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ABSTRACT
Motivation: Grouping genes having similar expression
patterns is called gene clustering, which has been proved to
be a useful tool for extracting underlying biological information
of gene expression data. Many clustering procedures have
shown success in microarray gene clustering; most of them
belong to the family of heuristic clustering algorithms. Model-
based algorithms are alternative clustering algorithms, which
are based on the assumption that the whole set of microarray
data is a finite mixture of a certain type of distributions with dif-
ferent parameters. Application of the model-based algorithms
to unsupervised clustering has been reported. Here, for the
first time, we demonstrated the use of the model-based
algorithm in supervised clustering of microarray data.
Results: We applied the proposed methods to real gene
expression data and simulated data. We showed that the
supervised model-based algorithm is superior over the unsu-
pervised method and the support vector machines (SVM)
method.
Availability: The program written in the SAS language
implementing methods I–III in this report is available upon
request. The software of SVMs is available in the website
http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi
Contact: xu@genetics.ucr.edu

INTRODUCTION
DNA microarray experiments allow us to measure the expres-
sion levels of thousands of genes simultaneously under various
conditions. Gene expression profiles provide some clue to the
functions of individual genes. This is because genes with sim-
ilar functions are likely to show similar expression patterns
under various conditions (Carr et al., 1997; Cho et al., 1998;
Hughes et al., 2000; Szabo et al., 2002). By comparing the
expression patterns of unknown genes to those of known func-
tions, one can predict the functions of unknown genes. This
is the primary objective of the supervised cluster analysis of
gene expression data.

Many clustering techniques are available. The commonly
used methods in microarray data analysis include hierarchical
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clustering (Carr et al., 1997), K-means (Tavazoie et al.,
1999), self-organizing maps (SOMs) (Herrero et al., 2001)
and support vector machines (SVMs) (Brown et al., 2000).
These algorithms are largely, heuristically motivated and they
do not require any underlying statistical models. One possible
alternative to these ‘heuristic’ algorithms is the model-based
clustering method (Dasgupta and Raftery, 1998) which is
based on the assumption that the whole set of microarray data
is a finite mixture of the same type of distribution each with
a different set of parameters, such as the finite mixture of
multivariate Gaussian distributions. One obvious advantage
of the model-based clustering algorithm over the ‘heuristic’
algorithms is that with the underlying assumption, the choice
of the optimal number of clusters and the models which fit
the data best can be done by using some objective statist-
ical criteria, i.e. Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC), whereas for the ‘heur-
istic’ algorithms, choosing the ‘correct’ number of clusters
and the best clustering method is still a question open to dis-
cussion. Successful application of the model-based clustering
to microarray data has been reported (Yeung et al., 2001;
Mclachlan et al., 2002; Ghosh and Chinnaiyan, 2002).

In addition to heuristic clustering and model-based clus-
tering, we may also categorize clustering methods into
unsupervised and supervised clustering, according to the
characteristics of the sampled genes. The supervised clus-
tering method uses the expression profiles of genes with
known functions as training samples. Unsupervised cluster-
ing, on the other hand, classifies all genes according to the
same criteria, regardless of the functions of the genes. The
supervised clustering method is obviously advantageous over
the unsupervised one because the former utilizes additional
information from the functional genes as the prior know-
ledge. Several supervised clustering techniques have been
applied to microarray data, i.e. the SVMs (Brown et al.,
2000) and multilayer perceptrons (Mateos et al., 2002). These
algorithms belong to the category of ‘heuristic’ algorithms. To
the best of our knowledge, a model-based supervised cluster-
ing method on microarray data has not been investigated.

An intuitive method to implement the model-based super-
vised clustering algorithm is to (a) estimate the parameters
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from the training sample and (b) use the estimated values of the
parameters to classify the genes in the test dataset. A drawback
of this method is that only the training set is used to estimate
the parameters, and information from the test dataset is com-
pletely ignored. To tackle this problem, we propose to utilize
both the training sample and the test dataset to estimate the
model parameters using the expectation–maximization (EM)
algorithm (Dempster et al., 1977). In fact, a majority of the
information comes from the test dataset rather than the train-
ing sample because the latter usually accounts for only a small
proportion of the entire dataset.

