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ABSTRACT
Motivation: Microarrays are capable of determining the
expression levels of thousands of genes simultaneously. In
combination with classification methods, this technology can
be useful to support clinical management decisions for indi-
vidual patients, e.g. in oncology. The aim of this paper is to
systematically benchmark the role of non-linear versus linear
techniques and dimensionality reduction methods.
Results: A systematic benchmarking study is performed
by comparing linear versions of standard classification and
dimensionality reduction techniques with their non-linear ver-
sions based on non-linear kernel functions with a radial basis
function (RBF) kernel. A total of 9 binary cancer classific-
ation problems, derived from 7 publicly available microar-
ray datasets, and 20 randomizations of each problem are
examined.
Conclusions: Three main conclusions can be formulated
based on the performances on independent test sets. (1)
When performing classification with least squares support vec-
tor machines (LS-SVMs) (without dimensionality reduction),
RBF kernels can be used without risking too much overfit-
ting. The results obtained with well-tuned RBF kernels are
never worse and sometimes even statistically significantly bet-
ter compared to results obtained with a linear kernel in terms of
test set receiver operating characteristic and test set accuracy
performances. (2) Even for classification with linear classifiers
like LS-SVM with linear kernel, using regularization is very
important. (3) When performing kernel principal component
analysis (kernel PCA) before classification, using an RBF ker-
nel for kernel PCA tends to result in overfitting, especially when
using supervised feature selection. It has been observed that
an optimal selection of a large number of features is often an
indication for overfitting. Kernel PCA with linear kernel gives
better results.
Availability: Matlab scripts are available on request.
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INTRODUCTION
Microarrays allow to determine the expression levels of
thousands of genes simultaneously. One important applica-
tion area of this technology is clinical oncology. As the
dysregulated expression of genes lies at the origin of the tumor
phenotype, its measurement can be very helpful to model or to
predict the clinical behavior of malignancies. By these means,
the fundamental processes underlying carcinogenesis can be
integrated into the clinical decision making.

For clinical applications, microarray data can be represen-
ted by an expression matrix of which the rows represent the
gene expression profiles and the columns the expression pat-
terns of the patients. Using microarray data allows optimized
predictions for an individual patient, e.g. predictions about
therapy response, prognosis and metastatic phenotype. An
example of the first one can be found in Iizuka et al. (2003).
Hepatocellular carcinoma has a poor prognosis because of
the high intrahepatic recurrence rate. Intrahepatic recurrence
limits the potential of surgery as a cure for hepatocellu-
lar carcinoma. The current pathological prediction systems
clinically applied to patients are inadequate for predicting
recurrence in individuals who undergo hepatic resection. In
this case, it would be useful to predict therapy response in
order to be able to select the patients who would benefit
from surgical treatment. An example of the second prediction
is given in Nutt et al. (2003). Among high-grade gliomas,
anaplastic oligodendrogliomas have a more favorable pro-
gnosis than glioblastomas. Moreover, although glioblastomas
are resistant to most available therapies, anaplastic oligo-
dendrogliomas are often chemosensitive. By predicting the
prognosis, it is possible to finetune treatment. An example
of the third prediction is presented in van’t Veer et al.
(2002). For breast cancer patients without tumor cells in local
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lymph nodes at diagnosis (lymph node negative), it is use-
ful to predict the presence of distant subclinical metastases
(poor prognosis) based on the primary tumor. Predicting the
metastatic phenotype allows selecting patients who would
benefit from adjuvant therapy as well as selecting patients
for whom this adjuvant therapy would mean unnecessary
toxicity.

Microarray datasets are characterized by high dimension-
ality in the sense of a small number of patients and a large
number of gene expression levels for each patient. Most classi-
fication methods have problems with the high dimensionality
of microarray data and require dimensionality reduction first.
On the contrary, support vector machines (SVMs) are capable
of learning and generalizing these data well (Mukherjee et al.,
1999; Furey et al., 2000). Most classification methods like for
example fisher discriminant analysis also rely on linear func-
tions and are unable to discover non-linear relationships in
microarray data, if any. By using kernel functions, one aims
at better understanding of these data (Brown et al., 2000),
especially when more patient data may become available in
the future. The first aim of this study is to compare linear ver-
sions of the standard techniques applied to microarray data
with their kernel version counterparts both with linear and
radial basis function (RBF) kernel. Even with a linear ker-
nel, least squares SVMs techniques can be more suitable as
they contain regularization and do not require dimensional-
ity reduction as applied in the dual space. A second aim
is to find an optimal strategy for the performance of clin-
ical predictions. In this paper, we systematically assess the
role of dimensionality reduction and non-linearity on a wide
variety of microarray datasets, instead of doing this in an
ad hoc manner. Randomizations on all datasets are carried
out in order to get a more reliable idea of the to be expec-
ted performance and the variation on it. The results on one
specific partitioning of training, validation and test set (as
often reported in literature) could easily lead to overly optim-
istic results, especially in the case of a small number of
patient data.

