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In this paper we try to identify potential biomarkers for early stroke diagnosis using surface-
enhanced laser desorption/ionization mass spectrometry coupled with analysis tools from
machine learning and data mining. Data consist of 42 specimen samples, i.e., mass spectra
divided in two big categories, stroke and control specimens. Among the stroke specimens two
further categories exist that correspond to ischemic and hemorrhagic stroke; in this paper we
limit our data analysis to discriminating between control and stroke specimens. We performed
two suites of experiments. In the first one we simply applied a number of different machine
learning algorithms; in the second one we have chosen the best performing algorithm as it
was determined from the first phase and coupled it with a number of different feature selection
methods. The reason for this was 2-fold, first to establish whether feature selection can indeed
improve performance, which in our case it did not seem to confirm, but more importantly
to acquire a small list of potentially interesting biomarkers. Of the different methods explored
the most promising one was support vector machines which gave us high levels of sensitivity
and specificity. Finally, by analyzing the models constructed by support vector machines we
produced a small set of 13 features that could be used as potential biomarkers, and which
exhibited good performance both in terms of sensitivity, specificity and model stability.

Keywords: Biomarker discovery / Feature selection / Model stability / Stroke / Support vector machines

Received 1/3/04
Revised 20/4/04
Accepted 25/4/04

2320 Proteomics 2004, 4, 2320–2332

1 Introduction

This paper is concerned with the first stage of protein bio-
marker discovery and validation, namely exploratory data
driven discovery of protein profiles that appear to distin-
guish stroke from control specimens. Blood samples from
the individuals participating in the study were submitted
to MS. The resulting spectra underwent a systematic pre-
processing phase in order to acquire the appropriate data
for analysis. Special care was given in the detection of
peaks and mass clustering. A systematic procedure for
performing this task is presented. Once the preprocessed
data were available we undertook a systematic study of
well known data mining algorithms on the given problem.

The diagnostic power of the models built was high. How-
ever, due to the high dimensionality of the input space
the models were not easy to translate. In order to do so
we examined a number of feature selection algorithms
with the aim of reducing the dimensionality of the in-
put space while preserving the good predictive perform-
ance.

One of the problems that we faced is that since we
used resampling procedures to estimate the predictive
performance of the algorithms we had a number of differ-
ent models produced during evaluation. In order to come
up with a final set of suggested biomarkers we had to fuse
these models. However, before even trying to do so, we
had to show that the produced models were not sensitive
to perturbations of the training set, i.e., they were rela-
tively stable with respect to different training data, so
that their fusion would make sense. We devised a proce-
dure to measure the stability of these models, and after
showing that it was quite high we combined the sugges-
tions of the individual models to come up with the final
set of biomarkers.
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2 Materials and methods

2.1 Study population and sample handling

Forty-two patients admitted to the Geneva University
Hospital emergency unit (Geneva, Switzerland) were en-
rolled in this study. The local institutional ethical commit-
tee board approved this study. Each patient or patient’s
relatives gave informed consent prior to enrollment. For
each patient, a blood sample was collected at the time
of admission in dry heparin-containing tubes. Of the
42 patients enrolled, 21 were diagnosed with orthopedic
disorders (without any known peripheral or central nerv-
ous system condition) and classified as control samples
(including 12 men and 9 women, average age 69.5 years,
range 34–94 years) and 21 were diagnosed with stroke
(11 men, 9 women and 1 unknown, average age 61.95
years, ranging from 27 to 87 years) including 11 ischemic
and 10 hemorrhagic patients. After centrifugation at
15006g for 15 min at 47C, plasma samples were ali-
quoted and stored at 2707C until analysis. For patients
from the stroke group, the average time interval be-
tween the neurological event and the first blood draw
was 185 min (ranging from 40 min to 3 days). The
diagnosis of stroke was established by a trained neurol-
ogist and was based on the sudden appearance of a
focal neurological deficit and the subsequent delinea-
tion of a lesion consistent with the symptoms on brain
computed tomography or magnetic resonance imaging
images, with the exception of transient ischemic
attacks (TIAs) where a visible lesion was not required
for the diagnosis. The stroke group was separated
according to the type of stroke (ischemia or haemor-
rhage), the location of the lesion (brainstem or hemi-
sphere) and the clinical evolution over time (TIA when
complete recovery occurred within 24 h, or established
stroke when the neurological deficit was still present
after 24 h).

2.2 Preparation of SELDI ProteinChips

Strong anion exchange arrays (SAX2 ProteinChip; Cipher-
gen Biosystems, Fremont, CA, USA) were used as a first
fractionation step of the plasma samples. SAX2 spots
were first outlined with a hydrophobic pap-pen and air-
dried. Chips were then equilibrated 3 times during 5 min
with 10 mL binding buffer (20 mM Tris, 5 mM NaCl, pH 9.0)
in a humidity chamber at room temperature. Two micro-
liters of binding buffer were applied to each spot and 1 mL
of crude (stroke or control) plasma sample was added
and incubated 30 min in a humidity chamber at room tem-
perature. Plasma was removed and each spot was indi-
vidually washed 5 times 5 min with 5 mL of binding buffer

followed by 2 quick washes of the chip with deionized
water. Excess H2O was removed and while the surface
was still moist, 0.5 mL of sinapinic acid (SPA; Ciphergen)
in 50% v/v ACN and 0.5% v/v TCA acid was added
twice per spot and dried. The arrays were then read in
a ProteinChip reader system, PBS II serie (Ciphergen
Biosystems). The ionized molecules were detected and
their molecular masses determined according to their
TOF. TOF mass spectra, collected in the positive ion
mode were generated using an average of 65 laser
shots throughout the spot at a laser power set slightly
above threshold (10–15% higher than the threshold).
Spectra were collected and analyzed using Ciphergen
ProteinChip software (version 3.0) [1, 2]. External cali-
bration of the reader was performed using all-in-1 pep-
tide Mr standards (Ciphergen Biosystems) diluted in the
SPA matrix (1:1, vol/vol) and directly applied onto a well
of a normal phase chip.

