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ABSTRACT

Motivation: Defining regulatory networks, linking transcrip-
tion factors (TFs) to their targets, is a central problem in
post-genomic biology. One might imagine one could readily
determine these networks through inspection of gene expres-
sion data. However, the relationship between the expression
timecourse of a transcription factor and its target is not obvious
(e.g. simple correlation over the timecourse), and current ana-
lysis methods, such as hierarchical clustering, have not been
very successful in deciphering them.

Results: Here we introduce an approach based on support
vector machines (SVMs) to predict the targets of a transcrip-
tion factor by identifying subtle relationships between their
expression profiles. In particular, we used SVMs to pre-
dict the regulatory targets for 36 transcription factors in the
Saccharomyces cerevisiae genome based on the microarray
expression data from many different physiological conditions.
We trained and tested our SVM on a data set constructed
to include a significant number of both positive and neg-
ative examples, directly addressing data imbalance issues.
This was non-trivial given that most of the known experi-
mental information is only for positives. Overall, we found that
63% of our TF—target relationships were confirmed through
cross-validation. We further assessed the performance of
our regulatory network identifications by comparing them with
the results from two recent genome-wide ChIP-chip experi-
ments. Overall, we find the agreement between our results
and these experiments is comparable to the agreement (albeit
low) between the two experiments. We find that this network
has a delocalized structure with respect to chromosomal posi-
tioning, with a given transcription factor having targets spread
fairly uniformly across the genome.

Availability: The overall network of the relationships is avail-
able on the web at http://bioinfo.mbb.yale.edu/expression/
echipchip

Contact: Mark.Gerstein@yale.edu

*To whom correspondence should be addressed.

INTRODUCTION

Understanding of transcriptional regulatory networks is cru-
cial in the understanding of fundamental cellular processes,
such as growth control, cell-cycle progression, and devel-
opment, as well as differentiated cellular function such as
hormone secretion and cell-cell communication (Alberts
et al., 1994). On a fundamental level, transcription determ-
ines when and which genes are expressed. The determination
of factors that control expression can offer further insight into
the misregulated expression that is common in many human
diseases (Tuplest al., 1999; Lyet al., 2000).

Much research has been done related to transcription factors
(TFs): some have tried to identify TFs in genomes using differ-
ent methods, such as through sequence similarity or structural
comparisons (Riechmarat al., 2000a,b; Wingendest al.,
2001). Given known TFs, others have tried to find their bind-
ing motifs in the regions upstream of genes (Rowte4l .,
1998; Krivan and Wasserman, 2001; Grabe, 2002; Halfon
et al., 2002). For a TF whose binding motif is known,
some researchers have started to predict gene targets of tran-
scription factors using genome-wide sequence searches of
promoter regions (Schuldinet al., 1998; Zhuet al., 2002).
Lastly, others have tried to determine targets of a transcrip-
tion factor whose binding motif is unknown (Ket al.,
2001; Tanet al., 2001). This final area is the research we
pursue here.

The determination of target genes of TFs has been done
with different approaches. The most popular method is prob-
ably ChiIP-chip, which combines the techniques of chromatin
immunoprecipitation and microarray hybridization. DNA
that binds specifically to a TF is purified and amplified. Gen-
omic target loci are identified by comparative hybridization
of the immunoprecipitated and control DNA probes to a DNA
microarray. In yeast researchers have used this method to
identify the targets of TFs such as Gal4, Stel2, MBP and
SBP (Reret al., 2000; lyeret al., 2001).

In this work, we want to identify the targets of TFs
using computational approaches. We focus on mining
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gene-expression data since these data provide a direct measHere we use an implementation of SVM by Brownal.

urement of the transcriptional program in the cell. Past{2000). Our focus is not in developing the SVM methodo-

analyses of microarray data have focused on clustering genésgy but seeing the degree to which it can be applied to gene

with similar expression profiles to predict protein function andexpression data.

interaction (Eiseret al., 1998; Gerstein and Jansen, 2000). ] ]

However, the gene expression relationship between a TF arfgncoding of gene expression data

its targets is complex. In most cases, they do not have @& encode our regulatory network prediction problem in a

correlated expression profile over a timecourse (see belowjorm suitable for training SVMs, we construct TF—target pairs.

