 0% 0% 0% 17.86% 17.86% PKC 
(9)  100% 42.86% 44.44% 40.00% 90.91% 0% - - 83.33% 62.50% 

41/14375 0% 29.27% 21.95% 24.39% 24.39% 21.95% 0% 0% 9.76% 17.07% CDC2 
(9)  - 31.58% 23.68% 33.33% 28.57% 69.23% - - 20.00% 28.00% 

62/11746 0% 17.74% 19.35% 20.97% 12.90% 14.52% 0% 0% 11.29% 12.90% CK2 
(9)  - 47.83% 44.44% 39.39% 50.00% 100% - - 53.85% 53.33% 

85/11739 0% 10.59% 11.76% 12.94% 8.24% 5.88% 0% 0% 9.41% 9.41% CK 
(9)  - 36.00% 35.71% 40.74% 63.64% 71.43% - - 57.14% 36.36% 

1101/10000 26.88% 25.07% 3.36% 19.71% 29.43% 5.99% 0% 0% 33.79% 34.42% PHOSPH 
(9)  77.49% 69.17% 68.52% 68.45% 73.64% 75.86% - - 71.95% 72.88% 

 

The results for the best kernel type of SVM method for all the considered types of 
phosphorylation sites. A detailed description of the two error estimators is given in the 
legend to Tab. 1. The results are obtained using SVM learning with a polynomial kernel 
((s a*b+c)^d). We collected results for 10 different embeddings. The first column in the 
table gives the number of positives and negatives for each type of activation process. 
The first row describes the dimension for each embedding method. The most stable 
methods are the profile PROF+LOOKUP, SPARSE+LOOKUP or BLOSUM+LOOKUP 
methods. Other types of methods have a lower efficiency (recall/precision). For some 
types of phosphorylation site, or types of projection, the training procedure fails. In such 
cases, we chose a recall value equal to 0% (no positives found), and precision is marked 
by “-”. 
 
that are correctly predicted, i.e. the measure of the reliability of positive instance 
prediction. Those measures of accuracy, as mentioned before, can be computed 
using conservative but easy to compute Xi-Alpha estimates and using the more 
precise but computationally intensive leave-one-out procedure. The leave-one-
out test removes one sample from the training data, constructs the model on the 
basis of the remaining training dataset, and then tests the prediction of the model 
on the removed sample. The resulting error estimators are averaged for all such 
models for all positive and all negative instances. 
The results of predictions for phosphorylation sites by various kinases for 
different projection methods and kernel functions are presented in Tabs. 1, 2 and 
3. We collected the results for the 10 different methods described in the previous 
section for preparing SVM input vectors representing sequence fragments. The 
first type of kernel function is linear, and is not efficient in the case of more 
complicated  sequence  signatures of phosphorylation sites. In some cases  (PKA  
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Tab. 3. SVM learning results with a radial kernel. 
 

     Recall 
 
 
Precision 

Number of 
positives/ 
negatives 

BIN  BIN+ 
LOOK 
UP 

SPARSE SPRASE 
+LOOK 
UP 

BLO 
SUM+ 
LOOK 
UP 

LOOK 
UP 

BLO 
SUM+ 
SUM_ 
PROF 

SUM_ 
PROF 

PROF PROF+ 
LOOK 
UP 

Dim  
(9aa) 

 180 189 180 189 189 9 189 9 180 189 

86/14353 0% 0% 0% 0% 0% 11.63% 0% 0% 0% 0% PKA 
(9)  - - - - - 76.92% - - - - 

56/14368 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% PKC 
(9)  - - - - - - - - - - 

41/14375 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% CDC2 
(9)  - - - - - - - - - - 

62/11746 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% CK2 
(9)  - - - - - - - - - - 

85/11739 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% CK 
(9)  - - - - - - - - - - 

1101/10000 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% PHOSPH 
(9) 

 - - - - - - - - - - 
 

The results of various methods for the predictions of phosphorylation sites using SVM 
learning with a radial kernel. Two estimators describing the efficiency of the method are 
described in Tab. 1. In most cases, the SVM learner fails to construct a model with a 
radial kernel. For those cases, we chose a recall value equal to 0% (no positives found), 
and precision is marked by “-”. When the number of positives is large, the LOOKUP 
method is the best one, reaching the efficiency of the models with polynomial kernels. 
 
Tab. 4. The classification error for three generic embeddings. 
 