2.3 Data preparation

Each spectrum consists of 28 351 data points of the form
(m/z, intensity), with the m/z ratio ranging from 8 to
68 600 Daltons (within the text the terms m/z, mass/
charge and mass, will be used in an indistinguishable
manner). Analysis is further constrained to m/z values big-
ger than 1 kDa resulting in 24 901 data points. Intensity
values lower than this threshold were not considered due
to the distortion caused by the matrix molecules. Baseline
removal, spectrum normalization and peak detection was
performed with the aid of Ciphergen ProteinChip Soft-
ware. Spectra were normalized with TIC and peaks were
detected separately on each spectrum (section 2.3.1).
Then, an in-house algorithm found clusters of similar
peaks among spectra (section 2.3.2).

2.3.1 Peak detection

Peak detection is an effort to further reduce the dimen-
sionality of the problem. It is a critical step the outcome
of which depends heavily on the quality of the final results.
The detected peaks will provide the basis for the con-
struction of the final variables that will describe the spec-
tra. Obviously variables of poor quality will produce poor
results. Peak detection was done within the Ciphergen
ProteinChip Software. We used the software in order to
determine a list of peaks for each spectrum. This was
done for a single spectrum each time without taking into
account the remaining spectra; the final outcome was a
list of peaks for each spectrum. The peak detection pro-
cess accepts two parameters: valley depth and height,
both used to control different aspects of the signal-to-
noise ratio. The first one indicates how many times higher
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than the noise level the depth of the valley between two
consecutive peaks should be, while the second indicates
how many times higher than the noise level the height of a
peak should be. Appropriate adjustment of these param-
eters gives rise to a different number of detected peaks
per spectrum. We experimented with a number of differ-
ent values for these parameters, setting them manually
through the Ciphergen ProteinChip software, and pro-
duced different descriptions (datasets) for the problem.
The names of the datasets follow the format vdX_hY,
where X, and Y, are the values set for the valley depth
and height parameters. The detailed results on the total
number of detected peaks and the average number of
peaks per spectrum for each parameter setting are given
in Table 1. The default entry denotes the setting of the
parameters given as default by the software. Manual in-
dicates a description of the problem that was the result
of the intervention of the biologists performing MS in
order to define an initial set of peaks; the domain experts
visually inspected the 42 samples and identified manually
points in the spectra that they considered to be peaks on
a case by case basis. The reason behind this extensive
experimentation with different values of the parameters
is to acquire an initial understanding of the behavior of
the used methods to different signal-to-noise ratios. If
we allow for low values of the ratio we would detect
more peaks, some being possibly part of the noise. Allow-
ing only for high values of the signal-to-noise ratio will
produce fewer peaks but might result in loss of valuable
information. In a next step, we will identify which peaks
among the different spectra correspond to the same
mass based on their mass distance.

Table 1. Results of the different peak detection settings
for the valley depth (vd) and height (h) parame-
ters

Datasets Number of
detected peaks

Number of
distinct masses

Manual 1001 33
vd10_h10 486 52
vd7_h7 675 75
vd6_h6(default) 788 86
vd4_h4 1126 123
vd3_h3 1482 154
vd2_h2 2441 256
vd1_h1 8950 681

2.3.2 Mass clustering

Each detected peak corresponds either to a unique pro-
tein with the given m/z ratio or possibly to several proteins
that share the same m/z ratio. The idea is to find which

of the detected peaks among the different spectra corre-
spond to the same m/z ratio. The problem is complicated
by the measurement error, merr, of the apparatus which
ranges from 6 0.5% to 6 0.3% of the measured m/z ratio
(m/z 6 m/z6merr). Using the lists of peaks produced by
the peak detection process as a starting point we have
to produce a list of unique features, each one correspond-
ing to a m/z ratio, that will be used to describe all the
spectra in a uniform manner. The idea is to group together
into a single variable all the peaks that correspond to the
same m/z value, i.e., all the peaks whose m/z ratios have
a distance which is smaller than twice the mass measure-
ment error, i.e. 26merr, of the apparatus. Under this
scenario two masses (m/za and m/zb) will be considered
as the same masses if the corresponding intervals (m/za

6 m/za6merr), (m/zb 6 m/zb6merr) have an overlap. The
variables constructed from that procedure will provide
the description of each spectrum; wrong decisions on
what is different and what is the same can have a great
impact on the final results both in terms of diagnostic per-
formance and the discovered biomarkers.

To determine which peaks correspond to the same mass
and which are distinct we applied a hierarchical cluster-
ing procedure, [3], based only on the m/z values of the
detected peaks. Furthermore, due to the special nature
of the problem some additional constraints should be
imposed. Before proceeding to further details of the algo-
rithm, we will explain how we measure the distance be-
tween two individual masses (clustering algorithms are
usually based on some notion of distance of the instances
that should be clustered). The idea is to express mass
distances relatively to the mass scale so that they can be
directly compared with 26merr. We decided to use the
following distance measure between two masses m1, m2:

dðm1;m2Þ ¼
m1 $ m2j j

m
; m ¼ ðm1 þ m2Þ=2,

where the distance of two masses is expressed relative to
their mean, a measure which is on the same scale as merr.
For a hierarchical clustering algorithm to be completely
defined one has to provide a measure of the distance
between sets of instances (in our case sets of masses). We
decided to represent a cluster of masses simply by the aver-
age of the masses it includes and the distance between
two clusters of masses, C1, C2, simply as the dðmC1

; mC2
Þ

distance of the corresponding averages. In essence we
are performing centroid linkage based hierarchical cluster-
ing. The complete clustering procedure together with the
appropriate constraints are given in algorithm 1.