Sometimes, in fact, there is a lag time between the expressiorhese pair &hown transcription factoR and a putative target

of the TF and its target (Qiaet al., 2001). geneT that may be regulated by this factor. For instance,
To tackle this problem we employed support vectorthe pairing(R = T) means transcription facta regulates

machines (SVMs). SVMs are a form of supervised machinegyeneT . To connect this pairing with expression information,

learning. They use a training set to learn in advance whichve note that each gene in the pair is characterized by a set of

gene pairs have a regulatory relationship (Vapnik, 1998). Thexpression experiments, which comprise data from samples

first gene in a pair is a TF, while the second is the target geneollected at various time points during the diauxic shift, the

it potentially regulates. After the training stage, the machinesnitotic cell cycle, sporulation, and heat shock (Spellretaah.,

determine probabilities for each TF—target pairing and thes&998; Gasclat al., 2000). In total, we used 79 gene expression

probabilities, with appropriate thresholds, can then be used tdata points to characterize each gene. Then putative TF-target

construct parts of a regulatory network. pairing corresponds to a 158-element gene expression vector,
This work is focused on the budding ye&stccharomy- in which the first 79 expression data points are for the (TF)

ces cerevisiae. Recent work has estimated that yeast haswvhile the second 79 are for the regulated gene.

6128 genes and 209 transcription factors (Riechnerah., o o

2000a,b; Snyder and Gerstein, 2003). Given this, we havE0Sitivetraining examples

potentially 1280752 (i.e. 20% 6128) combinations. Our Positive examples were obtained from two transcription

task is to find which pairs among these 1280 752 represent@atabases: TRANSFAC (Wingendetral., 2001) and SCPD

true regulatory relationship. (Zhu and Zhang, 1999). These two databases bring together
information from the biochemical literature on TFs and their
METHODS regulated genes. In this study, we only include sequence-
. specific TFs and exclude general TFs, such as the RNA
Support vector machines polymerases and the TATA-binding protein. In total, we used

In order to determine the relationship between TFs and theit 75 TF—target pairings as positive examples.
targets, we use SVMs. In general, the SVM is a stand- ] o
ard supervised machine-learning algorithm, based on recehfegativetraining examples
developments in statistical learning theory (Vapnik, 1998). ItAs with other supervised machine learning methods, negative
is designed for pattern recognition and regression and usezkamples are needed to train properly. In our case, a negative
in fields such as writing recognition, text categorization, andexample would be a gene pair that we know definitely has no
image classification (Vladimir and Vapnik, 1995; Joachims,regulatory relationship. Note that this is distinct from a gene
1998). pair about which we have no positive information. Unfortu-
The SVM builds a hyperplane separating positive examplesately, there are essentially no papers on definitive negative
and negative examples in multiple-dimensional space. Unforrelationships in the biochemical literature. Consequently, we
tunately, most real-world problems involve non-separableemployed a number of strategies to come up with appropriate
data for which there does not exist a hyperplane that successegative examples.
fully separates the positive from the negative examples. One In the onset, one can easily make negative examples
solution to the inseparability problem is to map the data into an a number of ways. For example, two genes encoding
higher-dimensional space and define a separating hyperplan&osomal proteins would have no regulatory relationship
there. This higher-dimensional space is called the featurbetween (thoughthey may, of course, be regulated by the same
space. A kernel function of the dot product of the vectorsfactor). Another possibility is creating two artificial gene-
is used to avoid representing the space explicitly. For detailexpression profiles using randomized numbers. However,
of SVM, please refer Burges, 1998; Vapnik, 1998. while easy to construct, such examples may not be optimal
The SVM creates the separating hyperplane from the labelefdr machine learning. In principle, SVMs find the boundary
training data that can then be used for prediction. Given thabbetween the positive and negative examples. If the negative
there are a large number of TFs with known targets to form axamples are made too different from the positive examples,
training set, the SVM represents an appropriate algorithm fothe learned boundary is loose and thus it would be problematic
regulatory network prediction. to detect subtle cases.
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In the end, we constructed negative examples in two wayst 280 752= 209x 6128) to just the pairings suggested by the
(i) for the TFs with known binding sites, we searched foryTAFNET database (Devatet al., 2001).
these sites genome-wide in the upstream regions of all genes.We used an initial set of potential TF—target gene pairs
Then for target gend whose upstream sequence containsobtained from the yTAFNET database. This database com-
no binding site for transcription facta, the pairingR #> T bines 72 published experiments and extracted the up-or
constitutes a negative example. (ii) For TFs whose bindinglown-regulated target genes associated with different TFs in
sites are unknown, we randomly select another gene to comlifferent states. In most of the experiments in this database,
struct a negative example. To make sure that the randomlhe TFs were knocked out and the genes selected had signi-
selected gene is not regulated by the TF, the expression profifecant changes in their expression. Note, these genes are not
of the second gene is permuted while keeping the expressiarecessarily thdirect target of the TF, but they are more likely
profile of the TF constant. to be the targets than randomly selected genes from the whole

