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ABSTRACT
Motivation: A number of omic technologies such as transcriptional
profiling, proteomics, literature searches, genetic association, etc.
help in the identification of sets of important genes. A subset of these
genes may act in a coordinated manner, possibly because they are
part of the same biological pathway. Interpreting such gene lists and
relating them to pathways is a challenging task. Databases of biolo-
gical relationships between thousands of mammalian genes can help
in deciphering omics data. The relationships between genes can be
assembled into a biological network with each protein as a node and
each relationship as an edge between two proteins (or nodes). This
network may then be searched for subnetworks consisting largely of
interesting genes from the omics experiment. The subset of genes
in the subnetwork along with the web of relationships between them
helps to decipher the underlying pathways. Finding such subnetworks
that maximally include all proteins from the query set but few others is
the focus for this paper.
Results: We present a heuristic algorithm and a scoring function that
work well both on simulated data and on data from known pathways.
The scoring function is an extension of a previous study for a single
biological experiment. We use a simple set of heuristics that provide
a more efficient solution than the simulated annealing method. We
find that our method works on reasonably complex curated networks
containing ∼9000 biological entities (genes and metabolites), and
∼30 000 biological relationships. We also show that our method can
pick up a pathway signal from a query list including a moderate num-
ber of genes unrelated to the pathway. In addition, we quantify the
sensitivity and specificity of the technique.
Contact: dilip_rajagopalan@gsk.com

1 INTRODUCTION
Increased use of high-throughput platform (omic) technologies has
led to an important new problem in bioinformatics: biological inter-
pretation of the lists of genes that are the typical output of such
experiments. For example, transcriptome analysis of cell lines with
and without drug treatment, results in a set of differentially expressed
genes. It is important to understand whether some of these genes are
functioning in a coordinated manner (a ‘pathway’). Such an interpret-
ation of this set of genes is useful in understanding the mechanism
of action of the drug. As the number of genes in such lists can often

∗To whom correspondence should be addressed.

be in the hundreds, computational tools are essential to assist in the
interpretation of such gene lists.

One approach that has proven successful is based on quantifying
the overlap of such a list of ‘interesting’ genes with a database of
sets of genes associated with various biological processes (Tavazoie
et al., 1999; Draghiciet al., 2003; Hosacket al., 2003; Moothaet al.,
2003). For example, if the gene list of interest overlaps significantly
with the set of genes involved in glycolysis, one can conclude that
the drug treatment experiment perturbed the glycolytic pathway. One
disadvantage of such approaches is that genes must be placed in a
limited number of static groups. For example, even the larger sources
of pathways for signal transduction (such as BioCarta) are limited to
about 300 pathways and phenomena such as cross talk are ignored.

In the pathway context, another useful approach is to map the query
set of interesting genes onto a set of classical pathway maps such
as KEGG, BioCarta, etc. Software such as GenMAPP (Dahlquist
et al., 2002) and several transcriptome analysis packages provide
such capability. A hit is represented by color coding the location
of the gene on the pathway map. If many genes in the query set are
mapped on to a single pathway, say fatty acid metabolism, one would
conclude that the drug treatment plays a role in fatty acid metabolism.
Although this approach is visually pleasing, it also suffers from the
somewhat artificial grouping of genes into a limited number of small
pathway maps. Furthermore, this visual approach by itself provides
no guidance on the statistical significance of the result.

We present an alternative approach to the problem that is motiv-
ated by a systems biology perspective. We have assembled a large
network of biological relationships between genes and metabolites
derived from various databases created by manual curation of lit-
erature. These biological relationships span many types of cellular
processes including signaling, transcriptional regulation and meta-
bolism. Given such a network and a query set of interesting genes
from an omics experiment, our goal is to search the network for
subnetworks consisting mostly of query genes. The set of genes
in such subnetworks and the web of literature-based relationships
between them will provide some biological insight into the mechan-
ism of action. The PubGene suite of tools developed by Jenssen
et al. (2001) also helps to analyze gene expression data using a
literature-based network. As we describe below, there are important
distinctions between our method and PubGene.