SYSTEMS AND METHODS
Multivariate Gaussian mixture
The finite mixture of multivariate normal distributions has
been used to fit microarray data by a number of authors
(Mclachlan et al., 2002; Ghosh and Chinnaiyan, 2002). Yeung
et al. (2001) applied this model to fit the yeast cell cycle data
and showed good fitness of the model, as judged by the BIC
value (Ghosh and Chinnaiyan, 2002). First, we assume that
the expression levels of all genes have been appropriately nor-
malized (Yeung et al., 2001). Therefore, each observation in
the data is already a processed data point and analysis can
be directly performed. As usual, the data are arranged in an
n × m matrix denoted by Y , where n is the number of genes
and m is the level of treatment (cases or time points). Let yij be
the expression level of the i-th gene in the j -th treatment, for
i = 1, . . . , n and j = 1, . . . , m. Let yi = [yi1, yi2, . . . , yim]T

be the i-th column of matrix Y T, i.e. an m × 1 vector for the
expression data of gene i under all treatments. The values of
yij across all the m treatments represent the expression profile
of the i-th gene. With the finite multivariate Gaussian mix-
ture model, each yi is assumed to follow an m-dimensional
mixture of normal distributions. Mathematically, the mixture
distribution for C clusters is expressed as

f (yi ) =
C∑

k=1

πkfk(yi |µk , �k), (1)

where πk , with
∑C

k=1 πk = 1, is the mixing proportion of
cluster k, and

fk(yi |µk , �k) = (2π)−m/2|�k|−1/2

× exp
[
− 1

2 (yi − µk)
T�−1

k (yi − µk)
]
(2)

is the probability density of the k-th normal distribution with a
mean vector µk (an m × 1 vector) and a variance–covariance
matrix �k (an m × m matrix). The mixing proportion πk

is defined as the proportion of genes that belong to the k-th
cluster.

Unsupervised clustering algorithm (method I)
The model-based supervised clustering algorithm is developed
based on the unsupervised clustering algorithm. Therefore,
we first review the unsupervised method and then, in the
next section, modify this algorithm to incorporate information
from the training sample for the supervised algorithm.

The model-based unsupervised clustering algorithm assigns
each gene to one of C clusters with a certain probability. Let
us denote the probability that the i-th gene is assigned to the
k-th cluster by pik . A gene will be assigned to the k-th cluster
if pik is greater than a certain pre-determined value. This
probability may be obtained via the EM algorithm (Dempster
et al., 1977). With the EM algorithm, we can also estimate
other model parameters, πk , µk and �k , for k = 1, . . . , C.
The number of clusters, C, can also be treated as an unknown
parameter and inferred with the BIC or AIC test (Schwarz,
1978; Akaike, 1974). If a Bayesian approach is taken, C may
be estimated via the reversible jump Markov chain Monte
Carlo (Green, 1995).

The EM algorithm starts with some initial values of all
unknowns and iteratively updates each parameter conditional
on the parameter values in the previous round of the iteration.
Without any prior knowledge, each gene may be assigned an
equal probability to each cluster. The EM iteration is described
in the following steps:

(0) Initialize prior probabilities of cluster assignment and
the mixing proportions,

p
(0)
ik = 1/C ∀i = 1, . . . , n; k = 1, . . . , C and

π
(0)
k = 1/C ∀k = 1, . . . , C. (3)

(1) Update the mean vectors,

µ
(t)
k =

[
nπ

(t−1)
k

]−1 n∑
i=1

p
(t−1)
ik yi ∀k = 1, . . . , C.

(4)

(2) Update the variance–covariance matrices,

�
(t)
k =

[
nπ

(t−1)
k

]−1 n∑
i=1

p
(t−1)
ik [yi − µ

(t)
k ][yi − µ

(t)
k ]T

∀k = 1, . . . , C. (5)

(3) Update the posterior probabilities of cluster assignment,

p
(t)
ik = π

(t−1)
k fk[yi |µ(t)

k , �(t)
k ]∑C

k′=1 π
(t−1)
k′ fk′ [yi |µ(t)

k′ , �(t)
k′ ]

∀i = 1, . . . , n; k = 1, . . . , C. (6)

(4) Update the cluster proportions,

π
(t)
k = n−1

n∑
i=1

p
(t)
ik ∀k = 1, . . . , C. (7)

(5) Repeat (1)–(4) until convergence.
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This EM iteration scheme is robust and well behaved. The
convergence speed is also reasonably fast.