SYSTEMATIC BENCHMARKING
Datasets
This study considers nine cancer classification problems, all
comprising two classes. For this purpose, seven publically
available microarray datasets are used: colon cancer data
(Alon et al., 1999), acute leukemia data (Golub et al., 1999),
breast cancer data (Hedenfalk et al., 2001), hepatocellular
carcinoma data (Iizuka et al., 2003), high-grade glioma data
(Nutt et al., 2003), prostate cancer data (Singh et al., 2002) and
breast cancer data (van’t Veer et al., 2002). Since the dataset
in Hedenfalk et al. (2001) contains three classes, three bin-
ary classification problems and corresponding datasets can be
constructed from it by taking each class versus the rest. In most
of the datasets, all data samples have already been assigned

Table 1. Summary of the nine binary cancer classification problems datasets
reflecting the dimensions and the microarray technology of each dataset

D TR TR TR TE TE TE Levels M
C1 C2 C1 C2

1 40 14 26 22 8 14 2000 T1
2 38 11 27 34 14 20 7129 T1
3 14 4 10 8 3 5 3226 T2
4 14 5 9 8 3 5 3226 T2
5 14 4 10 8 3 5 3226 T2
6 33 12 21 27 8 19 7129 T1
7 21 14 7 29 14 15 12625 T1
8 102 52 50 34 25 9 12600 T1
9 78 34 44 19 12 7 24188 T2

Explanation of the abbreviations used: D, datasets; TR, training set; TE, test set; C1,
class 1; C2, class 2; M, microarray technology; T1, oligonucleotide; T2, cDNA; 1, colon
cancer data of Alon et al. (1999); 2, acute leukemia data of Golub et al. (1999); 3, breast
cancer data of Hedenfalk et al. (2001) taking the BRCA1 mutations versus the rest; 4,
breast cancer data of Hedenfalk et al. (2001) taking the BRCA2 mutations versus the
rest; 5, breast cancer data of Hedenfalk et al. (2001) taking the sporadic mutations versus
the rest; 6, hepatocellular carcinoma data of Iizuka et al. (2003); 7, high-grade glioma
data of Nutt et al. (2003); 8, prostate cancer data of Singh et al. (2002); and 9, breast
cancer data of van’t Veer et al. (2002).

to a training set or test set. In the cases of datasets for which
a training set and test set have not been defined yet, two-third
of the data samples of each class are assigned to the training
set and the rest to the test set.

An overview of the characteristics of all the datasets can
be found in Table 1. The acute leukemia data in Golub
et al. (1999) have already been used frequently in previous
microarray data analysis studies. Preprocessing of this data-
set is done by thresholding and log-transformation, similar
as in the original publication. Thresholding is achieved by
restricting gene expression levels to be larger than 20, e.g.
expression levels which are smaller than 20 will be set to 20.
Concerning the log-transformation, the natural logarithm of
the expression levels is taken. The breast cancer dataset in
van’t Veer et al. (2002) contains missing values. Those have
been estimated based on 5% of the gene expression profiles
that have the largest correlation with the gene expression pro-
file of the missing value. No further preprocessing is applied
to the rest of the datasets.

Systematic benchmarking studies are important for obtain-
ing reliable results allowing comparability and repeatability
of the different numerical experiments. For this purpose, this
study not only uses the original division of each dataset in
training and test set, but also reshuffles (randomizes) all data-
sets. Consequently, all numerical experiments are performed
with 20 randomizations of the 9 original datasets as well.
These randomizations are the same for all numerical experi-
ments on one dataset (in Matlab with the same seed for the
random generator). They are also stratified, which means
that each randomized training and test set contains the same
amount of samples of each class compared to the original
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training and test set. The results of all numerical experiments
in the tables represent the mean and SD of the results on each
original dataset and 20 randomizations.

Methods
The methods used to set up the numerical experiments can be
subdivided in two categories: dimensionality reduction and
classification. For dimensionality reduction, classical prin-
cipal component analysis (PCA) as well as kernel PCA
are used. Fisher discriminant analysis (FDA) and LS-SVM
(which can be viewed among others as a kernel version of
FDA) are used for classification.

Principal component analysis PCA looks for linear
combinations of gene expression levels in order to obtain a
maximal variance over a set of patients. In fact, those com-
binations are most informative for this set of patients and are
called the principal components. One formulation in order
to characterize PCA problems is to consider a given set of
centered (zero mean) input data {xk}Nk=1 as a cloud of points for
which one tries to find projected variables wT x with maximal
variance. This means,

max
w

Var(wT x) = wT Cw, (1)

where the covariance matrix C is estimated as C ∼= (1/

(N − 1))
∑N

k=1 xkx
T
k . One optimizes this objective function

under the constraint that wT w = 1. Solving the constrained
optimization problem gives the eigenvalue problem

Cw = λw. (2)

The matrix C is symmetric and positive semidefinite.
The eigenvector w corresponding to the largest eigen-
value determines the projected variable having maximal
variance.

Kernel principal component analysis Kernel PCA has the
same goal as classical PCA, but is capable of looking for
non-linear combinations too. The objective of kernel PCA
can be formulated (Schölkopf et al., 1998; Suykens et al.,
2003) as

max
w

N∑
k=1

[wT (ϕ(xk) − µϕ)]2, (3)

with notation µϕ = (1/N)
∑N

k=1 ϕ(xk) used for center-
ing the data in the feature space, where ϕ(·): R

n → R
nh

is the mapping to a high-dimensional feature space, which
might be infinite dimensional. This can be interpreted
as first mapping the input data to a high dimensional
feature space and next to projected variables. The fol-
lowing optimization problem is formulated in the primal

weight space

max
w,e

JP (w, e) = γ
1

2

N∑
k=1

e2
k − 1

2
wT w,

such that ek = wT [ϕ(xk) − µϕ], k = 1, . . . , N . (4)

This formulation states that the variance of the projected
variables is maximized for the given N data points while
keeping the norm of w small by the regularization term.
By taking the conditions for optimality from the Lagrangian
related to this constrained optimization problem, such as
w = ∑N

k=1 αk[ϕ(xk) − µϕ] among others, and defining λ =
1/γ , one obtains the eigenvalue problem

�cα = λα, (5)

with

�c,kl = [ϕ(xk) − µϕ]T [ϕ(xl) − µϕ], k, l = 1, . . . , N , (6)

the elements for the centered kernel matrix �c. Since the
kernel trick K(xk , xl) = ϕ(xk)

T ϕ(xl) can be applied to the
centered kernel matrix, one may choose any positive definite
kernel satisfying the Mercer condition. The kernel functions
used in this paper are the linear kernel K(x, xk) = xT

k x

and the RBF kernel K(x, xk) = exp{−‖x − xk‖2
2/σ

2}. The
centered kernel matrix can be computed as �c = Mc�Mc

with �kl = K(xk , xl) and Mc = I − (1/N)1N 1T
N the cen-

tering matrix where I denotes the identity matrix and 1N is
a vector of length N containing all ones. The dimensionality
reduction is done by selecting the eigenvectors corresponding
to the largest eigenvalues.