In our work, we present a graph-based heuristic algorithm with
an associated scoring function to dynamically construct subnet-
works with a high score. Our approach is built on the work of
Idekeret al. (2002) who developed a method to search Y2H-based
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protein interaction networks using a set of differentially expressed
genes from a transcriptomics experiment. We believe network-based
approaches will emerge as the preferred way to perform biological
interpretation of gene lists derived from omics experiments.

2 DATA AND METHODS

2.1 Data used to build the network
We have constructed a network of biological relationships between genes and
metabolites using three data sources:

(1) The Ingenuity Pathways Knowledge Base (www.ingenuity.com)
includes over one million highly structured scientific findings manu-
ally curated from the literature relating genes, cells, diseases, drugs
and other biological entities. These relationships are primarily from
human, mouse and rat. We have extracted a subset of relation-
ships from this knowledge base and constructed a network consisting
of ∼25 000 relationships between∼7300 human genes. The gene–
gene relationships in this network include protein binding, protein
phosphorylation, binding of transcription factors to DNA.

(2) The TransFac database (Matyset al., 2003) of transcriptional
regulation (www.gene-regulation.com) contains∼1000 relation-
ships between∼200 human transcription factors and 400 genes
(Version 6.4).

(3) The HumanCyc database (May 2003 release) of human metabolism
consists of a set of metabolic reactions and the genes whose products
catalyze these reactions (humancyc.org). It includes data for∼1400
genes and 900 metabolites.

We have integrated these three sources of data on biological relationships
into a comprehensive network (R1). The total number of nodes in network
(R1) is∼9300, of which 900 are metabolites and the rest are genes. The net-
work has∼30 000 edges representing relationships between the genes and
metabolites. The metabolic reactions were converted to a network by creating
an edge between each enzyme and all its substrates and products. Common
cofactors, such as ATP and molecules like water were excluded prior to
building the network. Over 95% of the nodes in the integrated network form
a single, large connected component. The degree (number of neighbors) of
each node in this network ranges from 1 to∼300. The topology of the network
can be fit to a scale-free model (Barabasi and Oltvai, 2004) with a power-law
coefficient of−1.9. The pathway results presented in the paper were all gen-
erated using networkR1. However, for the purpose of testing and developing
our scoring function and algorithm, we also included indirect relationships
to build a more connected network (R2) containing∼9500 nodes and 50 000
edges in which the maximum degree is∼750.

2.2 Method to find subnetworks
We have developed a method to take a set of query genes that arise from
an omics experiment and extract a subnetwork of genes and relationships
between them from an interaction network. This method relies on a scoring
function for subnetworks and an algorithm to find high-scoring subnetworks.
The subnetworks found by this algorithm will predominantly consist of genes
contained in the query set, but they can have some ‘gaps’—genes not con-
tained in the query set. The genes contained in the high-scoring subnetwork
along with the relationships between them will provide useful insight into the
mechanism of action underlying the omics experiment that gave rise to the
query set of genes.

Our approach builds on the work of Idekeret al. (2002), which relies on a
significance measure orp-value supplied for each gene in the query set. For
example, in trying to determine pathways associated with a gene list arising
from a transcriptomics experiment, thep-values supplied for the genes would
typically be calculated from a statistical test of differential expression between
a control and treated group. If significance measures are not available, our
method can be applied to a query set of genes by assigning all genes in

the query set a low, equalp-value. The remaining genes in the network are
assigned a high (insignificant)p-value for the computation.

Our subnetwork scoring function is similar to the scoring function pro-
posed by Idekeret al. (2002) for a single biological experiment or condition,
but we introduced some important improvements. In addition to scoring
functions for single and multiple conditions, Idekeret al. (2002) developed
a simulated annealing algorithm to tackle the NP-hard problem of finding
high-scoring subnetworks. However, our implementation of their simulated
annealing algorithm proved too slow for the large network described earlier,
and we introduced a novel, graph-based heuristic algorithm that produces
high-scoring subnetworks with much shorter execution times. In the rest
of this paper, we refer to our implementation of Ideker’s simulated anneal-
ing method as algorithmA1, and we refer to our new heuristic method as
algorithmA2.