The number of clusters may be treated as another para-
meter and inferred from the data. The BIC or AIC test is used
to estimate the optimal number of clusters (Akaike, 1974;
Schwarz, 1978). The BIC is

BIC = 2 ln L(�̂) − p ln(n), (8)

where p is the number of parameters to be estimated in the
model, L(�̂) is the likelihood value evaluated at �̂, the vector
of maximum likelihood estimate of the parameters and n is
the size of the dataset. The number of clusters (C) that has
the maximum BIC value is the estimated C. Note that C is
fixed in the supervised analysis because it is determined by
the number of functional groups in the training sample.

Supervised clustering algorithm (method II)
In the supervised cluster analysis, we know the functions
of genes in the training sample, and thus know which gene
belongs to which cluster. Let n1 and n2 be the number of
genes in the training sample and the test dataset, respectively,
and the total number of genes in the microarray experiment be
n1 + n2 = n. In addition, we know the number of genes that
belong to each of the k clusters in the training sample, denoted
by n1k , for

∑C
k=1 n1k = n1. The most intuitive method for the

model-based supervised cluster analysis is to use the training
sample to estimate the cluster means and variance–covariance
matrices, denoted by µ̂k and �̂k for all k = 1, . . . , C. For
each of the n2 genes in the test dataset, indexed from n1 + 1
to n1 + n2, we need to calculate the posterior probability that
the i-th gene belongs to the k-th cluster. The EM iteration is
described below:

(0) Initializing the prior probabilities of cluster assignment,

p
(0)
ik = 1/C ∀i = n1 + 1, . . . , n; k = 1, . . . , C.

(1) Updating the cluster proportions,

π
(t)
k = n−1

[
n1k +

n∑
i = n1+1

p
(t−1)
ik

]
∀k = 1, . . . , C.

(2) Updating the posterior probabilities of cluster assignment,

p
(t)
ik = π

(t−1)
k fk(yi |µ̂k , �̂k)∑C

k′=1 π
(t−1)
k′ fk′(yi |µ̂k′ , �̂k′)

∀i = n1 + 1, . . . , n; k = 1, . . . , C.

(3) Repeating steps (1) and (2) until convergence.

Note that µ̂k and �̂k for all k = 1, . . . , C are estimated
from the training sample and they are not updated in the
iteration process. This intuitive method is similar to Fisher’s

discriminate analysis (Fisher, 1936), except that this method
can handle more than two clusters.

Supervised clustering algorithm (method III)
The simple and intuitive supervised method given above usu-
ally performs well if the number of genes within each known
cluster in the training sample is sufficiently large. The large
sample requirement is to ensure high accuracy of the estim-
ates of µk and �k . However, for small training samples, these
estimates are subject to large errors. Sometimes, the estimated
variance–covariance matrices may not even be positive defin-
ite. This may happen if the number of genes within a cluster
is smaller than the number of treatments (m). Furthermore,
much information from the test dataset has not been fully
utilized. The test dataset is usually much larger than the train-
ing sample, implying that the unutilized information may be
substantially more than that contained in the training sample.
It is our intention to incorporate this additional information
into the algorithm, leading to the new supervised algorithm
(method III). The EM iterations are performed based on the
following steps:

(0) Initialize prior probabilities of cluster assignment and
the mixing proportions,

p
(0)
ik = 1/C ∀i = n1 + 1, . . . , n; k = 1, . . . , C

and

π
(0)
k = 1/C ∀k = 1, . . . , C.

(1) Update the mean vectors,

µ
(t)
k =

[
n1k +

n∑
i=n1+1

p
(t−1)
ik

]−1

×
[
n1kµ̂k +

n∑
i=n1+1

p
(t−1)
ik yi

]
∀k = 1, . . . , C.

(2) Update the variance–covariance matrices,

�
(t)
k =


n1k +

n∑
i=n1+1

p
(t−1)
ik




−1

×

n1k�̂k +

n∑
i=n1+1

p
(t−1)
ik [yi − µ

(t)
k ][yi − µ

(t)
k ]T




∀k = 1, . . . , C.