Intotal, we constructed 1750 negative examples for traininggenome. We hoped this would reduce the imbalance between
whichis 10 times the number of positive examples. The reasothe positive and negative examples. Since this is a prelimin-
for this ratio between the positive and negative examples wilary set, the selection criteria did not have to be stringent and

be explained below. thus we chose the 1.5 fold set from yTAFNET, which showed
genes that were up-or down-regulated at least 1.5 fold. We
Theimbalance problem selected 36 TFs for prediction. This resulted in 46 059 putative

In machine learning, when there is great disparity betweeH—F_target pairings that we assessed using our SVM.

the size of the positive and negative training sets, one must
take into consideration a training difficulty called the imbal-
ance problem (Japkowicz, 2000; Japkowicz and StepherBES’Ul--rS

2002). This problem occurs when there is a large differencgxpression relationship between TF and targetsis
between positive and negative examples of the data. In sughot simultaneous

a situation, the algorithm will accurately predict the over- - -
9 yp Vge assessed the problem of prediction of transcription targets

represented class, but its prediction of the under-represent . i . .
b P P ?Jased on their expression profiles. Figure 1A-D shows four

class will mostly be incorrect. In the extreme case, the under- ; . .
y ixamples of expression profiles between TFs and their regu-

represented class will be ignored. For example, for a positiv atory targets. The black lines are the expression profiles for
to negative ratio of 1 : 1000, an algorithm that always predict y largets. i P P
Fs while the red lines are the corresponding regulated genes.

negative will be correct 1000 times and incorrect only once. t first glance, one can see there are no obvious relationships
There are two approaches towards overcoming the imbal- 9 ' P

ance problem. (i) Increasing the size of the under—representeoelf\évslzrr: thgssgrr?fzéoennféiﬂziﬁé?eTei;Tig;f?;ggggéng‘
set by random resampling and (ii) decreasing the size of ) ' P

the over-represented set by random removal of its membe%etween the expression profiles. For example, In Figure 1A,

. ) i . rom conditions 10 to 20, they have a simultaneous relation-
(ZJO%DZK)OWICZ’ 2000; Aret al., 2001; Japkowicz and Stephen, ship, while from conditions 44 to 60, the two profiles display

The imbalance problem is encountered in our TF targe 2'?%2?6?‘3:2?.%”552& Intﬁgutrheeltz'r f;(:m:r?gﬂg:n; 5551‘2 d
prediction since (we believe) there are definitely more neg- "’ WO profi w getg '

. - . X " d with the TF.
ative transcriptional relationships than positive ones. For th£SPOMNS€ compare e .
P b b In Figure 1D, from conditions 45 to 62, the expression

yeast genome, even if one assumes that each TF regulaters file of the target gene is an ex rated profile of th
~200 genes, there would be a 1:30 ratio between positiv ofiie of the 1arget gene 1S an exaggerated profiie of the

and negative examples. [These numbers are reasonable giv E However, one cannot calculate the significance of these
the numbers from some of the recent ChIP-chip experiment&e ationships. Espemally, when the;e four p05|.t|ve examplgs
(Horaket al., 2002: Leeet al., 2002)]. are compared with thg four nggatwe ones (Fig. 1E-H), in