Fisher discriminant analysis FDA projects the data xk ∈ R
n

from the original input space to a one-dimensional variable
zk ∈ R and makes a discrimination based on this projected
variable. In this one-dimensional space one tries to achieve a
high discriminatory power by maximizing the between-class
variances and to minimize the within-class variances for the
two classes. The data are projected as follows

z = f (x) = wT x + b, (7)

with f (·): R
n → R. One is interested then in finding a line

such that the following objective of a Rayleigh quotient is
maximized:

max
w,b

JFD(w, b) = wT �Bw

wT �Ww
. (8)

The means of the input variables for class 1 and class 2
are E[x(1)] = µ(1), E[x(2)] = µ(2). The between and
within covariance matrices related to class 1 and class 2 are
�B = [µ(1) − µ(2)][µ(1) − µ(2)]T , �W = E{[x − µ(1)][x −
µ(1)]T }+E{[x −µ(2)][x −µ(2)]T } where the latter is the sum
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of the two covariance matrices �W1 , �W2 for the two classes.
Note that the Rayleigh quotient is independent of the bias term
b. By choosing a threshold z0, it is possible to classify a new
point as belonging to class 1 if z(x) ≥ z0, and classify it as
belonging to class 2 otherwise. Assuming that the projected
data is the sum of a set of random variables allows invoking
the central limit theorem and modeling the class-conditional
density functions p(z| class 1) and p(z| class 2) using normal
distributions.

Least squares support vector machine classifiers LS-SVMs
(Suykens and Vandewalle, 1999; Van Gestel et al., 2002;
Pelckmans et al., 2002, http://www.esat.kuleuven.ac.be/sista/
lssvmlab/) are a modified version of SVMs (Vapnik, 1998;
Schölkopf et al., 1999, 2001; Cristianini and Shawe-Taylor,
2000; Schölkopf and Smola, 2002) and comprises a class of
kernel machines with primal-dual interpretations related to
kernel FDA, kernel PCA, kernel PLS (kernel Partial Least
Squares), kernel CCA (kernel Canonical Correlation Ana-
lysis), recurrent networks and others. For classification this
modification leads to solving a linear system instead of a quad-
ratic programming problem, which makes LS-SVM much
faster than SVM on microarray datasets. The benchmarking
study of Van Gestel et al. (2004) on 20 UCI datasets revealed
that the results of LS-SVM are similar to those of SVM.
Given is a training set {xk , yk}Nk=1 with input data xk ∈ R

n and
corresponding binary class labels yk ∈ {−1, +1}. Vapnik’s
SVM classifier formulation was modified in (Suykens and
Vandewalle, 1999) into the following LS-SVM formulation:

minw,b,e JP (w, e) = 1
2wT w + γ 1

2

∑N
k=1 e2

k ,

such that yk[wT ϕ(xk) + b] = 1 − ek , k = 1, . . . , N ,

(9)

for a classifier in the primal space that takes the form

y(x) = sign[wT ϕ(x) + b], (10)

where ϕ(·): Rn → R
nh is the mapping to the high-dimensional

feature space and γ the regularization parameter. In the case
of a linear classifier one could easily solve the primal problem,
but in general w might be infinite dimensional. For this non-
linear classifier formulation, the Lagrangian is solved, which
results in the following dual problem to be solved in α, b:[

0 yT

y � + I/γ

] [
b

α

]
=

[
0

1N

]
, (11)

where the kernel trick K(xk , xl) = ϕ(xk)
T ϕ(xl) can be

applied within the � matrix

�kl = ykylϕ(xk)
T ϕ(xl) = ykylK(xk , xl), k, l = 1, . . . , N .

(12)
The classifier in the dual space takes the form

y(x) =
N∑

k=1

αkykK(x, xk) + b. (13)

The chosen kernel function should be positive definite and
satisfy the Mercer condition. The kernel functions used in
this paper are the linear kernel K(x, xk) = xT

k x and the
RBF kernel K(x, xk) = exp{−‖x − xk‖2

2/σ
2}. Note that

using LS-SVM with a linear kernel without regularization
(γ → ∞) is in fact the counterpart of classical linear FDA,
but the latter needs dimensionality reduction while the former
can handle the problem without dimensionality reduction in
the dual form as the size of the linear system to be solved is
(N + 1) × (N + 1) and is not determined by the number of
gene expression levels. Hence, the advantage of using ker-
nel methods like SVM or LS-SVM is that they can be used
without performing dimensionality reduction first, which is
not the case for the classical linear regression method FDA.

Numerical experiments
In this study, nine classification problems are considered.
The numerical experiments applied to all these problems can
be divided into two subgroups, depending on the required
parameter optimization procedure. First, three kinds of experi-
ments, all without dimensionality reduction, are performed to
all nine classification problems. These are LS-SVM with lin-
ear kernel, LS-SVM with RBF kernel and LS-SVM with linear
kernel and infinite regularization parameter (γ → ∞). Next,
six kinds of experiments, all using dimensionality reduction,
are performed to all nine classification problems. The first
two of these are based on classical PCA followed by FDA.
Selection of the principal components is done both in an
unsupervised and a supervised way. The same strategy is
used in the last four of these, but kernel PCA with linear
kernel as well as RBF kernel are used instead of classical
linear PCA.