(3) Update the posterior probabilities of cluster assignment,

p
(t)
ik = π

(t−1)
k fk[yi |µ(t)

k , �(t)
k ]∑C

k′=1 π
(t−1)
k′ fk′ [yi |µ(t)

k′ , �(t)
k′ ]

∀i = n1 + 1, . . . , n; k = 1, . . . , C.
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(4) Update the cluster proportions,

π
(t)
k = n−1


n1k +

n∑
i=n1+1

p
(t)
ik


 ∀k = 1, . . . , C.

(5) Repeat (1)–(4) until convergence.

Note that the gain in efficiency of the new supervised method
over the simple supervised method comes from the more pre-
cise estimates of µk and �k . Both parameter sets are functions
of µ̂k and �̂k obtained from the training sample and data
yi , ∀i > n1, contained in the test dataset. In other words,
the sample size for estimating µk and �k has been increased
from n1k in the simple supervised method to n1k + n̂2k in
the new supervised method, where n̂2k = ∑n

i=n1+1 pt
ik is the

estimated number of genes in the test dataset that belong to
cluster k.

IMPLEMENTATION
Yeast cell cycle data
The yeast cell cycle data were published by Cho et al. (1998).
The data contained the expression profiles of 6220 genes over
17 time points (treatments) taken at 10-min intervals, cover-
ing nearly two cell cycles. This set of data has been analyzed
by many authors, e.g. Lukashin and Fuchs (2001), Yeung
et al. (2001) and Tamayo et al. (1999). The entire dataset
(raw data) is available at http://cellcycle-www.stanford.edu.
In the study by Yeung et al. (2001), a subset of 384 genes was
used (n = 384). These genes had expression levels peaking
at different times corresponding to the five (C = 5) phases of
the cell cycle (Fig. 1). This subset of the data is available at
http://www.cs.washington.edu/homes/kayee/model. For pre-
processing, we removed the data corresponding to the 90-
and 100-min time points, because these two time points were
reported to be unreliable (Tavazoie et al., 1999). After the dele-
tion, the total number of treatments became 15 (m = 15). We
then standardized each gene expression profile by subtracting
the mean expression from the original value and dividing the
difference by the SD so that the transformed expression level
has mean 0 and variance 1. All the 384 genes were assigned
to one of the five clusters by the original investigators (Cho
et al., 1998; Yeung et al., 2001). Therefore, we can use this
dataset to test the performances of the clustering algorithms
developed here and compare them with the performance of
existing methods.

Four methods were compared using the same dataset:
the unsupervised method (method I), the simple supervised
method (method II), the new supervised method (method III)
and the SVMs algorithm (method IV). Methods I and IV
were previously developed by other authors (Yeung et al.,
2001; Brown et al., 2000). Methods II and III were developed
in this study. Methods II–IV are all supervised clustering
algorithms. The SVM algorithm (method IV) is the only other

Table 1. Comparison of the clustering results of various classification
methods on the yeast cell cycle microarray data

Cell division phase Methods FP FN TP TN

Early G1 I 50 12 55 267
(67 genes) II 21 17 50 296

III 21 21 46 296
IV 38 10 57 279

Late G1 I 28 40 95 221
(135 genes) II 22 38 97 227

III 24 35 100 225
IV 43 10 125 206

S I 33 49 26 276
(75 genes) II 41 28 47 268

III 37 36 39 272
IV 72 18 57 237

G2 I 28 41 11 304
(52 genes) II 6 38 14 326

III 18 29 23 314
IV 46 5 47 286

M I 38 42 13 291
(55 genes) II 9 28 29 320

III 19 8 47 310
IV 47 2 53 282

supervised clustering method used for comparison. There are
other supervised clustering methods, e.g. linear, quadratic,
mixture and the functional discrimination analyses (Hastie
and Tibshirani, 1996; James and Hastie, 2001). These dis-
crimination analysis procedures share similar features with
our Gaussian mixture model. Therefore, we only compare
our methods with the SVM, a heuristic approach. We adopted
the commonly used three-fold cross-validation experiments
to test the three supervised methods (Brown et al., 2000),
where we randomly divided the total number of genes into
three groups and used genes from two groups as the training
sample and the genes from the third group as the test data.
There were three possible ways to combine two out of three
groups. A detailed description of the method can be found in
Brown et al. (2000). Overall, we did three separate analyses
to complete one cross-validation experiment for each method.
For the unsupervised method (method I), we analyzed all the
384 genes simultaneously without regrouping the genes.