The imbalance problem also has implications for the rela—rvgl];ir;gﬁi;wo expression profiles do not have a regulatory

tionships between threshold, coverage and error rate. (After .
P 9 ( To get a global view of the problem, we calculated correla-

fully developing our method, we illustrate some of these issuef.on coefficients between the expression profiles of TFs and

by showing the different error rates and coverage values fof . . .

g X - - heir corresponding target genes for both the positive and neg-
1:1and 1:10 training sets in Fig. 3.) ) ) .2, SR

ative examples in the training set. The distributions, shown
L o in Figure 2, are quite broad, ranging from0.2 to 1. It

Restricting the prediction to the subset from is clear that one cannot predict the regulatory relationship
YyTAFNET purely from the correlation of the expression profiles between
In order to alleviate the imbalance problem, we decreasethe TF and its target gene. Interestingly, the distribution
the prediction set from all possible TF—target pairings (i.efor the positive examples displays shoulders both to the left
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Fig. 1. Expression profiles of TF and target pairs. Sample expression profiles showing different control relationships are shown in this figure.
The TF profiles are shown in black and the gene target in red. SecAdnf)) show known positive relationships while sectiof3+(G)

show known negative relationships. (A) YKL112W controls YALO38W almost directly for the first half and inversely for the second half.
(B) YKR099W controls YBR093C with a time shift relationship between points 50 and 60. (C) YELOO9C seems to control YMR300C
inversely from points 20 to 40 but directly from 40 to 70. (D) YPLO75W seems to control the slope of YCR012W from 40 to 60. (E)
YKL112W seems to have a mixed inverse and direct relationship with YPR124W throughout the profile. (F) YDL106C seems to have a
general correlation with YLLO39C on a macroscopic scale, but the detailed changes are very different. (G) YELO09C seems to have broad
correlations with YOR209C, perhaps controlled by similar processes, but there is very low correlation of the Het¥ill$131C has no

clear relationship with YIROO9W.

Expression ratios Expression ratios Expression ratios

Expression ratios

[ TS T S R e T
I R R

THROIIA
YBROA3C

20 40 60 80
Conditions

YPLOTSA
VCRO1 20

20 40 60 &0

Conditions

WDL106C
wLLO3SC

20 40 B0 30
Conditions

VLRI
IR ODSwY

20 40 60 80

Conditions

1920



Prediction of regulatory networks

a3 Table 1. Three-fold cross-validation using five different kernel functions
0.25 - i \ —
; ~——fosiive TP TN FP FN Sensitivity Specificity Precision
-~ negative
0.2
= Power=1 29 467 113 29 0.50 0.81 0.78
%015 ) Power=2 36 536 44 22 0.62 0.92 0.90
2 ) Power=3 32 561 19 26 055 0.97 0.93
g Power=4 22 568 12 36 0.38 0.98 0.92
0.1 Radial 9 579 1 49 0.16 1.00 0.92
0.05 For each kernel function (powers 1-4 and radial), true positives, false positives, true
negatives, false negatives, sensitivity, specificity, and precision are shown in the different
% columns. The methods of calculation are described in the text.

-1 -0.5 0 05

Carrelation coefficient

. . - o TP, TN, FP and FN are defined the number of true positive,
Fig. 2. Correlation-coefficient distributions. In order to determine frue negative, false positive and false negative obtained from
general relationships between TFs and their targets, we calculate ] )
the distribution of correlation coefficients of the known positivet e prediction, respec_tlvely.) ) )
examples compared with the distribution based on negative relation- 1€ accuracy describes overall performance and is defined
ships. The distribution of positive correlations is shown in a solid line@SA = (TP+ TN)/(TP+ TN + FP+ FN). One can see that
and shows two shoulders; the distribution of negative correlations ihe accuracies for powers 3 and 4 and radial kernel functions
shown in a dotted line and has a near Guassian distribution. are similar. Power 3 is slightly better than others; the accuracy

rate for this kernel function is 93%, and this value provides an
evaluation of the overall prediction quality including positive
) ) _ and negative predictions.
and right of the main peak. This means that one has more gjyce the majority of the predictions are from the neg-
chance to find positive relationships than negative relationative samples, a more strict evaluation of the prediction is
ship if two expression profiles show high correlation or highthe precision [P= TP/(TP + FP)], which concentrates on

anti-correlation. the sample of predicted positives. As 32 out of the 51 pre-
dicted positives are, in fact, true positives, the precision of the