The definition of the clustering procedure is not yet com-
plete. We have to give the additional constraints imposed
by the nature of the specific problem. First, clusters can
be merged only if their distance is less than merr (the first
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condition of the while loop). Since each final cluster con-
tains small perturbations of a given mass we should not
group together masses that in reality correspond to dif-
ferent masses. Second, if two clusters have been iden-
tified as possible candidates for merging, i.e., d(C1, C2)
& 26merr, merging will only take place if the two farthest
elements of the clusters have a distance which is smaller
than 26merr (the second condition of the while loop). This
constraint also covers the case of merging together
masses that come from the same spectrum; since the dis-
tance between any two masses from the same spectrum
would be more than 26merr this type of merging will not
be allowed either. However, there are cases of spectra,
when low signal-to-noise ratios were used in peak detec-
tion, where this condition was not true, i.e., the software
detected peaks among the same spectrum with a mass
distance smaller than 26merr. We have chosen to keep all
cases like this and not allow their merging. This is why
sometimes some feature sets might contain masses that
have a distance which is smaller than 26merr.

Among the possible candidate pairs for merging that
satisfy the constraints the algorithm chooses the one
that has the minimum distance (third condition of the
while loop). In Fig. 1, we present a schematic example of
the situations that may appear, for the specific configura-
tion of masses the algorithm would terminate at the sixth
step since there are no more masses to merge. When
there are no more clusters to merge the algorithm simply
returns the list of remaining clusters, C. Each of them will
correspond to a specific mass/charge ratio, the mean of
the mass/charge ratios found in it. Every cluster, Ci, will
now become a feature of the description of our spectra.
In the next section we will show how we assign values to
these features for each of the spectra. To summarize the
first two preprocessing steps: (i) different signal-to-noise
trade-offs (Table 1) result in peak sets of varying cardinal-
ities; (ii) the algorithm given below clusters each of these
peak sets according to their m/z values. The cardinalities
of the final feature sets are listed in the column “Number
of detected masses” in Table 1.

Algorithm 1 MassCluster(L)

fL: list of masses mi from all the spectrag
Ci  mi;mi 2 L
C Cif g
while Exist Cl;Ck;2 C with dðmCl

; mCk
Þ & 2 ' merr AND

argmaxml;mk
dðml;mk

Þ & 2 ' merr;ml 2 Cl;mk 2 Ck AND
dðmCl

; mCk
Þ ¼ argminCi ;Cj

ðdðmCi;Cj
ÞÞ do

mergeðCl; Ck)

end while
return C

Figure 1. Example of mass clustering. The numbered
steps indicate the sequence of the merging steps. Steps
5 and 6 are not allowed because they violate domain con-
strains. Step 5 because it would put into the same cluster
two masses that have a distance that is bigger than
26merr; moreover it would have placed together two dis-
tinct masses from the same spectrum (spectrum 1), and
step 6 because the distance of the two clusters exceeds
the 26merr threshold.

2.3.3 Intensity values

One final issue that had to be addressed is how the values
of the Ci features determined by the clustering algorithms
were going to be calculated for a given spectrum (these
values will correspond to the intensity of the correspond-
ing peaks). The answer is obvious for all the clusters that
are associated with one of the detected peaks in the
spectrum, but less so for clusters that do not have an
associated peak, i.e., there was no peak detected in that
m/z range for the given spectrum. The problem is that
each spectrum is potentially described by a different sub-
set of features of C. There is a number of possible options
like assigning an indicator of nonapplicability or an indica-
tor of missing values. The first is more appropriate but it is
not straightforward since most of the standard learning
algorithms do not offer that possibility. The option of miss-
ing value is less appropriate because it does not really
match the semantics of the problem. Another alternative
would be to actually fill the values of the absent features
Ci , either with the value of zero which could mean that the
intensity of the corresponding peak is zero, a logical
assumption since absence can be interpreted as an indi-
cation of zero intensity, or with a value taken directly from
the spectrum within the close neighborhood of Ci, i.e.
within the interval Ci 6 Ci6merr. We have opted for the
second option because we think it is more robust. The
value that we assign is the maximum intensity over the
close neighborhood. Having the actual intensity values
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means that the learning algorithm will be less prone to
errors introduced by the peak detection procedure. This
is not possible when we assign a value of zero to the
intensities of the nondetected masses since the intensity
information is lost. In an alternative direction one can con-
sider a completely different family of learning algorithms
that assume a different representation paradigm, namely
relational learning algorithms. These types of algorithms
allow for representations of learning paradigms that are
of variable length. However, they do not fall within the
scope of the current paper.

2.3.4 Intensity normalization

The above procedures gave rise to a fixed-length attrib-
ute-value representation of our spectra. Each spectrum is
described by the set C of Ci features where each feature
corresponds to a specific m/z ratio and the value of the
feature is the intensity of the spectrum in the close neigh-
borhood of the given ratio. Since different ratios have
different domains of values (minimum and maximum
values of intensities differ radically between low and high
ratios of m/z) we had to scale them to the same interval.
We applied a simple scaling where the values of each
feature Ci were normalized by its corresponding maxi-
mum, i.e. C0i ¼ Ci=maxðCiÞ (the new values will be in the
0,1 interval). These algorithms based on distance mea-
sures or dot products, like the nearest neighbor algorithm,
support vector machines (SVM) and multilayer percep-
trons, will not be affected by the different scales of the
variables.