After the test, each gene had four possible outcomes: false
positive (FP), false negative (FN), true positive and true
negative. The total error rate was defined as FP + FN. Table 1
summarizes the results of the three-fold cross-validation
experiments for each of the five clusters. For methods I–III,
we assigned a gene to a cluster if the probability of the gene
belonging to that cluster exceeded 0.8. For method IV, a gene
was assigned to a cluster depending on whether it was a mem-
ber of the cluster or not. Table 2 summarizes the total error
rate of the four algorithms for all the methods. We can see
that methods II and III, the two model-based training methods
developed in this study, have similar performance in terms of
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Fig. 1. The five groups of genes whose expression levels peak at different phases of the cell cycle (a–e). The numbers 1–15 in the x-axis
correspond to the 15 data points for each gene. The expression profile was measured for 160 min at 10-min intervals, while the data points
corresponding to 90 and 100 min were deleted because they were unreliable. These 15 data points cover almost two cell cycles.

Table 2. Comparison of the overall error rates of four clustering algorithms
on the yeast cell cycle microarray data

Methods FP FN FP+FN

I 177 184 361
II 99 149 248
III 119 129 248
IV 246 45 291

the total number of errors, FP + FN. The unsupervised method
(method I) produced significantly larger number of both FP
and FN due to the poor recognition of the last two groups.
This demonstrates the advantage of supervised clustering over
unsupervised clustering based on the Gaussian mixture model.

The yeast cell cycle data have been analyzed by many
authors, but all took the unsupervised approach. Tamayo
et al. (1999) analyzed 828 genes with the SOM and found
30 clusters. Lukashin and Fuchs (2001) identified five clusters
among the 1306 genes that passed the variation filter with the
simulated annealing algorithm. Because these authors did not
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Fig. 2. The mean vectors and variance–covariance matrices for the
five clusters of the simulated data.

use exactly the same set of genes as those analyzed in this
study, and their purposes were to identify the optimal num-
ber of clusters (different from ours), their findings are not
comparable with our results. Yeung et al. (2001) analyzed
the same set of genes as ours (384 genes) with the unsuper-
vised model-based algorithm (method I), but their purpose
was, again, to identify the optimal number of clusters, and
thus did not provide the error rates. However, the results of
method I given in Table 1 of this study should be identical to
the error rates of the analysis by Yeung et al. (2001), if such
information were provided.

Simulated data
In the yeast cell cycle data analysis, the FP + FN error rates
may reflect the confounding errors of the methods and the
human-made clusters. Therefore, we conducted a simulation
experiment in which the clusters are known exactly without
human-made errors. In this case, the FP + FN error rates
reflect the true errors due to different methods. We tested our
algorithms on different simulated multivariate normal mixture
distributions. We found that, most of the times, the unsu-
pervised method performed equally well as the supervised
methods (data not shown), but it usually showed a signific-
ant reduction in the ability to recognize small groups from
large overlapping background. We then simulated a dataset
with 2400 observations from five (clusters) multivariate nor-
mal distributions (C = 5). The first four clusters each had

Table 3. Comparison of the clustering results of various classification
methods on the simulated data

Cluster Methods FP FN TP TN

1 (100 genes) I 1 100 0 2299
II 6 30 70 2294
III 6 34 66 2294
IV 831 0 100 1469

2 (100 genes) I 56 0 100 2244
II 8 22 78 2292
III 10 19 81 2290
IV 557 0 100 1743

3 (100 genes) I 23 99 1 2277
II 3 46 54 2297
III 3 45 55 2297
IV 321 1 99 1979

4 (100 genes) I 6 16 84 2294
II 5 21 79 2295
III 5 18 82 2295
IV 152 2 98 2148

Table 4. Comparison of the overall error rates of four algorithms on the
simulated data

Methods FP FN FP+FN

I 86 215 301
II 22 119 141
III 24 116 140
IV 1861 3 1864

100 observations with smaller variances, while the fifth cluster
had 2000 observations with larger variances. The mean vec-
tors and variance–covariance matrices of the five clusters are
given in Figure 2. The mean vectors of the four small groups
are close to the center of the large group.