Phosphorylation kinase #positives BIN LOOKUP PROF 

PKA phosphorylation 86 0.55% 0.39% 0.43% 
PKC phosphorylation 56 0.38% 0.40% 0.33% 
CDC2 phosphorylation 41 0.28% 0.25% 0.37% 
CK2 phosphorylation 62 0.53% 0.45% 0.52% 
CK phosphorylation 85 0.72% 0.69% 0.70% 
Phosphorylation (all types) 1101 8.03% 9.51% 7.87% 

 

The classification error for three generic embeddings (binary, lookup and profile) for 
each type of phosphorylation process. The first column presents the number of positive 
instances found in Swiss-Prot DB using annotation information (without BY 
SIMILARITY, PREDICTED, PROBABLE, POTENTIAL or PARTIAL annotations). 
The classification error E provides an overall error measure. This measure of accuracy is 
computed using the leave-one-out procedure, which removes from the training data one 
sample, constructs the model on the basis of remaining training dataset and then tests the 
prediction of the model on the removed sample. The resulting error estimator is averaged 
for all such models (for all positive and all negative instances). 
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phosphorylation with SPARSE+LOOKUP embedding), the models reach the 
efficiency of the polynomial kernel, which is the best one in all the tested types 
of phosphorylation. In the case of the polynomial kernel, the most stable 
methods are the PROF+LOOKUP method and BLOSUM+LOOKUP approach. 
Both yield excellent results for all the types of phosphorylation functional motif. 
Other projection methods have some advantages for some particular types of 
kinases, but they have a lower overall efficiency (recall/precision). In the case of 
a radial basis kernel, SVM frequently fails to build the model, other than for 
LOOKUP embedding. 
The overall predictive power of SVM models for phosphorylation by various 
types of kinases is illustrated on Tab. 4. In our tests, we used a large number of 
negatives for phosphorylation by various types of kinases, which allowed us to 
approximate the comparison in terms of the calculated precision and recall 
values between the various methods. The numbers of support vectors for those 
cases are large, as explained by the large dimensionality of the embedding space 
and the complicated shape of the separation hyperplane between the positive and 
negative instances. The number of support vectors can be lowered when we 
choose lower dimensional initial encoding of the amino acids into the 
physicochemical properties, such as hydrophobicity, hydrophilicity, polarity, 
volume, surface area, bulkiness or refractivity. In that case, for each position of a 
projected segment, instead of 20 dimensions for each type of amino acid, SVM 
will use only a few variables representing those properties [33]. 
The potential functional motifs are sometimes repeated with different scores 
when predicted by various methods. Each method predicts a different set of 
peptides as the phosphorylation functional motifs. Our automatic predictor uses 
an identity search or SVM scan. The user should analyze sequences using both 
methods in order to investigate the wider set of possibilites. The higher the 
output score, the higher the confidence of the predictions. This means that the 
potential segments are more similar to one or more of the functional motifs 
stored in the database used in the training of SVM methods. 
 
CONCLUSIONS 
 
Our approach guarantees the conservative description of the available biological 
data. The phosphorylation site analysis by support vector machine (SVM) allows 
for quick and accurate prediction of phosphorylation site position in new 
sequences. The algorithm can by applied independently from the Web interface 
via a pipe-line, so massive, large-scale genome analysis is also possible. The 
main problem we faced in the case of some phosphorylation site types is the 
insufficient number of experimentally verified instances in Swiss-Prot. In such 
cases, to make the set of training segments larger, PSI-BLAST can be used [34, 
35]. It allows for building the larger list of positives using the sequence 
similarity between known instances and the new ones. One can also use more 
refine sequence similarity in terms of profiles [36], or segments from multiple 
alignments (by BLAST) instead of single sequences from a parent proteins. All 
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those tools help in preparing large enough set of positives for a phosphorylation 
by certain type of kinase. In order to improve the quality of those added 
positives a structure disorder tool like GlobPlot [37] can be used to filter them. 
Then on such prepared set of positives the SVM learning procedure can be 
applied giving the classification model. 
Our service is natural complement of NetPhos tool which uses Neural Networks 
methodology. For a given query protein one can predict two sets of predicted 
phosphorylation sites. Both sets can be compared and then used to build a 
consensus result. The consensus approach allows for higher quality of 
predictions. The SVM results on PhosphoBase database, details of the consensus 
algorithm with sensitivity/specificity scores will be presented in our next paper. 
We test various combinations of generic methods like BIN+LOOKUP, 
SPARSE+BLOSUM etc. as a Cartesian product of two vector spaces merged 
into larger one. This additional information sometimes helps in gaining the 
higher accuracy in some phosphorylation types, but in general is not providing 
the higher efficiency of predictions. The further development of automatic 
phosphorylation sites annotation predictor based on our algorithm should get a 
significant improvement when using statistical algorithms in order to quantify 
the results. In our next paper we will present details of the internet web server 
allowing for remote access to all models of different types of phosphorylation 
sites. In the future our tool will be used also for prediction of other types of 
single amino acids post-translational modification processes, cell signaling 
networks within proteomes, and will aid in the identification of drug targets for 
the treatment of human diseases. 
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