2.3 Scoring function
We implemented the scoring function for a single experiment proposed by
Ideker et al. (2002) along with a simple greedy search algorithm. This
algorithm, which we denoteA3, is derived from the simulated annealing
method proposed by Idekeret al. (2002). In this algorithm, we rank the nodes
by z-score and turn on the top 50% of nodes. We group the nodes turned on
into connected components using a breadth-first search. Finally, we check
whether turning on nodes adjacent to connected components improves their
scores. This last step is done recursively, and it can result in the merging
of separate connected components. For details of some of these steps [see
Idekeret al. (2002)]. We tested this greedy algorithm (A3) using a random
input gene set containing no biological pathway signal. As pointed out by
Idekeret al. (2002), network nodes in this situation have uniformly distrib-
utedp-values between 0 and 1. For this kind of input, we do not expect the
method to find large subnetworks. However, we found that the simple greedy
search algorithm (A3) coupled with the above scoring function resulted in
very large subnetworks consisting of up to 1000 nodes. As per the design
of the greedy search algorithm, as the subnetwork grows in size, its score
increases monotonically. Thus, it is a deficiency in the scoring function that
is responsible for this phenomenon and not any inadequacy in the algorithm
which is designed to find subnetworks with the highest score. Our goal was
then to understand the root cause of this undesirable behavior and develop
a modified scoring function that resulted in far smaller subnetworks for the
case of random input.

For a subnetwork withM nodes, the scoring function for a single
experiment proposed by Idekeret al. (2002, Equation 2) can be rewritten as

S =
√

M

σ

∑
i Ci

M
, (1)

whereS is the subnetwork score (denoted assA by Idekeret al., 2002),σ
is the SD of the distribution ofz-scores for the entire network andCi is a
corrected score for each node. Thez-scores for each node are derived from
thep-values via the inverse normal distribution function. The corrected node
scoreCi in turn is given byzi − µ, wherezi is thez-score for the node and
µ is the mean of thez-score distribution for the entire network.

Equation (1) is derived from the original scoring function of Idekeret al.
(2002) using the approximate values ofµ andσ/

√
M for the mean and SD

of a random sample of sizeM from the entire distribution of nodez-scores.
These approximations are fairly accurate as long asM is less than about
one-fourth of the total number of nodes in the network.

The modified form of the scoring function [Equation (1)] immediately
reveals the reason for producing large subnetworks from random inputs.
About half the nodes in the network will have a positive value ofzi − µ

(assuming thez-score distribution is not too skewed). With such a large num-
ber of nodes potentially able to contribute positively to a subnetwork score,
there is a greater likelihood of generating large subnetworks from random
input.

Our first modification to the scoring function is to introduce a different
definition of corrected node score that is designed to produce far fewer nodes
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with positive corrected score. We define the new corrected node scoreCi as

Ci = zi − βµ, (2)

where the empirical parameterβ can be selected appropriately to reduce the
number of nodes with positiveCi . We have chosen to use a value ofβ such
that all nodes withp-value>0.01 have a negative value forCi , but other
choices could be equally appropriate.

In random input tests using networkR1 and algorithmA2, this modific-
ation is sufficient to prevent the formation of very large subnetworks. For
example, in 2000 random input tests using networkR1, the largest subnet-
work produced has 18 nodes, and the median and mean subnetwork size over
these tests are 2 and 2.3, respectively. However, tests on the highly connected
networkR2 using random input continued to produce large subnetworks with
hundreds of genes. We discovered that this behavior was due to promiscuous
nodes in the network, and the scoring function had to be modified to properly
account for such nodes.