3 Results

3.1 Learning with mass spectra

The learning experiments can be distinguished between
two suites of experiments. In the first one we applied a
series of algorithms to the eight available datasets (sec-
tion 3.2). In the second suite we explored feature selec-
tion in order to see whether we can improve our classifi-
cation performance and at the same time acquire models
based on smaller feature sets which are easier to explore
(section 3.3). All the evaluations of performance were
done using 10-fold cross validation. Control of the statis-
tical significance of the differences between the learning
algorithms was done using McNemar’s test [27] with the p
value set to 0.05. Furthermore, since we were comparing
different learning algorithms we had to establish a ranking
schema based on their relative performance as this was
determined by the results of the significance tests. The
procedure we followed was: in a given dataset every
time an algorithm, a, was significantly better than another

algorithm b then a was credited with one point and b with
zero points. If there was no significant difference between
the two algorithms then both were credited with a half
point. If one algorithm is significantly better than all the
others then it will get n2 1 points, where n is the total
number of algorithms being compared, while if there is
no significant difference between the algorithms then
each one will get (n2 1)/2 points. We have to note here
that with such a small sample it is very difficult to get
significant differences between the algorithms; in some
cases the test did not signal a significant difference even
though one of the algorithms had more than double the
error of the other. In some sense the test of significance
we used was quite conservative in detecting significant
differences.

3.2 Learning algorithms and parameters

We experimented with a number of different classification
algorithms trying to cover a variety of different learning
approaches. Moreover for each one of them we did not
rely on the default parameter settings but explored a
number of them. We used one decision tree algorithm
J48, [4, 5], with three different values for the M parameter
(M = 2, 5, 7), a parameter that controls the minimum num-
ber of examples allowed in each leaf node of the decision
tree. In one sense it controls the complexity of the model.
Higher values mean simple and more general models. A
nearest neighbor algorithm IBL [3], with the number of
nearest neighbors, k, varying k = 1, 3, 5, low values of k
correspond to complex and highly variant models simi-
larly to low values of the M parameter; an SVM algorithm
with a simple linear kernel and the value of the
C parameter being C = 0.5, 1, 2, [6], and a multilayer
perceptron, MLP, of a single layer of ten hidden units [7].
The implementations of the algorithms were the ones of
the WEKA machine learning environment [4].

3.2.1 Base learning results

Each of the learning algorithms was applied to each one
of the eight datasets given in Table 1, for each one of its
parameter settings given in Table 2. Overall the number of
base experiments was 80. We do not present the com-

Table 2. Algorithms and their explored settings

Algorithm Parameter Value

SVM C 0.5, 1, 2
J48 M 2, 5, 7
IBL K 1, 3, 5
MLP – –
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plete results of each parameter setting but only the results
of the best setting for each algorithm over the eight data-
sets (Table 3). To get a better picture of the relative perform-

Table 3. Estimated errors in base experiments

Dataset IBL-5 J48-5 SVM-0.5 MLP Aver-
age

Manual 30.95 (1.5) 28.57 (1.5) 21.42 (1.5) 28.57 (1.5) 27.38
vd10_h10 21.42 (1.5) 30.95 (1.0) 14.28 (2.0) 19.04 (1.5) 21.42
vd7_h7 21.42 (1.5) 33.33 (1.5) 16.66 (1.5) 21.42 (1.5) 21.42
vd6_h6

(default)
16.66 (1.5) 28.57 (1.5) 16.66 (1.5) 21.42 (1.5) 22.61

vd4_h4 21.42 (1.5) 33.33 (1.5) 14.28 (1.5) 19.04 (1.5) 23.21
vd3_h3 26.19 (1.5) 33.33 (1.5) 19.04 (1.5) 14.28 (1.5) 22.02
vd2_h2 30.95 (1.0) 33.33 (1.0) 14.28 (1.5) 11.90 (2.5) 20.83
vd1_h1 26.19 (1.0) 33.33 (1.0) 11.90 (2.0) 14.28 (2.0) 32.14
Average 24.40 31.84 16.07 18.75

The numbers in parentheses are the scores that the algo-
rithms achieve for a given dataset (see Section 3.1)

ance of the algorithms we also give graphically the error
evaluation results (Fig. 2). What is immediately evident is
the bad performance of the decision trees algorithm. In
almost all the different datasets it is the worst classifica-
tion algorithm. In terms of its ranking it is never significant-
ly better than any other algorithm and it is once signifi-
cantly worse than two (vd1_h1, SVM, MLP) and twice sig-
nificantly worse than one (vd2_h2MLP, vd10_h10-SVM).
There are more datasets in which J48 has more than

Figure 2. Errors of the learning algorithms on the eight
different datasets traced with respect to the number of
features of the initial datasets.

double the error of other algorithms but the test did not
signal a significant difference probably due to the small
number of available instances as mentioned earlier. One
of the surprising results is that the manual dataset (the
dataset in which the domain experts defined the set of
peaks based on the visual examination of the spectra) is
the one that shows the lowest performance among the
eight examined datasets.