Evaluating the performancein cross-validated prediction is 63%.

fashion

While we can see that simple correlations are not suffi- o
cient to predict the regulatory relationship, the gene expres! hethreshold for the prediction: ROC graph
sion profiles should contain the information necessary toMe also calculate the relationship between the prediction
determine regulatory networks. However, this informationcoverage and the error rate. The prediction coverage is the
is rather subtle. Machine learning approaches are usefylercentage of the true positives in the real positives (i.e. the
here, since they can find subtle relationships that are naensitivity Sn.) The error ratéis percentage of the false posit-
immediately apparent and require no explicit description ofivesinthereal negatives (i..= 1—Sn). Itis easy toimagine
the connection between the input information and predictedhat both the prediction coverage and error rate increase with
relationship. the decreasing threshold. If one wants to include as many true
In this work 175 positive and 1750 negative examplespositives as possible, in the mean time, much more false pos-
were used for evaluation of the performance of SVM. Eachtives will occur in the prediction. Normally one needs to find
example consists of a pair of genes and is characterized tthe optimal point that has the minimal amount of wrong pre-
158 gene expression levels in different experimental condictions. However, in our case, we are more interested in the
ditions. The performance of the SVM was evaluated bylow error rate than in the high coverage. In other words, the
three-fold cross-validation. In other words, 117 positive andguality of the prediction is more important than the coverage.
1170 negative examples were used for training and the restIn Figure 3 the coverage versus the error rate is shown
of the examples for prediction. The random split between thdor our prediction. This graph is in the standard form of a
training and prediction sets was repeated 10 times and thROC (receiver—operator characteristic) plot. Each point on
average performance was calculated. Table 1 shows the rethis graph represents a threshold for positive and negative clas-
ults of cross-validation using five different kernel functions. sification. An optimal threshold should have high prediction
The sensitivity can be calculated as SNTP/(TP + FN), coverage and a low error rate. A threshold of 0.0 was used for
while the specificity is Sp= TN/(TN + FP). (The symbols the further work.
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Table2. TFs in the study
Transcription Number of Transcription Number of
factor targets factor targets
5
g STE12 1032 SINS 37
E RAP1 306 SIR2 25
ZAP1 286 SIR3 18
RTG1 271 HIR2 16
SOK2 194 GLN3 11
YAP1 189 YAP3 11
3 . . . . RPD3 135 MBP1 9
0 02 0.4 06 08 1 GCN5 105 GCN4 7
False positive rate GCR1 104 SWi6 7
TUP1 71 SWI5 6
PDR1 68 ARGR1 5
Fig. 3. ROC graph: prediction coverage versus error rate. Predicppry 66 RGT1 4
tion coverage is the percentage of predicted positives that are trusqo4 65 GAL4 3
positives while the error rate is the percentage of predicted positiveswi4 63 STB4 2
that are false positive. With a higher coverage rate, there would b8IR4 63 YAP7 2
an associated higher error rate. In the graph, two different plots arBPN4 59 CAT8 1
given, depending on the ratio of the size of the positive to negativéiDAL 55 TEC1 1
SSN6 47 PDR3 1

training examples—what we call the positive-to-negative-training
ratio. One plot has a ratio of 1:1 while the other has 1:10. Each

. . . AVERAGE = 92.92
point on the graph represents a different threshold setting. For the

experiment, we chose a threshold setting of 0.0 with a pc’Sltlve_tozl'hi's table lists the 36 TFs used this study. For each TF, the function and the number

n.egatlve-.tralnlng ratio of 1 10, which is shown by the darkenedof predicted targets are shown in the columns. The average number of targets per TF
circle. This corresponded with a coverage rate-86% and an error  is ~93.

rate of~1.8%.