The basic principle behind this modification is to recognize that for any
node in the network, the likelihood of finding a neighbor with a good (low)
p-value increases with the degree of the node. Considering a node with degree
K in a network withN nodes, one would expect to find a neighboring node
with roughly theN/K-th lowestp-value just by chance. A node adjacent to
a promiscuous node should be included in a subnetwork only if itsp-value is
lower than what is expected by chance. As each node is typically surrounded
by neighbors of varying degree, the hurdle on including a node depends
on the path taken to include that node. In order to avoid creating a scoring
function that depends on the order in which nodes are added to the subnetwork,
the above principle is implemented in the following approximate way. An
additional correction factor, which we term as the edge penalty, is calculated
a priori for each nodeVi in the network. We consider all nodesWi that are
neighbors ofVi . Given the degreeDi of each of these nodes, we compute
the averagēD and extract the(N/D̄)-th lowestp-value from the list ofNp-
values for all the nodes in the network. Thisp-value is converted to az-score
zEP
i using the inverse normal distribution function. The new definition of the

corrected node score now becomes

Ci = zi − max(βµ, zEP
i ). (3)

These corrected node scores can be calculated up front and the subnetwork
score for a groups of nodes is then given by Equation (1).

A final step is to calculate a normalized scores for a subnetwork ofM
nodes as

s = 100
S

Smax
, (4)

whereSmaxis the maximum possible value ofS given the input set ofp-values.
It is calculated by ignoring network connectivity, starting with the node with
lowestp-value, and adding nodes with sequentially higherp-values (irre-
spective of whether they are connected together in the network) until the
S-value for this group of nodes no longer increases. This normalization step
produces a scores guaranteed to lie between 0 and 100.

Using this form of the scoring function, the largest subnetwork produced in
over 2000 runs on networkR2 with random input and the algorithm described
below contains 69 nodes, and the median and mean subnetwork size over these
tests are 2 and 7.8, respectively.

Idekeret al. (2002) also proposed a scoring function for multiple biolo-
gical experiments that is used to discover subnetworks active in many or
all of these experiments. The improvements we have made to the single-
experiment scoring function cannot be directly applied to the scoring of
multiple experiments.

2.4 Heuristic algorithm
The steps in our heuristic algorithm are:

(1) Map the query genes and associatedp-values to the corresponding
nodes in the network. Assign all remaining nodes in the network a
p-value of 1. Calculate corrected node score for every node in the
network.

(2) Group nodes with positive corrected score into connected subnetworks
using a breadth-first search from every positive scoring node not yet
assigned to a subnetwork.

(3) Select a previously unselected subnetwork in decreasing order of
score. If there is no subnetwork remaining with positive score go
to Step 5.

(4) For each subnetwork selected (B), create a list of all non-positive
nodes adjacent to nodes inB. Essentially, collapse the subnetwork into
a single cluster node (VB ). Select the neighbors in decreasing order
of degree. Perform a limited depth first search (DFS) for neighboring
subnetworks that can be merged into subnetworkB. This DFS is
limited in that it only extends over a maximum ofd non-positive
nodes. If an adjacent subnetworkA is found, mergeA, B and the
non-positive nodes betweenA andB into a new subnetworkB ′. If
the score ofB ′ is greater or equal to the score ofB, then accept the
change and restart Step 3. Otherwise, reject the merge, and continue
with other neighbors ofVB . Once the limited DFS fromVB has been
exhausted, return to Step 3 and select the next subnetwork. Each time
Step 3 is restarted, nodes previously used to initiate the DFS are not
reconsidered for the DFS.

(5) The goal of the final pruning step is to try and remove nodes with
small positive individual scores that might have been included in sub-
networks in Step 2. The pruning step is performed for each subnetwork
remaining after Step 4. The nodes in a subnetwork are considered in
increasing order of score. If deleting a node would increase the score
of the new subnetwork consisting of the rest of the nodes, and still
keep the subnetwork connected, the node is deleted.