We will now take a closer look at the sensitivity and spec-
ificity performance of SVM since it was the algorithm that
achieved not only the best average performance among
all the different versions of the datasets, but it was also
the one whose performance exhibited the smallest var-
iance. Sensitivity in this application problem will be the
number of detected strokes over the total number of
strokes, while specificity will be the number of detected
controls over the total number of controls (complete
results in Table 4). We get excellent results for sensitivity,
in five of the eight datasets it is 100% and in the remaining
three it is between 95% and 90%, resulting in an average
of 97%. However, the specificity is lower and the number
of control samples misclassified as stroke ranges from
three to nine resulting in values of specificity between
57% and 86%, with an average of 71%. The fact that the
performance of SVM is good and stable over the different
versions of the datasets is an indication that we are deal-
ing with a problem in which one has to closely examine
more than one variable at the same time in order to make
a classification of a sample. We have to note here that
the results reported are based on cross-validation which
means that the created models are always tested on
samples which have not been used in the construction
of the classification model. Error in the training set is

Table 4. Specificity and sensitivity results of SVM on the
base experiments

Manual vd10_h10 vd7_h7 vd6_h6

Ctrl Strk Ctrl Strk Ctrl Strk Ctrl Strk

Tr
ue Crtl 12 9 15 6 14 7 14 7

Strk 0 21 0 21 0 21 0 21

Predicted

vd4_h4 vd3_h3 vd2_h2 vd1_h1

Ctrl Strk Ctrl Strk Ctrl Strk Ctrl Strk

Tr
ue Crtl 15 6 14 7 17 4 18 3

Strk 0 21 1 20 2 19 2 19

Predicted

Numbers in the table are counts.
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much smaller (some times even zero) but it should never
be used as an indicator of performance since it is always
overly optimistic.

We will take a closer look at the behavior of the SVM
among the different datasets in terms of its specificity,
i.e., the number of control instances that are wrongly clas-
sified as stroke. In Table 5 we give the control instances
that were wrongly misclassified as stroke among the dif-
ferent datasets. There are two instances, 34, 30, which

Table 5. Control instances that were wrongly classified
as stroke by SVM among the different datasets

Instances Ids

Dataset 34 30 23 38 40 29 33 5 28 3 41 36 27 8

Manual x x x x x x x x x
v10_h10 x x x x x x
vd7_h7 x x x x x x x
vd6_h6 x x x x x x x
vd4_h4 x x x x x x
vd3_h3 x x x x x x x x
vd2_h2 x x x x x
vd1_h1 x x x x x

are systematically misclassified among all the datasets;
two which are misclassified in seven out of the eight data-
sets, and the remaining range from six misclassifications
down to one. In order to have a more precise idea of why
these instances are misclassified we will take a look to a
specific dataset, vd6_h6, and see the values of the linear
function produced by SVM for each instance when that
instance was a part of a fold test. Remember here that
since we are using 10-fold cross-validation to perform
error estimation we have ten different learned models
(one for each separation) to train and test sets. Figure 3
gives us, for each fold I of the cross-validation, the values
of the linear function, learned on the train set of the Ith-

fold, when applied to each one of the instances of the cor-
responding test set. When the value of the linear function
on a given instance is higher than zero then that instance
is classified as stroke, otherwise it is classified as control.
From Fig. 3 we can see that the most problematic
instances are 34, 30 and 38 which had output values that
were much further than the decision surface. The remain-
ing four instances were very close to the decision bound-
ary and can be considered as near misses. It remains to
be seen what are the particularities of these three control
samples that place them so far and on the wrong side of
the decision surface.

3.3 Feature selection experiments

In order to examine whether it is possible to further im-
prove the predictive performance of the SVMs we also
examined a number of feature selection algorithms. Even
if we do not manage to improve performance but rather
keep it at the same level, having smaller feature sets
would give us a better understanding of what factors
are important in determining stroke or no stroke. Error
evaluation was done with feature selection as a part of
the cross-validation loop. That is, for each fold we first
applied feature selection and then the learning algorithm
on the selected features. Alternatively, feature selection
could be done only once in a preprocessing step but this
would optimistically bias the results of the error evalua-
tion, since the whole data would have been used to pro-
vide a part of the model, in this case the selected features.
We experimented with three different feature selection
algorithms, information gain based feature selection (IG)
[3], relief-F (RF) [8], SVM based feature selection (SVMfs).
They follow completely different paradigms of feature
selection. Information gain features are selected on the
basis of their mutual information with respect to the target
variable. It is a univariate feature selection method and is
not able to capture feature interactions; moreover it can

Figure 3. Each one of the xI
partitions of the graph corre-
sponds to the Ith-fold of the
cross-validation. Within it we
see the test instances that were
associated with the test set of
that fold and their output values
as they were determined by the
linear model produced by the
SMV algorithm when trained on
the train set of the Ith-fold.
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result in feature sets that contain many correlated fea-
tures, i.e., redundant features, which happen to have
high score with the class. The RF algorithm is able to bet-
ter capture feature interactions and is based on the notion
of nearest neighbor classification; features which help to
predict the class correctly get a high score while features
that do not discriminate or lead to false predictions get
a low score. In SVMfs a simple linear kernel is used to
construct a classification model; based on that model
features that get high coefficients are considered of high
importance (this is true when all features are scaled to the
same interval). All the methods can be used either with a
threshold, i.e., select all features that get a score higher
than the threshold, or to select a given number N of fea-
tures. We have opted for the second choice since apriori
we did not have any idea of what a good value for a
threshold could be. We have chosen to set the number of
selected features to N = 15, a number of features which
was considered acceptable from the domain experts. IG
had a problem since the features for which it was assign-
ing a score more than zero were always less than 15 so
for this algorithm we used instead a threshold set to
zero.