Since building a prediction model requires good general-
ization towards making predictions for previously unseen
test samples, tuning the parameters is an important issue.
The small sample size characterizing microarray data restricts
the choice of an estimator for the generalization per-
formance. The optimization criterion used in this study
is the leave-one-out cross-validation (LOO-CV) perform-
ance. In each LOO-CV iteration (number of iterations
equals the sample size), one sample is left out of the
data, a classification model is trained on the rest of the
data and this model is then evaluated on the left out data
point. As an evaluation measure, the LOO-CV perform-
ance [(No. of correctly classified samples)/(No. of samples
in the data) · 100]% is used.

All numerical experiments are implemented in Matlab by
using the LS-SVM and kernel PCA implementations of the
LS-SVMlab toolbox (http://www.esat.kuleuven.ac.be/sista/
lssvmlab/).

Tuning parameter optimization for the case without
dimensionality reduction When using LS-SVM with a lin-
ear kernel, only the regularization constant needs to be further
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optimized. The value of the regularization parameter corres-
ponding to the largest LOO-CV performance is then selected
as the optimal value. Using an RBF kernel instead requires
optimization of the regularization parameter γ as well as
the kernel parameter σ . This is done by searching a two
dimensional grid of different values for both parameters.
Using LS-SVM with a linear kernel and infinite regularization
parameter, which corresponds to FDA, requires no parameter
optimization.

After preprocessing, which is specific for each dataset (as
discussed in the section on datasets), normalization is always
performed on all the datasets before using them for classi-
fication purposes. This is done by standardizing each gene
expression of the data to have zero mean and unit SD. Nor-
malization of training sets as well as test sets is done by
using the mean and SD of each gene expression profile of
the training sets.

Tuning parameter optimization in the case of dimensionality
reduction When reducing the dimensionality of the expres-
sion patterns of the patients with classical PCA and next
building a prediction model by means of FDA, the number
of principal components needs to be optimized. This is real-
ized by performing LOO-CV on the training set. For each
possible number of principal components (ranging between
1 and N − 2, with N the number of training samples), the
LOO-CV performance is computed. The number of principal
components with best LOO-CV performance is then selected
as the optimal one. If there exist different numbers of prin-
cipal components with the same best LOO-CV performance,
the smallest number of principal components is selected. This
choice can be interpreted as minimizing the complexity of
the model. In case kernel PCA with a linear kernel is used
instead of the classical PCA, the same method is used. Using
kernel PCA with an RBF kernel not only requires optimiz-
ation of the number of principal components, but also the
kernel parameter σ needs to be tuned. A broad outline of
the optimization procedure is described in the sequel. For
several possible values of the kernel parameter, the LOO-
CV performance is computed for each possible number of
principal components. The optimal number of principal com-
ponents with the best LOO-CV performance is then selected
for each value of the kernel parameter. If there are several
optimal numbers of principal components, the smallest num-
ber of principal components is selected, again for minimal
model complexity reasons. In order to find the optimal value
for the kernel parameter, the value of the kernel parameter
with best LOO-CV performance is selected. In case there
are several possible optimal values for the kernel parameter,
also the optimal number of principal components belonging to
these optimal kernel parameter values need to be considered.
From these values, the optimal kernel parameter value with
the smallest number of principal components is chosen. In
case there are still several possible optimal kernel parameter

values, the smallest value of these is selected as the optimal
one. Remark the complexity of this optimization procedure
because both the kernel parameter and the number of prin-
cipal components of the kernel PCA with RBF kernel need to
be optimized in the sense of the LOO-CV performance of the
FDA classification.

Optimization algorithm: kernel PCA with RBF kernel
followed by FDA

(1) Generation of parameter grid
for each kernel parameter value within selected range

for each possible # principal components
for each LOO-CV iteration

• leave one sample out
• normalization
• dimensionality reduction (kernel PCA)
• selection of the principal components (un

supervised or supervised)
• classification (FDA)
• test sample left out

end
calculate LOO-CV performance

end
end

(2) Optimization of parameters
for each kernel parameter value out of a range

optimal # principal components:
1. best LOO-CV performance
2. smallest # principal components *

end

optimal kernel parameter value:
1. best LOO-CV performance
2. smallest # principal components *
3. smallest kernel parameter value *

* if more than one

Normalization of the samples left out in each LOO-CV itera-
tion also needs to be done based on the mean and SD of each
gene expression profile of each accompanying training set.
Concerning dimensionality reduction, it should be remarked
that this is also done based on the training set. First, PCA
is applied to the training set, which results in eigenvalues
and eigenvectors going from 1 till N . The training and test
set are then projected onto those eigenvectors. As the data
are centered, the last eigenvalue is equal to zero. Therefore,
the last principal component is left out, which results in the
number of principal components going from 1 till N − 2. In
fact, this corresponds to obtaining a low-rank approximation
starting from a full rank matrix.

Supervised versus unsupervised selection of principal
components Concerning the experiments with dimensional-
ity reduction, two ways of selecting the principal components
are used. The first one simply looks at the eigenvalues of
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the principal components, originating from PCA. Since this
method does not take into account the class labels, it is in
an unsupervised way. The other one is based on the absolute
value of the score introduced by Golub et al. (1999), as also
used in Furey et al. (2000):

F(xj ) =
∣∣∣∣∣
µ1

j − µ2
j

σ 1
j + σ 2

j

∣∣∣∣∣ . (14)

This method allows finding individual gene expression
profiles that help discriminating between two classes by cal-
culating for each gene expression profile xj a score based on
the mean µ1

j (respectively µ2
j ) and the SD σ 1

j (respectively σ 2
j )

of each class of samples. In our experiments, this method is
applied onto the principal components instead of applying it
directly to the gene expression profiles. This method takes into
account the class labels and is therefore called supervised. The
n most important principal components now correspond to
the n principal components with either the highest eigenvalues
or the highest absolute value of the score introduced by Golub.