Execution time for this algorithm is dominated by Step 4, and the execution
time for this step is largely a function ofd. Both the size of the resulting
subnetwork and the execution time of the algorithm increase withd. We
used a valued = 2 for the results shown in this work, and we obtained run
times on the order of 2 min on a Compaq Alpha (XP1000) workstation. In
contrast, our implementation of the simulated annealing algorithm ran for
several hours on the large networks described earlier. An important benefit of
fast execution times is that it is possible to perform multiple permutation runs
to assess the statistical significance of the subnetwork scores we obtain. We
do this by randomly scrambling the association between nodes andp-values
and repeating the search for high-scoring subnetworks. Subnetworks found
using the originalp-value assignment must have a high-score relative to the
scores from the permutation runs.

The presence of hub nodes characteristic of scale-free networks is
addressed by incorporating the edge penalty in our scoring function. How-
ever, our method does rely on a network of high-quality interactions and the
presence of many spurious connections between genes or the absence of key
connections between genes, will adversely impact the quality of results.

Our method differs substantially from the approach of Jenssenet al. (2001)
implemented in PubGene. The main difference is, our approach tries to max-
imize a scoring function in the process of building subnetworks. In contrast,
PubGene constructs a set of subnetworks guided by user inputs and graph
properties, and the scoring is done as a post-processing step to generate a
ranked list of subnetworks.

2.5 Simulated pathway data for validation
We validated our approach using simulated and known pathway data. We
created 100 artificial ‘pathways’ to serve as a known answer by traversing
the network of relationships. Each of these pathways comprised 57 genes
of which 40 were randomly selected as input to our method. Each pathway
was used to query the tool in turn, by setting these 40 nodes to have low
p-values uniformly distributed between 0 andpmax, wherepmax was set to a
low number like 10−2 or lower. The rest of the nodes hadp-values uniformly
distributed between(0, 1). This assignment ofp-values simulates the case
of a real omics experiment where the list of important genes may contain a
pathway signal along with some genes unrelated to any pathway. We explored
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different proportions of pathway related and unrelated genes in the query gene
list by varyingpmax.

2.6 Known pathway data for validation
We used 267 pathways related primarily to signaling from BioCarta
(www.biocarta.com) as additional tests of our method. We selected a sub-
set of 219 pathways from the complete set for which we were able to assign
identifiers automatically to at least six genes. The genes on each of these path-
ways were randomly assigned a lowp-value uniformly distributed between
(0,pmax), wherepmax is a low number such as 10−3. The remaining nodes
in the network were assigned ap-value uniformly distributed between(0, 1).
It is important to note that we have not systematically extracted the relation-
ships represented in the BioCarta maps and included them in our database
of biological relationships. Hence, the tests we describe using the BioCarta
pathways partly address the question of whether our database of relation-
ships contains the information in these pathways. However, more importantly,
these tests shed light on whether our method is able to pick out a pathway
signal in a gene list containing varying numbers of genes unrelated to any
pathway.

3 RESULTS AND DISCUSSION
We assessed the performance of our algorithm by examining how the
best subnetwork found compares to what we expect (the artificial and
BioCarta pathways). Our experiments also provide guidance as to the
sensitivity and specificity of the technique. The quality of the omics
data has to be reasonable for the tool to infer the correct pathway,
i.e. the omic technology has to significantly highlight genes on the
pathway.

Our first set of tests were for the case of random input with uni-
formly distributed (between 0 and 1)p-values for the nodes. The
boxes labeled uniform in Figure 1 show a scatter plot of the size of
the resulting network versus their score. In this set of 100 test cases,
the score of the best subnetwork never exceeded 51.9 and the 95th
percentile of the score distribution is 41.6.