3.3.1 Feature selection results

Overall the results of feature selection are rather disheart-
ening. The complete results are given in Table 6 and Fig. 4.
All feature selection methods apart from SVMfs signifi-
cantly harmed the predictive performance. In the case of
SVMfs the performance on average of all the datasets
was also damaged. However, there were two datasets in
which the performance of feature selection was compara-
ble with the performance on the complete set, namely
vd10_h10 where there was a small deterioration of the
predictive error, and vd7_h7 where there was a small
improvement. The corresponding estimated errors are
16.66% and 14.28%, respectively. The fact that only
SVMfs had an acceptable performance is a further indi-
cation of the importance of accounting for interactions

Table 6. Results of feature selection with SVMs

Dataset IG SVMfs Relief

Manual 33.33 26.19 28.57
vd10_h10 30.95 16.66 30.95
vd7_h7 33.33 14.28 38.09
vd6_h6(default) 45.23 21.42 35.71
vd4_h4 45.23 21.42 42.85
vd3_h3 38.09 26.19 33.33
vd2_h2 40.47 35.71 35.71
vd1_h1 16.66 21.42 33.33
Average 35.41 20.76 33.03

Figure 4. Error of SVMs on the different datasets when
coupled with different feature selection algorithms.

between features. It seems that 15 features could provide
a sufficient basis for discriminating between the two
populations, since we can get similar performance with
the complete datasets, at least for two of the eight data-
sets. However, further experiments should be performed
in order to determine the optimal set of features. Here we
simply restrict ourselves to feature sets of size 15. It might
be that fewer are required to discriminate; more experi-
ments are needed to address this issue. An interesting
issue in the same direction is the possibility of finding dif-
ferent feature subsets of equally good classification per-
formance. This could provide a basis for further explora-
tion of the features interactions.

3.4 Identification of potential biomarkers

One of the main goals of this study, probably the most
important, is to suggest a small set of features that could
provide the basis for a potential set of biomarkers. For this
we have to analyze the models produced by our learning
algorithms in order to determine which features were
most important. The task would have been relatively
straightforward if the best performing algorithms had
been those that produce readable models such as J48
decision trees. This was not the case. Since SVMs turned
out to be the most effective algorithm both as a base lear-
ner and a feature selector, we will choose its models for
further analysis.
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Table 7. Averaged rank correlation coefficient of feature rankings

Manual vd10_h10 vd7_h7 vd6_h6 vd4_h4 vd3_h3 vd2_h2 vd1_h1

0.8123 0.8226 0.7752 0.7825 0.7827 0.7388 0.7050 0.7459

3.4.1 Model stability control

Before proceeding to the actual analysis of the models we
will undertake a small study of the stability of the models
produced with respect to perturbations of the training set.
Obviously models that change radically with different
training sets would not be of much use. In order to exam-
ine stability we relied on the different models constructed
by cross-validation. Since we used 10-fold cross-valida-
tion as the evaluation strategy in essence we used ten
different training sets, one for each fold of the cross-vali-
dation. Any two training folds have a difference of around
22% when one is using 10-fold cross-validation. To quan-
tify the stability of the produced models we adopted the
following strategy: for each fold we produced a ranking of
the features based on the importance assigned to them
by the coefficients of the linear discriminator produced
by the SVM. To compare rankings of m/z values among
two different folds a, b, we used Spearman’s rank correla-
tion coefficient [9]:

tab ¼ 1 $ 6
X

f

ðfra $ frbÞ2

NðN2 $ 1Þ ;

where the sum is taken over all the features f and fra, frb,
are the ranks of the feature in the two different folds and N
is the number of features. At the end we average the pair-
wise rank correlation coefficients over all the fold pairs.
The results are given in Table 7. As one can see there the
average rank correlation coefficients are quite high which
means that the relative order of the features among the
different training folds is preserved to a great extend. We
have to note that if we restrict attention only to the top
ranked features the averages are even higher. This hap-
pens because there are a lot of differences in the way the
less important features are ranked from fold to fold1),
whereas in the top the changes are small. The rank corre-
lation coefficients show that the produced models are
quite stable.

We took a closer look at model stability by examining how
the list of the top 15 features is determined for the vd7_h7
dataset. This dataset produced some of the best results
both for the base experiments but also in feature selection

with SVM with estimated errors being as low as 14.28%.
In Table 8 we give for the top 15 features, i.e., m/z ratios,
the rank that they got for each of the cross-validation
folds. As we can see (especially for the top ranked fea-
tures) their rank is quite stable among the different folds.
The order in which the features appear in the table is
determined by their average rank among the folds of the
cross-validation, so it reflects their importance.

Table 8. Top 15 features for vd7_h7 based on their aver-
age rank among the 10-folds of the cross-vali-
dation for the different datasets

m/z 10 1 2 3 4 5 6 7 8 9 Avg Var

15 142.21 1 2 3 2 7 1 4 1 3 1 2.5 1.9
6 650.63 2 3 1 3 5 2 2 2 4 2 2.6 1.1

66 454.06 6 1 4 5 1 3 3 7 5 4 3.9 1.9
4 480.20 4 8 7 11 2 4 1 3 2 6 4.8 3.1
9 114.72 8 5 8 4 8 6 6 5 6 8 6.4 1.5
7 578.39 3 6 6 7 13 5 13 4 7 5 6.9 3.4