We analyzed the simulated dataset with the four methods
as we did in the yeast cell cycle data analysis. This time,
we performed the two-fold cross-validation experiments. We
randomly divided the data into two groups. The classifiers
were trained with one group and were tested with the other
group. For all the model-based methods (methods I–III), we
assigned an observation to a cluster if the probability of the
observation belonging to that cluster exceeded 0.8. Because
cluster five represented a widely distributed background, it
was excluded from the analysis for error calculation. The
results are summarized in Table 3 for the test values for indi-
vidual clusters, and in Table 4 for the consensus test values of
all the clusters. In terms of the small error rates, FP, FN or FP
+ FN, the performances of methods II and III were superior
over the other two methods, indicating that both supervised
clustering methods performed well above the other methods
in the situation where a Gaussian mixture model applies. The
unsupervised method (method I) performed well in clusters
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Table 5. Comparison of the clustering results of methods II and III with different training sample sizes on the simulated data

Training sample size Methods Cluster (no. of genes) FP FN TP TN Total FP Total FN Total FP+FN

10% II 1 (90) 3 45 45 2067 11 178 189
(240 genes) 2 (89) 3 61 28 2068

3 (92) 2 55 37 2066
4 (92) 3 17 75 2065

III 1 (90) 5 30 60 2065 27 106 133
2 (89) 14 16 73 2057
3 (92) 3 43 49 2065
4 (92) 5 17 75 2063

15% II 1 (83) 5 27 56 1952 18 151 169
(360 genes) 2 (88) 8 49 39 1944

3 (85) 4 48 37 1951
4 (83) 1 30 53 1956

III 1 (83) 5 29 54 1952 24 105 129
2 (88) 12 18 70 1940
3 (85) 3 40 45 1952
4 (83) 4 18 65 1953

two and four, but poorly in clusters one, three and five. This
was due to the fact that many of the data simulated from
clusters one, three and five were assigned back to these three
clusters but with a high chance of incorrect classification. With
our criterion of assigning an observation to a cluster (0.8),
these genes could not be assigned to any of the clusters. For
the first four clusters, the SVM method had a high power
for identifying true positives, but at the cost of a high false
positive rate.

When the size of the training sample was large, say one-half
or two-third of the whole set of the data, the two super-
vised methods (methods II and III) proposed in this study
performed equally well, although both were better than the
unsupervised method and SVM. To compare the perform-
ance of the two methods with a smaller training sample, we
randomly selected 10 or 15% observations (240 or 360 obser-
vations) from the simulated data (2400 observations), and
used the subset as the training sample to classify the rest of
the data. The classification results of the two methods are
summarized in Table 5. From this table, we can see that
in terms of the small total error rate, FP + FN, method III
was better than method II. The difference between the two
methods came from the way the parameters were estimated.
Method II used the training sample to estimate the parameters,
whereas method III used both the training sample and the test
dataset. Therefore, the additional information from the test
dataset indeed improved the performance of the clustering. In
fact, the simulation experiment was replicated several times.
The results are all consistent with the one reported (data not
shown).

The time complexity of the algorithms is roughly linear
on the number of genes, but not linear on the levels of
the treatment and the number of clusters. For the simulated

data, the slowest algorithm (method I) took about 40 min to
converge on a Pentium IV PC.