Measuring and comparing the performance of the numerical
experiments For the results, three kinds of measures are
used. The first one is the LOO-CV performance. This is estim-
ated by only making use of the training datasets for tuning
the parameters. The second measure is the accuracy, which
gives an idea of the classification performance by reflecting
the percentage correctly classified samples. When measured
on independent test sets, this gives an idea of the generaliza-
tion performance. But when measured on the training set,
one can get an idea of the degree of overfitting. The third
measure is the area under the Receiver operating charac-
teristic (ROC) curve (Hanley and McNeil, 1982). An ROC
curve shows the separation abilities of a binary classifier: by
setting different possible classifier thresholds, the perform-
ances [(No. of correctly classified samples)/(No. of samples
in the data) ·100]% are calculated resulting in the ROC curve.
If the area under the ROC curve equals 100% on a dataset, a
perfectly separating classifier is found on that particular data-
set, if the area equals 50%, the classifier has no discriminative
power at all. This measure can be evaluated on an independent
test set or training set. Statistical significance tests are per-
formed in order to allow a correct interpretation of the results.
A non-parametric paired test, the Wilcoxon signed rank test
(signrank in Matlab) (Dawson-Saunders and Trapp, 1994), has
been used in order to make general conclusions. A threshold
of 0.05 is respected, which means that two results are statistic-
ally significantly different if the value of the Wilcoxon signed
rank test applied to both of them is lower than 0.05.

RESULTS
The tables with all results and the statistical significance
tests as well as a detailed description of all nine classifica-
tion problems can be found on the supplementary website.

Only the most relevant classification problems are treated in
the following discussion and are represented in Table 2. For
each classification problem, the results represent the statistical
summary (mean and variance) of the numerical experiments
on the original dataset and 20 randomizations of it. Since the
randomizations (training and test set splits) are not disjoint,
the results as well as the statistical significance tests given
in the tables are not unbiased and can in general also be too
optimistic.

General comments
One general remark is that constructing the randomizations in
a stratified way already seems to result in a large variance (it
would have been even larger if constructed in a non-stratified
way).

Another remark is that the LOO-CV performance is not a
good indicator for the accuracy or the area under the ROC
curve of the test set. This raises the question whether or not
this LOO-CV performance is a good method for tuning the
parameters. Since microarray data are characterized by a small
sample size, LOO-CV has to be applied with care as one may
easily overfit in this case.

For all datasets except the one containing the acute leukemia
data (Golub et al., 1999), the LOO-CV performance, the test
set accuracy and also the area under the ROC curve of the test
set of the experiment based on LS-SVM with linear kernel
and γ → ∞ (i.e. no regularization) is significantly worse than
all other experiments. This clearly indicates that regulariza-
tion is very important when performing classification without
previous dimensionality reduction, even for linear models.
In the further discussion treating the individual datasets, this
experiment will be left out.

The acute leukemia data (Golub et al., 1999) clearly com-
prises an easy classification problem, since the variances on
the results caused by the randomizations are quite small com-
pared to the other datasets. All experiments on this dataset
also seem to end up in quite similar results, so in fact it hardly
doesn’t matter which classification method is applied on this
dataset.

Observing the optimal values for the tuning parameters
leads to the following remarks. When LS-SVM with a linear
kernel is applied, typical values for the mean regularization
parameter γ on each dataset are ranging between 1e−3 and
1e+3. When using LS-SVM with an RBF kernel, typical val-
ues for the mean regularization parameter γ as well as the
mean kernel parameter σ 2 on each dataset both are ranging
between 1e+10 and 1e+15. Optimal values for the kernel
parameter σ 2 are quite large because they are scaled with the
large input dimensionality of microarray data. Using kernel
PCA with an RBF kernel before classification often results
in test set performances that are worse than when using ker-
nel PCA with a linear kernel, which means that overfitting
occurs. Typical values for the mean kernel parameter σ 2

of the kernel PCA with RBF kernel on each dataset highly
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Table 2. Summary of the results of the numerical experiments on four binary cancer classification problems, comprising the LOO-CV performance, the
accuracy (ACC) on training and test set, and the area under the ROC curve (AUC) on training and test set

LOO-CV performance ACC training set ACC test set AUC training set AUC test set

Hedenfalk et al. (2001) BRCA1 mutations
LS-SVM linear kernel 78.23 ± 7.13 87.76 ± 14.14 64.29 ± 6.99 100.00 ± 0.00 81.90 ± 18.19 (+)

LS-SVM RBF kernel 82.65 ± 8.12 98.64 ± 6.08 75.00 ± 12.20 (+) 100.00 ± 0.00 82.22 ± 17.38 (+)

LS-SVM linear kernel (no regularization) 46.94 ± 21.21 47.62 ± 9.94 52.98 ± 19.25 (−) 47.14 ± 14.38 52.70 ± 24.16 (−)

PCA + FDA (unsupervised PC selection) 81.63 ± 7.17 95.24 ± 7.09 64.29 ± 12.96 93.93 ± 12.67 67.62 ± 21.83
PCA + FDA (supervised PC selection) 84.01 ± 9.58 97.96 ± 4.49 68.45 ± 15.25 97.86 ± 5.25 71.75 ± 21.12
kPCA lin + FDA (unsupervised PC selection) 81.29 ± 7.13 95.24 ± 6.73 63.10 ± 13.07 96.55 ± 5.64 66.35 ± 20.23
kPCA lin + FDA (supervised PC selection) 84.35 ± 8.99 98.30 ± 4.36 67.86 ± 15.70 98.45 ± 4.12 72.38 ± 22.23
kPCA RBF + FDA 91.16 ± 7.28 94.90 ± 6.29 54.17 ± 11.79 (−) 95.36 ± 7.98 60.63 ± 16.25