28 130.95 5 21 2 1 9 7 5 19 8 3 8.0 6.8
66 704.85 16 4 13 12 3 10 9 15 10 9 10.1 4.2
16 001.45 7 9 20 9 18 8 12 6 9 7 10.5 4.7
33 357.24 9 7 9 13 6 12 8 21 13 17 11.5 4.7
22 290.18 14 25 12 8 11 19 11 14 14 18 14.6 4.9
9 394.80 20 15 17 15 14 17 15 8 12 20 15.3 3.5
8 611.98 11 16 5 10 17 15 14 18 11 41 15.8 9.6
8 010.05 12 17 19 16 19 16 17 12 18 13 15.9 2.6
4 077.23 13 42 11 6 38 9 7 10 15 15 16.6 12.7

3.4.2 Model stability across datasets

We will now examine whether the models produced by
the SVM change over the different datasets that we
used. The procedure is somehow similar to the one fol-
lowed in the previous section. For each dataset we identi-
fied the 15 most discriminating features based on the
results of the 10-fold cross-validation. We got seven
more feature tables similar to Table 8. From these tables
we created a pool of 1568 features and after accounting
for the merr of the m/z ratios we ended up with 44 different
features2). The meaning of these final features is that each

1) Less important features get very small coefficients by the lin-
ear discriminator, in these cases a small change in the coeffi-
cient can change its ranking a lot at the last positions.

2) Accounting for the merr also resulted in the merging of two
masses of the vd1_h1 dataset, namely 3326.102 and
3335.321. This is why for that dataset there will only be 14
top features.
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one of them was ranked among the top 15 features in at
least one of the eight datasets. We further characterized
the quality of a given feature for a given dataset to a finer
grain level by the percent of the folds in which it appears
among the 10-folds of the cross-validation. So finally we
had for each dataset a vector of 44 dimensions where
each dimension gave the frequency of selection of the
corresponding m/z ratio in the folds of that dataset.
Ordering these features by their quality over all the data-
sets gave Fig. 5. The darker the color of a cell in Fig. 5
the higher the selection frequency of the corresponding
feature is for the corresponding dataset. The quality of
a feature is determined by an eight dimensional vector
(each dimension is the frequency of selection of the fea-
ture in the top 15 features among the folds of a given
dataset) and is simply the average of the vector values.
The features that appear on the top of the graph are the
ones selected most often among the different datasets,
the higher a ratio appears in the figure the more important
it is considered by the SVM over all the datasets.

There are three different groups among the eight data-
sets on the basis of the features that they select. In the
first we find all the datasets with a low number of fea-
tures, i.e., groupa = {vd3_h3, vd4h4, vd6_h6, vd7_h7,
vd10_h10}. The second consists of the datasets with
many features, groupb = {vd2_h2, vd1_h1}. The manual
version is closer to the first pattern but it still has some
differences. Namely the differences in the m/z ratios with
values 66 454 and 66 704 which were completely absent
because in the manual version they were removed since
they correspond to albumin. What is interesting is the com-
pletely different set of features found in the datasets of
groupa and groupb. The datasets of the second, especially
vd1_d1, contain a lot of peaks. Many of them may be part
of the noise. The noise is an intrinsic characteristic of the
samples and not of the sampling procedure since this was
exactly the same for all samples used in this study. Consid-
ering the good predictive performance on the datasets of
groupb the question that arises is whether the noise, espe-
cially since it is intrinsic to the samples, can provide some

Figure 5. Frequency of appear-
ance of the top m/z ratios
among the folds of cross-vali-
dation. Black denotes 100%
frequency of appearance and
white denotes 0%.
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discriminative information. A possible explanation of the
good performance on the datasets of groupb could be
the way the spectra were initially normalized. Normaliza-
tion was done using TIC. If the TIC factor is influenced
enough by the discriminative peaks, then scaling all the
spectra according to it would also scale the noise making
it discriminative. For the moment though this remains an
open issue.

3.4.3 Identifying potential biomarkers

We will now summarize the work done so far to define a
small set of potential biomarkers. Applying SVMs and
MLP on the different complete datasets, i.e., no feature
selection, gave us good results (Table 3). When we per-
formed feature selection with SVMs and feature sets of
size 15 we got similarly good results for a couple of data-
sets, namely vd10_h10 and vd7_h7 (Table 6), so a set of
15 features could provide a good basis for discrimination.
Examining the stability of the models produced by SVMs
we have shown that this is high (Tables 7 and 8). In other
words the set of the top 15 features is quite stable. Based
on this observation we retrieved the sets of the top 15
features for each dataset (always with SVMs). We distin-
guished three groups of datasets from which we think
that the most interesting is groupa. We did not continue
with groupb because we are not sure how to explain
the good performance on these datasets. The manual
dataset was left out since it did not provide very good
results.

Focusing on the features chosen in groupa we see that
there are a lot of commonalities in the top selected fea-
tures among the different datasets (neighboring dark cells
at the top of the graph in Fig. 5). We consider these to be
the most interesting potential biomarkers. If we had to
suggest a precise set of masses we would say that the
ones which have a frequency of appearance higher than
59 700, including 59 700 in Fig. 5 are the most interesting
ones. Among those we can exclude 66 454 and 66 704
since they correspond to albumin, resulting in the features
given in Table 9. To provide an indication of the predictive
performance with the masses of Table 9 we can say
that the error of a very simple algorithm like IBk evaluated
with 10-fold cross-validation on that subset of 13 features

Table 9. Potential biomarkers, in increasing order of im-
portance (from left to right and top to bottom)

59 700.03 15 890.74 4 077.23 8 601.25
9 114.72 16 001.45 7 578.39 4 638.32

33 357.24 28 130.95 6 650.63 4 480.20
15 142.21

Table 10. Specificity and sensitivity results of IBk on the
list of potential biomarkers

IB1 IB3 IB5

Ctrl Strk Ctrl Strk Ctrl Strk

Tr
ue Ctrl 18 3 18 3 18 3

Strk 1 20 2 19 3 28

Predicted

was 90.5%, 88.1%, 85.7% (respectively, for k = 1, 3, 5).
A high performance that shows that all the features are
highly relevant and should be considered in a parallel
manner in order to perform the classification. The sensi-
tivity and specificity results are given in Table 10. Speci-
ficity is stable at 85.7% while sensitivity takes the follow-
ing values: 95%, 90% and 85.7%, for k = 1, 3, 5, respec-
tively.