Table 3. Top TF targets

Genome-wide prediction of yeast transcription Target Number of TF Target Number of TF
targets ZRT1 20 HSP150 11
For the genome-wide prediction of regulatory targets of yeastGp1 16 ALD6 11
TFs, we used all 175 positive and 1750 negative examples d#T2 15 PHO5 1
a training set. The set of 46 059 possible TF—target pairing5§©012 14 FAAS 10
to perform predictions on was obtained from the yTAFNET HIIBSF,41 114; ;Z:?i 11%
database (see methods). For 36 transcription factors, a total gfp4 12 CLN2 10
3419 TF-target pairings were found by our prediction. ADE12 12 suc2 10
Overall statistics for the predictions are presented in Tables 2RG5,6 12 ILvV3 10
and 3. Table 2 lists these 36 TFs along with the function and K1 1112 TGJS 11(?

number of targets they control. The average number of targeﬂc,)(T5
per TF i1s~93. T?‘ble 3 presents the overall statistics from'_rhistable shows the top TF targets that are controlled by more than 10 TFs. The average
another perspective. The table shows all the gene targets #mber of TFs for each targetisi. 8.

the study that are controlled by 10 or more (TFs). The average

number of (TFs) per target is1.8.

Finally, Figure 5 shows the relative chromosomal localiza-

tion of the targets of 10 TFs (randomly selected) across the
Overall network structure genome. For the most part, there is an even distribution of
In Table 4, we show some examples of our predictions. Wdargets for each factor, which corroborates with data from
attempt to depict the overall network predicted in Figure 4.ChIP-chip studies (Horadét al., 2002; Leeet al., 2002).
However, due to the large number of predicted relation- i i .
ships, it is only possible to show a small fraction of the totalComparison with ChIP-chip results
relationships in the figure. The entire network can be obtainedo further evaluate our prediction, we compared our results
from our website http://bioinfo.mbb.yale.edu/expressioniwith two recent genome-wide experiments, which determined
echipchip the TF targets with the ChIP-chip approach (Hostlal.,
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Table4. Predicted TF—target examples DISCUSSION AND CONCLUSION

In our analysis, we develop a machine learning approach to
Transcription TFtarget Score  Transcription TFtarget Score decipherthe complex relationship between a TF and its target.

factor factor Genome-scale analyses of TF targets are difficult and both
experimental and computational techniques are in the pro-
RTG1 FET3 1883  RPD3 ALD6  6.965 cesses of refinement. From our predictions, for the 36 TFs,
RAP1 RPSIA 1848  GCRI1 FET3  6.601 \ye predict a total of 3419 targets. On average, each TF con-
SIR4 GPM1 1127 YAP3 PGK1 6591 imatelv 93 t h q ht ti irolled
SIRa PGK1 10.66 RPN4 PDCL 6.473 (rols approximately argets and each target is controlle
RAP1 RPL40B 9301 RTG1 HXT6 6.438 by 1.8 TFs. This suggests that the lack of a clear relationship
PDR1 PDC1 9.096 RPN4 PGK1 6.437 between TF and their targets as shown in Figure 1 can per-
ZAP1 FET3 9.007 SOK2 ALD6 6.325 haps be due to the fact that most targets are not controlled
RPD3 GPM1 865  GCR1 ALD6 629 1y one single TF. However, the fact that one TF controls
ZAP1 PGK1 8.377 RTG1 YGP1 6.222 i i ints 1o the i " ¢ studving th
ZAPL GPM1 8231 RAPL APL3 6011 SO Many targets points to the importance of studying these
GCR1 PDC1 82 RTGL ADE5,7 6.006 relationships. _ .
ZAP1 PDC1 8.159 RAP1 RPS4A 5994  Otherin silico approaches with regulatory target predic-
RAP1 RPL26B 813 TUP1 PGK1 5.882 tions use binding site information. However, shared tertiary
STE12 GPM1 ~ 8.089 RAP1 PHO12  5.867 gtrycture is often the determinant for binding. This is not pre-
YAP1 FET3 8.084 PHO4 RPL25 5804 .o\ inf tion. Furth f
YAPL GPML 7994 HIR2 TDH3 5752 dicted using sequence information. Furthermore, for many
PDR1 ALD6 7751 ZAP1 ALD6 5747 TFS, binding motifs are yet to be determined. Therefore,
RTG1 HXT7 7.707 TUP1 PDC1 5.711 our method provides an additional perspective that does not
SIR4 TDH3 756  RPN4 GPM1  5.685 require as much derived information.
STE12 PDC1 7477 RAPL RPS9A 5625 As with many bioinformatic analyses, there is restriction
RTG1 ACS2 7.368 PDR1 YEF3 5556 | - <ed on the initial data set hich oredicti based
RAPL RPL7A 7274 TUPL FET3 5484 Dased on the initial data set, on which predictions are based.
ZAP1 ENO2 7105 ZAP1 TDH3 5479 Our accuracy rate would definitely improve with incorpora-
SSN6 FET3 7.07  ZAP1 ACS2 5.472 tion of more microarray data as with the addition of more pairs
GCR1 GPM1 7.02  SIR4 RPL21B  5.458 of TF and targets. Furthermore, the 63% cross-validation rate