(unsupervised PC selection)
kPCA RBF + FDA (supervised PC selection) 92.52 ± 5.16 98.30 ± 5.36 63.69 ± 10.85 97.68 ± 7.72 64.13 ± 18.54

Nutt et al. (2003)
LS-SVM linear kernel 75.74 ± 8.93 90.02 ± 14.16 61.25 ± 11.75 99.47 ± 1.03 79.25 ± 6.06
LS-SVM RBF kernel 78.23 ± 7.99 98.41 ± 7.10 69.95 ± 8.59 (+) 100.00 ± 0.00 81.04 ± 6.64 (+)

LS-SVM linear kernel (no regularization) 50.79 ± 16.65 50.79 ± 12.75 48.93 ± 10.88 (−) 50.63 ± 16.40 50.68 ± 15.15 (−)

PCA + FDA (unsupervised PC selection) 80.95 ± 7.49 92.29 ± 7.12 67.82 ± 7.24 97.72 ± 2.80 77.48 ± 10.50
PCA + FDA (supervised PC selection) 81.41 ± 7.19 92.97 ± 10.14 65.52 ± 11.01 96.65 ± 5.69 77.37 ± 9.04
kPCA lin + FDA (unsupervised PC selection) 80.73 ± 7.12 92.52 ± 6.98 68.31 ± 6.78 97.91 ± 2.74 77.98 ± 10.43
kPCA lin + FDA (supervised PC selection) 81.86 ± 6.67 95.24 ± 8.57 67.32 ± 11.04 98.15 ± 4.02 76.53 ± 8.96
kPCA RBF + FDA 86.62 ± 5.99 94.78 ± 9.05 64.20 ± 11.19 (−) 97.30 ± 6.60 70.80 ± 15.44 (−)

(unsupervised PC selection)
kPCA RBF + FDA (supervised PC selection) 85.94 ± 5.78 96.15 ± 7.29 58.13 ± 12.24 (−) 98.25 ± 3.78 66.33 ± 15.48 (−)

Singh et al. (2002)
LS-SVM linear kernel 90.10 ± 1.42 100.00 ± 0.00 84.31 ± 13.66 100.00 ± 0.00 91.28 ± 5.20 (+)

LS-SVM RBF kernel 91.22 ± 1.19 99.95 ± 0.21 88.10 ± 4.93 (+) 100.00 ± 0.00 92.04 ± 5.03 (+)

LS-SVM linear kernel (no regularization) 50.33 ± 0.92 51.45 ± 7.03 48.18 ± 10.25 (−) 51.10 ± 8.27 50.98 ± 12.38 (−)

PCA + FDA (unsupervised PC selection) 90.38 ± 1.83 97.62 ± 1.95 83.89 ± 13.63 99.67 ± 0.38 88.93 ± 11.39
PCA + FDA (supervised PC selection) 90.57 ± 1.53 97.57 ± 3.34 82.49 ± 13.35 99.40 ± 0.99 86.74 ± 12.95
kPCA lin + FDA (unsupervised PC selection) 90.34 ± 1.75 97.57 ± 1.90 85.01 ± 9.07 99.67 ± 0.38 89.98 ± 7.30
kPCA lin + FDA (supervised PC selection) 90.57 ± 1.53 97.57 ± 3.34 82.49 ± 13.35 99.40 ± 0.99 86.73 ± 12.96
kPCA RBF + FDA 91.60 ± 1.50 98.97 ± 1.75 85.01 ± 11.00 99.84 ± 0.32 89.90 ± 9.64

(unsupervised PC selection)
kPCA RBF + FDA (supervised PC selection) 100.00 ± 0.00 100.00 ± 0.00 28.71 ± 10.02 (−) 100.00 ± 0.00 50.00 ± 0.00 (−)

Van ’t Veer et al. (2002)
LS-SVM linear kernel 68.99 ± 4.22 100.00 ± 0.00 67.92 ± 8.58 (+) 100.00 ± 0.00 73.30 ± 11.01 (+)

LS-SVM RBF kernel 69.05 ± 3.55 100.00 ± 0.00 68.42 ± 7.62 (+) 100.00 ± 0.00 73.98 ± 10.69 (+)

LS-SVM linear kernel (no regularization) 52.14 ± 6.04 74.66 ± 24.04 57.14 ± 9.08 (−) 74.73 ± 25.26 64.60 ± 13.18 (−)

PCA + FDA (unsupervised PC selection) 71.31 ± 3.57 91.27 ± 10.04 57.39 ± 15.57 94.61 ± 6.80 65.16 ± 12.30
PCA + FDA (supervised PC selection) 73.44 ± 3.19 97.31 ± 5.62 66.92 ± 9.90 (+) 98.77 ± 3.16 67.91 ± 12.64
kPCA lin + FDA (unsupervised PC selection) 71.18 ± 3.62 91.21 ± 10.33 60.90 ± 14.49 94.46 ± 7.22 66.01 ± 13.45
kPCA lin + FDA (supervised PC selection) 73.63 ± 3.89 97.13 ± 6.63 65.41 ± 7.54 (+) 98.54 ± 3.98 69.22 ± 11.01
kPCA RBF + FDA 74.91 ± 6.54 90.66 ± 11.08 51.38 ± 15.91 93.77 ± 8.75 60.26 ± 16.57

(unsupervised PC selection)
kPCA RBF + FDA (supervised PC selection) 100.00 ± 0.00 100.00 ± 0.00 36.84 ± 0.00 (−) 100.00 ± 0.00 50.00 ± 0.00 (−)

The results visualized in bold followed by (+) are statistically significantly better than the other results. The results in bold followed by (−) are statistically significantly worse than
the other results.

depend on the way the principal components are selected.
When using the unsupervised way for selecting the principal
components, the mean of kernel parameter values σ 2 tends
to go to 1e+20. Using the supervised way for selecting the
principal components, 1e + 0 is often selected as the optimal
value for the kernel parameter σ 2, which leads to bad test set
performances compared to the other experiments (seriously
overfitting).