We evaluated 100 artificially generated pathways of size 57 (as
described in the Data and methods section), randomly selecting 40
nodes in each case to assign a uniformly distributedp-value between
0 andpmax. We explored three different values forpmax: 10−4, 10−3

and 10−2. The top subnetwork for each of the 100 artificial pathways
for pmax = 10−4 is represented by a cross in Figure 1. The subnet-
work scores were between 70 and 100 and the size was between 34
and 50. These scores were clearly separated from the background
distribution (squares in the figure). Similar (but declining) separa-
tion was obtained forpmax = 10−3 and 10−2. At pmax = 10−2,
there was some intermixing of the distributions, nevertheless, using
a score threshold of 41.6, 80% of the tests yielded a subnetwork
with a significant score. Given the∼10 000 nodes in the network,
∼10 nodes from the background uniform distribution havep-values
<10−3, and∼100 havep-values<10−2. Thus, when the simulated
pathway nodes are assignedp-values withpmax = 10−3, ∼10 unre-
lated nodes havep-values in the same range as the simulated pathway
nodes. Atpmax = 10−2, the number of unrelated nodes withp-values
in the same range as simulated pathway nodes increases to∼100.
In summary, pathways of size 40 can be distinguished with vary-
ing difficulty dependent upon the number of unrelated genes in the
query set.

While the algorithm successfully extracts a subnetwork with a low-
probability of a false positive, we still need to show that this network
is similar enough to the test pathway. This can be established via
the number of missing nodes (in query list but not in subnetwork)

Fig. 1. The score (0–100) of the discovered subnetwork is plotted against its
size measured in number of nodes. The legends show thepmax used for the
pathway nodes. The boxes labeled uniform represent the background case
where all the nodes hadp-values drawn from the uniform distribution on
[0,1]. All the input gene lists were of size 40.

Fig. 2. The specificity of the technique versus sensitivity for 219 BioCarta
pathways. The pathways were binned according to the number of identifiable
proteins in the pathway. Each symbol represents thepmaxvalue used to assign
p-values to the genes in a set of BioCarta pathways. The successive points
connected by lines represent different BioCarta pathway size ranges. The
five size ranges used were 6–10, 11–15, 16–20, 21–25 and 26+. The number
of pathways in each bin ranged from 25 to 61. The vertical and horizontal
dashes represent the 95% confidence interval on the specificity and sensitivity
estimates. The highest point for eachpmax is the largest pathway bin.

and extra nodes (found by the algorithm but not in query list). For
pmax = 10−4, very few nodes are missing for any pathway, but up
to 10 extra nodes are found. Even for pathways seeded withpmax =
10−3, the top network found fits quite well with the initial gene list.
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Fig. 3. BioCarta TNF/stress related signaling pathway rediscovered usingpmax = 10−4. None of the pathway genes was missed and no extra nodes were
added to the subnetwork found.

For p = 10−2, the top network rarely misses>20 of the 40 nodes
in the gene list and it includes up to∼20 additional nodes. In such
cases, it may not be trivial to extract the original pathway from the
top subnetwork. Hopefully, the biology may still be inferred from
the subnetwork.

The previous test cases demonstrated that the scoring function and
heuristic algorithm are successful in extracting the relevant path-
way when the query gene list contains genes mostly related to a
coordinated process (pathway) with moderate numbers of unrelated
genes.

To overcome any limitations in our testing based on artificially
generated pathways, we also tested the tool using BioCarta pathway
input as described above. These pathways ranged in size from 6 to
70 proteins. Figure 2 displays the quality of the retrieved subnetwork
using the BioCarta-based gene lists as input. We used measures of
Sensitivity (related to false negatives) and Specificity (related to false
positives). Sensitivity is defined as the percentage of the input that is
correctly identified in the resulting subnetwork. Specificity is defined
as the percentage of the subnetwork predicted that is correct (i.e. was
contained in the input).

Figure 2 shows the dependence of sensitivity and specificity on two
important parameters: the number of unrelated genes in the query
set with lowp-values (related topmax), and the size of the BioCarta
pathway. Data for differentpmax values are plotted with different
symbols and each point on the curve is not a different threshold as in
a receiver operating characteristic (ROC), but represents the average
size of the pathway. From the three curves, it is apparent that the
seeding of the pathways at higherpmax decreases both the sensitivity
and specificity of the technique. This is expected as at higherpmax

the pathway signal is confounded by a substantial number of genes
unrelated to the pathway. For example, at apmax of 10−2, there are
∼100 random, unrelated nodes withp-values in the same range as
the BioCarta nodes. For pathways seeded at 10−3 or better, the sens-
itivity is over 70%, regardless of pathway size. This indicates that if
the omics data clearly delineates most of the genes on the pathway,