DISCUSSION
We developed two algorithms for supervised model-based
clustering analysis of microarray data. These two algorithms
were tested and compared with existing methods using both
real and simulated data. We found that the supervised methods
(methods II and III), were superior over the other two meth-
ods evaluated for both datasets. When the size of the training
sample was small (10 or 15% of the whole dataset), the simple
supervised model-based method (method II), which uses only
the training sample to estimate the parameters and then uses
the estimated value of the parameters to classify the test data-
set, performed not as well as method III, which utilizes both
the training and test datasets into a single EM algorithm to sim-
ultaneously estimate parameters and perform classification.
This advantage has been demonstrated in our classification
results. The unsupervised method (I) produced similar classi-
fication results to the supervised methods (II and III) in many
datasets we simulated (data not shown), but we found that it
had some problems in identifying small groups from big over-
lapping background, as shown in Tables 3 and 4. The SVM
method has been proved to be a successful knowledge-based
‘heuristic’ clustering method (Brown et al., 2000; Mateos
et al., 2002). Here, we used SVM to classify the data and com-
pared the results with our model-based methods. We found
that the proposed new method (III) performed better than the
SVM on both datasets tested. The SVM was likely to produce
a larger number of FP but a smaller number of FN than the
new EM method. One possible reason may be that the SVM
identifies members in a one-versus-rest fashion. This binary
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SVM was likely to include more members in a cluster than it
should, i.e. produce a large number of FP, and thus it may not
be optimal for the multiclass problem. An extension has been
made by Lee and Lee (2003) as multicategory support vector
machines (MSVM). Further investigation may be necessary to
compare the performance of the model-based algorithm with
the MSVM. The binary SVM (Brown et al., 2000), however,
has a user friendly web-based program available for general
use. Therefore, we compared our EM algorithm only with
the binary SVM. The SVM is an approach completely differ-
ent from the model-based method. Normally, a model-based
method is always better than a heuristic approach, except that
the former is always more time consuming. Therefore, we do
not expect the MSVM method to be better than our model-
based method. The model-based algorithm is not heuristic
and will guarantee finding the optimal clusters if the sample
size is sufficiently large. This property is called consistency
in statistics. However, the property of consistency may not be
shared by all heuristic approaches. The model-based method
depends on a probability model. The probability model itself
is usually proposed based on experience and the feasibility of
the model. The Gaussian mixture model is a convenient choice
and also quite robust. Furthermore, the model-based method
provides substantial information than the heuristic method,
e.g. the posterior probabilities of gene classifications and the
parameters of each cluster.

In this study, we assigned a gene to a cluster if the posterior
probability was greater than 0.8. This criterion was chosen in
an arbitrarily manner and it may affect the results of classific-
ation. We also tried the criteria of 0.5 and 0.9 with method III.
We found that for the yeast cell cycle data, criterion 0.5 pro-
duced a slightly larger FP (125) but a slightly smaller FN
(124), while criterion 0.9 produced a slightly smaller FP (113)
but a slightly larger FN (135). The total error rates FP + FN
were almost the same for all these three criteria. For the simu-
lated data, criterion 0.5 produced a larger FP (64) and a smaller
FN (44). The total error rate reduced to 108. Criterion 0.9 pro-
duced a smaller FP (2) and a larger FN (214). The total error
rate increased to 216. We think that the 0.8 criterion is the
reasonable choice.

One possible problem with the model-based method is that
the correct number of clusters is needed for a good classi-
fication. We tested the supervised EM algorithm with the
same dataset used by Brown et al. (2000). We divided the
2467 genes into six clusters based on their functions: TCA
cycle, respiration, ribosome, protease, histones and others.
Although we used two-third of the data as training sample,
the method still could not classify the rest of the data correctly
(data not shown). This was because the sixth cluster itself may
be a mixture of many distributions. We actually treated it as
a single distribution in our model. This indicates that a good
estimation of the number of the clusters is very important for
classification. As we mentioned earlier, an advantage of the
model-based model is that we can use statistical criteria, such

as AIC and BIC, to find the number of clusters that fits the data
best. So far, finding the number of clusters using AIC or BIC
only applies to unsupervised clustering analysis because, in
the supervised clustering, the training sample already contains
the fixed number of groups of genes and, thus, it is not neces-
sary to find the number of clusters. It will be very informative
to extend our method to combine the unsupervised and the
supervised clustering method into a single analysis if the train-
ing sample does not contain all functional groups that exist in
the test dataset. This requires redefining the number of clusters
as C1 +C2, where C1 is the number of clusters in the training
sample and C2 is the number of additional clusters contained
in the test dataset. The BIC or AIC will play a role in determ-
ining the optimal C2. The reversible jump MCMC which was
originally developed for inferring the number of distributions
in a mixture (Green, 1995; Richardson and Green, 1997) is an
ideal tool for estimating C2 if the problem is tackled from a
Bayesian perspective.

Finally, data normalization is the prerequisite of microarray
data analysis. It serves as a tool to remove systematic envir-
onmental effects so that comparisons are made on an equal
basis. Therefore, normalization is a tool to centralize the data.
In addition, normalization provides a way to reshape the dis-
tribution of the expression data. The raw data collected by
the experimenters are rarely distributed in a normal fashion.
Log or other form of data transformation is important to force
the data to follow a normal distribution. The model-based
method developed here depends on the normal assumption.
Therefore, the method may be more sensitive to any depar-
ture from normality. Further investigations are necessary to
address this problem.
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