with known relationships provides a measure for our analysis.
"However, it is important to note that this number assumes
that the known relationships are accurate and do not include
undiscovered, unannotated true positives. From our initial pre-

) dictions, we expect coverage of 36% with an error rate of less
2002; Leeet al., 2002). In Figure 6A, we present the overlap than 204,

of the TFs shared between two experimental data sets and ourthe generated predictions from our analysis are useful for
prediction setin terms of a Venn diagram. Note that the Horakesearchers as a preliminary target list for their TF of interest.
and Lee data sets only have two TFs in common. The overlapctya| relationships need to be verified with experimental
between our prediction set and the Lee data setis 18 TFs, aRghk. However, this work provides a new method of TF tar-
there is only one common TF for both experimental data setget prediction that will be useful with the growing amount of
and our prediction set. microarray data and knowledge of TFs. Quick predictions can
Based on the (relatively few) shared TFs, we analyzethe made from existing microarrary experiments and will be a
the targets and TF—target relationships that were commofisefyl tool as a first step in TF target prediction.
between the experimental data sets and our predictions Recent studies by Legt al. (2002), Reret al. (2000) and
(Fig. 6B). In general, there is not a large overlap. Betweenyer et al. (2001) have examined the relationship between TF
the two experimental ChiP-chip data sets, there were only 14 their targets using the ChIP-chip approach. Our analysis
common TF-target relationships, accounting for approximeyamined the consequences of gene control using expression
ately 3% of all the determined relationships (where the numbefgye|s, However, there are only small overlaps between the dif-
of determined relationships is based on the smaller data sefhrent experimental data sets and with our predictions. This is
On the other hand, our computational predictions have apost Jikely due to the temporal nature of TFs. For example,
overlap of 70 TF-target relationships with Lee data set and Gjtferent TFs can compete for the same target gene. Further-

with Horak data set, which accounts for approximately 6 andnore, at different times in the cell cycle, there are differing
4% coverage of these data sets. There were no TF-target relgnyironments with different TFs present.

tionships that were consistently found in all three data sources. s fyture work is done, the combination of vitro and

In summary, we found that the agreement between our resulfg gjjico techniques will be valuable in determining the
and two experiments is comparable to the agreement (albgig|ationship between TFs and their targets. Consensus data
low) between the two experiments. from different experiments will increase the fidelity of the

The first column is the TF, second column is its target, third column is the predictio
scores. (The entire list can be obtained from our website.)
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Fig. 4. Overall network. The complex interconnected network of the TFs and all their targets. Because the network is dominated by TFs
targets that do not provide further control with relatively few TFs, there appears to be several centers of control with many targets.
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Fig. 5. Chromosomal position. Positions of genes controlled by ten TFs. For each TF, their targets are colored on the chromosome map of
the yeast genome. Chromosome IV is divided into two lines: the first line contains position from 1 to 800 kb and the second shows position
from 800 kb on. This provides an overall chromosome view of transcription control.
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