In the context of parameter optimization, it is also important
to address the number of selected features and in particular
the sparseness of the classical and kernel PCA projections.
Figure 1 represents the test set ROC performance together
with the sparseness when using a linear and an RBF kernel
for kernel PCA. It has been noticed that classical PCA leads
to approximately the same results as kernel PCA with linear
kernel and therefore not represented separately. Selection of
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Fig. 1. Illustration of the test set ROC performance (upper part)
and the sparseness (lower part) of the optimally selected feature set
based on boxplots of the areas under the ROC curve of the test set
and boxplots of the optimal number of principal components respect-
ively of all nine cancer classification problems. It has been observed
that an optimal selection of a large number of features is often an
indication for overfitting in case of kernel PCA with RBF kernel
(supervised feature selection) followed by FDA. For each dataset,
the areas under the ROC curve of the test set and the optimal number
of principal components of kernel PCA with a linear kernel (selecting
the principal components in a supervised way) followed by FDA are
represented on the left, the areas under the ROC curve of the test set
and the optimal number of principal components of kernel PCA with
an RBF kernel (selecting the principal components in a supervised
way) followed by FDA on the right. Concerning the datasets, the
order of Table 1 is respected.

the principal components is done in a supervised way based on
the LOO-CV performance criterion. Two observations can be
stated when comparing the results of these two experiments.
First, when the optimal number of principal components is
relatively low in case of using a linear kernel and much lar-
ger in case of using an RBF kernel, this is an indication of
overfitting. The colon cancer dataset of (Alon et al., 1999)
(1) and the hepatocellular carcinoma dataset of (Iizuka et al.,
2003) (6) are examples of this observation. Second, when the
optimal number of principal components is very large both
in case of using a linear kernel and in case of using an RBF
kernel, this is an indication of overfitting too. The prostate
cancer dataset of (Singh et al., 2002) (8) and the breast can-
cer dataset of (van’t Veer et al., 2002) (9) are illustrating this
observation.

Results on specific datasets

Breast cancer dataset (Hedenfalk et al., 2001): BRCA1
mutations versus the rest. Concerning the test set accuracies,
LS-SVM with RBF kernel obviously performs better than all
other methods. Using an RBF kernel when doing kernel PCA

on the other hand clearly performs worse when the eigenvalues
are used for selection of the principal components. The results
of the area under the ROC curve of the test set show that using
LS-SVM results in much better performances than all other
experiments, even when using a linear kernel. Both methods
for selecting the principal components seem to perform very
similarly, but in some cases using the absolute value of the
Golub score tends to perform slightly better. Remarkably in
this case is that the test set accuracy of LS-SVM with RBF ker-
nel is much better than LS-SVM with linear kernel, although
the area under the ROC curve of both experiments is practic-
ally equal. This is also an indication of how important it is to
find a good decision threshold value, which corresponds to an
operating point on the ROC curve.

High-grade glioma dataset (Nutt et al., 2003). Concern-
ing the test set performances, the experiment using LS-SVM
with RBF kernel is significantly better than using LS-SVM
with linear kernel. For this dataset both methods for selection
of the principal components give similar results.

Prostate cancer dataset (Singh et al., 2002). The test set
performances show that the experiment using kernel PCA
with RBF kernel and selecting the principal components by
means of the supervised method clearly gives very bad results.
Using the eigenvalues for selection of the principal compon-
ents seems to give better results than using the supervised
method. According to the test set accuracy, the experiment
applying LS-SVM with RBF kernel even performs slightly
better than those experiments using the eigenvalues for selec-
tion of the principal components. When looking at the area
under the ROC curve of the test set, both experiments applying
LS-SVM perform slightly better than those experiments using
the eigenvalues for selection of the principal components.

Breast cancer dataset (van’t Veer et al., 2002). When
looking at the test set performances, it is obvious that the
experiment using kernel PCA with RBF kernel and selecting
the principal components by means of the supervised method
leads to very bad results. Using LS-SVM gives better results
than performing dimensionality reduction combined with an
unsupervised way for the selection of the principal compon-
ents. According to the area under the ROC curve of the test set,
using LS-SVM gives better results than all experiments per-
forming dimensionality reduction. Both methods for selecting
the principal components seem to perform very similarly, but
in some cases using the absolute value of the Golub score
tends to perform slightly better.

DISCUSSION
Assessing the role of non-linearity for the case
without dimensionality reduction
When considering only the experiments without dimension-
ality reduction, i.e. LS-SVM with linear kernel and LS-SVM
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Fig. 2. Illustration of the first main conclusion based on boxplots
(boxplot in Matlab, see supplementary website) of the test set
accuracies of all nine binary cancer classification problems: When
performing classification with LS-SVM (without dimensionality
reduction), using well-tuned RBF kernels can be applied without
risking overfitting. The results obtained with well-tuned RBF ker-
nels are never worse and sometimes even statistically significantly
better compared with using a linear kernel. For each dataset, the test
set accuracies of LS-SVM with a linear kernel are represented on the
left, the test set accuracies of LS-SVM with an RBF kernel on the
right. Concerning the datasets, the order of Table 1 is respected.

with RBF kernel, using a well-tuned RBF kernel never
resulted in overfitting on all tried datasets. The test set per-
formances obtained when using an RBF kernel often appear
to be similar to those obtained when using a linear kernel, but
in some cases an RBF kernel ends up in even better classifica-
tion performances. This is illustrated in Figure 2. The fact that
using LS-SVM with an RBF kernel does not result in overfit-
ting even for simple classification problems, can be explained
by looking to the optimal values of the kernel parameter. When
optimizing the kernel parameter of the RBF kernel for such
a problem, the obtained value seems to be very large. Using
an RBF kernel with the kernel parameter σ set to infinity cor-
responds to using a linear kernel, aside from a scale factor
(Suykens et al., 2002). Until now, most microarray datasets
are quite small and they may represent quite easily separable
classification problems. It can be expected that those data-
sets will become larger or perhaps represent more complex
classification problems in the future. In this case the use of
non-linear kernels as the commonly used RBF kernel becomes
important. Considering this, it may be useful to explore the
effect of using other kernel functions.