4 Discussion

4.1 Discussion of biomarkers

A thorough discussion on the biological significance of
the potential biomarkers is beyond the scope of this
paper. The interested reader can refer to the companion
paper [10] in the same volume. In that paper two of the
masses given in Table 9, namely 4480 and 6650, were
identified as being possibly an antithrombin-III (AT-III)
fragment and apolipoproteinC-I (ApoC-I). AT-III is the
most important inhibitor in the coagulation cascade. It
is a serine protease inhibitor (serpin), which inhibits the
formation of thrombin. Stroke is associated with de-
creased AT-III activity and an increased in thrombin-AT-III
complexes [11–13]. ApoC-I belongs to the apolipoprotein
family. At least nine distinct polymorphic forms of apolipo-
proteins are known to exist in tissues and body fluids,
mainly as protein component of the lipoprotein particles.
The apolipoproteins generally act as stabilizers of the in-
tact particles. Quantitative measurement of high, low and
very low density lipoproteins (HDL, LDL and VLDL) parti-
cles in human serum are often used to estimate an individ-
ual’s relative risk of coronary heart disease. ApoC-I is
involved in triglyceride metabolism. It is a secreted
plasma protein present in the circulation in association
with LDL and VLDL lipoproteins and is produced by the
liver. The potential physiological roles and clinical signifi-
cance of ApoC-I are still emerging. ApoC-I was shown,
with ApoC-II and ApoC-III, to displace ApoE from trigly-
ceride rich emulsions and lipoproteins, and to thereby
indirectly interfere with lipoprotein clearance. It was
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demonstrated that ApoC-I inhibits cholesteryl ester
transfer protein [14]. Hypertriglyceridemia and increased
atherosclerosis have been shown to be a direct con-
sequence of over-expression of ApoC-I [15]. Recently,
Kolmakova et al. [16] showed that ApoC-I and ApoC-I
enriched HDL activated the neutral sphingomyelinase
ceramide signaling pathway, leading to apoptosis in hu-
man aortic smooth muscle cells, an effect that may pro-
mote plaque rupture in vivo. A genetic predisposition
associated with ApoC-I was shown to constitute a risk
factor for Alzheimer’s disease [17].

4.2 Related work

Analysis of MS data using machine learning methods has
attracted a lot of attention recently. It posses a number
of significant challenges namely the high dimensionality
of the input space and the data preparation and pre-
processing issues. Just to shortly review the relevant liter-
ature we should mention the special issue on data mining
methods for MS in Proteomics [18], devoted to the pre-
sentation of the results of a workshop whose goal was
the analysis of MS data for lung cancer diagnosis and bio-
marker discovery using machine learning and data mining
methods. The papers presented in the issue explore a
number of different machine learning and data mining
methods including decision trees, genetic algorithms,
logistic regression, and neural networks. Other relevant
work includes [19] where the authors used decision
trees and more precisely CART, [20], to distinguish be-
tween prostate cancer, benign prostate hyperplasia and
healthy samples based on the mass spectra of serum
samples [21]. They tried to discriminate between breast
cancer and healthy samples on the basis of serum mass
spectra. In this work they used a special form of linear
discriminant functions based on statistical learning
called unified maximum separability analysis which was
first applied to microarray analysis [22]. Qu et al. [23] per-
formed a study on prostate cancer. One of the interest-
ing parts of that study was that they chose to represent
the spectra using the coefficients of the wavelet decom-
position of the initial spectra and apply a linear discrimi-
nant function to these coefficients. The problem with
working with the wavelet coefficients is that the final
model is not easily interpretable since it is given in a dif-
ferent space than m/z ratios. The same team applied
boosted decision trees to the same prostate cancer
problem [24, 25]. A very interesting work is that pre-
sented in [26] where the problem is again prostate can-
cer diagnosis and biomarker discovery. In this paper the
authors follow an exhaustive procedure of data prepara-
tion and preprocessing that includes noise reduction,

baseline elimination and peak identification not neces-
sarily in independent stages and use boosting to per-
form the final classification.

5 Concluding remarks

Although the results are quite good, there are still many
things that could be improved. We see most of the work
mainly at the preprocessing stage. More work should be
done on peak identification and handling of noise. We
should further examine whether there is any information
in the noise patterns possibly by experimenting with the
complete spectra and not only with their identified peaks.
Normalization is also a crucial factor and different meth-
ods of spectra normalization should be explored. Other
possible directions include a more systematic experi-
mentation with SVMs in order to fine tune their parame-
ters. In this study we limited ourselves only to a small set
of values of a single parameter. The search for a good
subset of features was limited to sets of fixed length.
This is an issue that should be further explored. Are there
other, possibly smaller feature sets, with equally good
discriminating power? Can we get different subsets
with similar good performance? And if yes what can we
conclude about the cross-set interactions? Some work
has already been done in identifying feature interactions
with promising results. Some of these can be used either
to provide new insights about protein interactions or as
part of the preprocessing to reduce the initial set of fea-
tures.

This work was partially supported by a grant from the
Swiss OFES in the framework of EU-COST Action 282.
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