it can be recovered from the network even if the exact pathway is not
previously known. This augurs well for recovering novel pathways
that are not published previously. The specificity is also>70% for
pathways seeded atpmax = 10−3. Even with the very large num-
ber of unrelated nodes forpmax = 10−2, sensitivity and specificity
are,∼60% for the larger pathways, dropping to∼40% specificity
and 30% sensitivity only for the smallest pathways. Specificity and
sensitivity both decline with decreasing pathway size. For smaller
pathway sizes there is more variation in sensitivity (i.e. larger 95%
confidence intervals).

We also used the BioCarta inputs withpmax = 10−4 to test the
original scoring function for a single experiment proposed by Ideker
et al. (2002). Using our algorithm (A2) as well as the simple greedy
algorithm (A3), we obtained subnetworks containing∼3000 nodes.
These subnetworks typically contained all the BioCarta nodes (100%
sensitivity), but the specificity is∼0. As the algorithm grew the
subnetworks to this size, the score increases monotonically demon-
strating the fundamental problem with their scoring function. We
believe our improvements to the scoring function are necessary to
obtain meaningful results on large networks.

The focus of our testing has been to determine whether our method
can pick out a single set of interrelated genes from a query set contain-
ing varying numbers of unrelated genes. In these tests, the method
usually returned a single high-scoring subnetwork. Pathway sets such
as BioCarta typically have a lot of overlap between them. A test with
a query set containing two BioCarta pathways would return a single
subnetwork if even a single gene was common to the two pathways.
On the other hand, a query set that contains two completely separate
sets of interrelated genes would produce two distinct subnetworks.
A detailed evaluation of inputs of this type is beyond the scope of
the present work.

Figure 3 shows an example pathway recovered when the genes
in the TNF/Stress related signaling pathway from BioCarta are used
as input withpmax = 10−4. The layout is generated using the dot
program within the Graphviz suite AT&T Labs (www.graphviz.org).
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The input gene list contained 22 genes and the best subnetwork found
contained all these genes and no extra nodes were added relative to
the input set. Thus, both sensitivity and specificity are a 100% for
this example.

4 CONCLUSIONS
A number of platform technologies including transcriptional pro-
filing, proteomics, literature searches, genetic association, and
high-throughput screening produce sets of genes or proteins that
are perhaps linked by an underlying pathway or biological relation-
ship. Interpreting gene lists from omic technologies continues to
be a challenging task. Databases of biological relationships between
thousands of proteins can help in deciphering such data. We construc-
ted a large network of biological relationships between genes, and
searched this network for subnetworks consisting largely of inter-
esting genes from the omics experiment. The subset of genes in
the subnetwork along with the web of relationships between them
will provide insight into underlying pathways. Finding a subnet-
work with maximal score (one that includes mostly lowp-value
nodes) is an NP-hard problem. Idekeret al. (2002) proposed a scoring
function and simulated annealing algorithm to tackle this problem.
However, we did not obtain very good results using this method
on the large networks of interest to us. We present a more efficient
heuristic algorithm and improvements to the scoring function that
are necessary to obtain meaningful results on large networks. We
demonstrate that our method works well on both simulated data and
data from known pathways. Extrapolating the result, we feel that
this algorithm may also shed light on unknown pathways. This is,
of course, dependent on the known network including the biological
pairwise relationships underlying the unknown pathway. Adopting
a systematic view of cellular processes also enables study of cross
talk between canonical pathways.

Additional improvements to our scoring function may be possible
by exploiting network properties such as edge weights representing

our confidence in a particular relationship. Interpreting these net-
works biologically in light of what would be called pathways is
another challenging problem. Can they be laid out such that they are
more recognizable as biological pathways? Regardless, we believe
that network-based approaches will emerge as a preferred way to
perform biological interpretation of gene lists derived from omics
experiments.
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