When comparing the experiments with and without dimen-
sionality reduction, an important issue is that LS-SVM with
RBF kernel (experiment without dimensionality reduction)
never performs worse than all other methods.

The importance of regularization
When looking at the experiment using LS-SVM with lin-
ear kernel and the regularization parameter γ set to infinity,
i.e. without regularization, the following issue can be seen.
Using LS-SVM without regularization corresponds to FDA
(Suykens et al., 2002). Figure 3 shows that this experiment

Fig. 3. Illustration of the second main conclusion based on boxplots
of the test set accuracies of all nine cancer classification problems:
Even for classification with linear classifiers like LS-SVM with linear
kernel, performing regularization is very important. For each data-
set, the test set accuracies of LS-SVM with a linear kernel without
regularization are represented on the left, the test set accuracies of
LS-SVM with a linear kernel with regularization on the right. The
latter shows much better performance. Concerning the datasets, the
order of Table 1 is respected.

Fig. 4. Illustration of the third main conclusion based on boxplots
of the test set accuracies of all nine cancer classification problems:
When performing kernel principal component analysis (kernel PCA)
before classification, using an RBF kernel for kernel PCA tends
to result in overfitting. Kernel PCA with linear kernel gives better
results. For each dataset, the test set accuracies of kernel PCA with an
RBF kernel (selecting the principal components in a supervised way)
followed by FDA are represented on the left, the test set accuracies of
kernel PCA with a linear kernel (selecting the principal components
in a supervised way) followed by FDA on the right. Concerning the
datasets, the order of Table 1 is respected.

hardly performs better than random classification on all data-
sets, except on the acute leukemia dataset of (Golub et al.,
1999), which represents an easily separable classification
problem. Regularization appears to be very important when
applying classification methods onto microarray data without
doing a dimensionality reduction step first.

Assessing the role of non-linearity in case of
dimensionality reduction
When considering only the experiments using dimensionality
reduction, another important issue becomes clear. Comparing
the results of using an RBF kernel with those of using a lin-
ear kernel when applying kernel PCA before classification,
reveals that using an RBF kernel easily results in overfit-
ting. This is represented by Figure 4. The best results are
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obtained by simply using a linear kernel when doing kernel
PCA, which are similar to those when using classical PCA.
(Gupta et al., 2002) states a similar conclusion for face recog-
nition based on image data. When comparing both methods
for selection of the principal components, namely the unsu-
pervised way based on the eigenvalues with the supervised
way based on the absolute value of the score introduced by
(Golub et al., 1999), no general conclusions can be made.
It depends on the dataset whether one method is better than
the other or not. The combination of using kernel PCA with
RBF kernel and selection of the principal components tends
to result in overfitting. All this can be explained by ignoring
relevant principal components (Bishop, 1995).

In the context of feature selection, some interesting issues
become clear when studying the ROC performance and the
sparseness of the classical and kernel PCA projections. When
comparing the results of using a linear kernel with those of
using an RBF kernel for kernel PCA when selection of the
principal components is done in a supervised way as shown in
Figure1, twosituationsindicatingoverfittingcanberecognized.
First, overfitting occurs when the optimal number of principal
components is relatively low in case of using a linear kernel
for kernel PCA and much larger in case of using an RBF kernel.
Second, overfitting also occurs when the optimal number of
principal components is very large both in case of using a linear
kernel for kernel PCA and in case of using an RBF kernel.

When comparing the experiments with and without dimen-
sionality reduction, also worth mentioning is the fact that
performing dimensionality reduction requires optimization of
the number of principal components. This parameter, belong-
ing to the unsupervised PCA, needs to be optimized in the
sense of the subsequent supervised FDA (see outline of the
optimization algorithm in the section on numerical experi-
ments). In practice, this appears to be quite time-consuming,
especially in combination with other parameters that need to
be optimized (e.g. kernel parameter of kernel PCA with RBF
kernel). However, numerical techniques can be used to speed
up the experiments.

CONCLUSION
In the past, using classification methods in combination
with microarrays has shown to be promising for guiding
clinical management in oncology. In this study, several
important issues have been formulated in order to optimize
the performance of clinical predictions based on microar-
ray data. Those issues are based on non-linear techniques
and dimensionality reduction methods, taking into consid-
eration the probability of increasing size and complexity of
microarray datasets in the future. A first important conclu-
sion from benchmarking nine microarray dataset problems is
that when performing classification with least squares SVM
(without dimensionality reduction), using an RBF kernel can
be applied without risking overfitting on all tried datasets.

The results obtained with an RBF kernel are never worse
and sometimes even better than when using a linear ker-
nel. A second conclusion is that using LS-SVM without
regularization (without dimensionality reduction) ends up in
very bad results, which stresses the importance of apply-
ing regularization even in the linear case. A final important
conclusion is that when performing kernel PCA before clas-
sification, using an RBF kernel for kernel PCA tends to
lead to overfitting, especially when using supervised fea-
ture selection. It has been observed that an optimal selec-
tion of a large number of features is often an indication
for overfitting. Kernel PCA with linear kernel gives better
results.
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