
Graph Kernels for Chemical Informatics

Liva Ralaivola a,b, Sanjay J. Swamidass a,b, Hiroto Saigo a,b, and

Pierre Baldi a,b,∗

aSchool of Information and Computer Science, University of California, Irvine CA
92697-3425

bInstitute for Genomics and Bioinformatics, University of California, Irvine CA
92697-3425

Abstract

Increased availability of large repositories of chemical compounds is creating new
challenges and opportunities for the application of machine learning methods to
problems in computational chemistry and chemical informatics. Because chemical
compounds are often represented by the graph of their covalent bonds, machine
learning methods in this domain must be capable of processing graphical structures
with variable size. Here we first briefly review the literature on graph kernels and
then introduce three new kernels (Tanimoto, MinMax, Hybrid) based on the idea
of molecular fingerprints and counting labeled paths of depth up to d using depth-
first search from each possible vertex. The kernels are applied to three classification
problems to predict mutagenicity, toxicity, and anti-cancer activity on three publicly
available data sets. The kernels achieve performances at least comparable, and most
often superior, to those previously reported in the literature reaching accuracies of
91.5% on the Mutag dataset, 65-67% on the PTC (Predictive Toxicology Challenge)
dataset, and 72% on the NCI (National Cancer Institute) dataset. Properties and
tradeoffs of these kernels, as well as other proposed kernels that leverage 1D or 3D
representations of molecules, are briefly discussed.

Key words: kernel methods, graph kernels, convolution kernels, spectral kernels,
computational chemistry, chemical informatics, toxicity, activity, drug design,
recursive neural networks

∗ Corresponding author.
Email address: pfbaldi@ics.uci.edu (Pierre Baldi).
URL: www.ics.uci.edu/ pfbaldi (Pierre Baldi).

Preprint submitted to Elsevier Science 6 June 2005

1 Introduction: Processing Structured Data

Many problems in artificial intelligence, data mining, and machine learning
involve variable-size structured data, such as strings and sequences, trees, and
directed or undirected graphs. These data are to be contrasted with the stan-
dard, fixed-length, vectorial data found also in many applications. Examples
of structured data include: (1) text and documents in information retrieval; (2)
DNA/RNA/protein sequences and evolutionary trees in bioinformatics; and
(3) molecular structures in chemical informatics. Clearly the structures present
in structured data are essential for the more-or-less automated extraction of
meaning, patterns, and regularities using machine learning methods. Hence, it
is important to develop general inferential methods that can handle structured
data of variable sizes and dimensions. Here we focus on graph-structured data
and the development and application of kernel methods for graph-structured
data, with a particular emphasis on chemical informatics and the prediction
of the toxicity or biological activity of chemicals.

Broadly speaking, several classes of general machine learning methods have
been developed to process structured data, including molecular data. A some-
what arbitrary and non-exhaustive classification includes: (1) inductive logic
programming (ILP); (2) genetic algorithms, and other evolutionary methods;
(3) graphical models; (4) recursive neural networks; and (5) kernel methods.

The basic idea behind ILP [Muggleton, 1992] is to represent a domain and the
corresponding relationships between data items in terms of first-order logic
predicates and to learn logic theories from data via a process of induction, i.e.
an ordered search of the space of possible hypotheses. ILP has been applied
with some success to chemistry problems, in particular to QSAR [King et al.,
1995] and mutagenicity prediction [Muggleton, 1992, Srinivasan et al., 1996]
(see also Chou and Fasman [1978] for a related early application to protein
secondary structure prediction). The ILP approach has several attractive fea-
tures: (1) it can handle symbolic data in a natural way; (2) background knowl-
edge can easily be incorporated into the rules; and (3) the resulting theory and
set of rules are relatively easy to understand. The main drawback, however, is
the lack of efficiency. Even on current computers, the induction/learning phase
is inherently hard because the space of possible hypotheses/theories on realis-
tic datasets is extremely large. Stochastic grammars [Sakakibara et al., 1994]
can be viewed as a family of related approaches, also related to graphical mod-
els. The simplest stochastic grammars, e.g. stochastic regular grammars and
the related hidden Markov models, come with efficient learning algorithms.
However, more complex stochastic grammars suffer from computational com-
plexity issues similar to ILP methods.

The basic idea behind evolutionary methods in general, and genetic algorithms

2

[Koza, 1994] in particular, is to evolve populations of structures, or programs
specifying structures, using operators that simulate biological mutations and
recombinations, together with a filtering process that simulates natural selec-
tion through a computational fitness function which depends on the problem
being addressed. These approaches require being able to build representations
and genetic operators that are well suited for a given problen. More funda-
mentally perhaps these methods suffer also from computational complexity
limitations since having to simulate the slow evolution of large populations
over a large number of generations is inherently a computationally intensive
process.

The graphical model approach [Pearl, 1988, Lauritzen, 1996, Heckerman, 1998,
Frey, 1998] is a probabilistic approach where random variables are associated
with the nodes of a graph and where the connectivity of the graph is directly
related to Markovian independence assumptions between the variables. With
structured data, the graph typically consists of inputs nodes directly reflecting
the structure (sequence, graph, etc) of the input data, hidden nodes associated
with hidden dynamics and context propagation, and output nodes associated
with, for instance, classification or regression tasks. Both directed (Bayesian
networks) and undirected (random Markov fields) formalisms can be used,
or even combined. Graphical models are parameterized by local conditional
distributions of a node variable given its neighbor variables – for instance
a node variable given its parent variables in the case of Bayesian networks.
In order to process data of variable size and format, particular assumptions
must be made. These come typically in the form of stationarity or translation-
invariance assumptions in regularly structured graphs (e.g. dynamic Bayesian
networks), such as linear chains, trees with bounded degree, and lattices. Major
challenges in the graphical model approach are the choice of suitable graphs
and random variables and the propagation of information and learning which,
in complex models, can be computationally demanding. Graphical models,
such as Hidden Markov Models, have been very successful in bioinformatics,
for instance, in order to model biological sequences [Baldi and Brunak, 2001].
Their application to molecular structures, however, has been more limited
in part because of the computational challenges. An example of application
of graphical models to the prediction of protein side-chains can be found in
Yanover and Weiss [2003].

The recursive neural network (RNN) approach [Baldi and Chauvin, 1996,
Goller and Kuchler, 1996, Sperduti and Starita, 1997, LeCun et al., 1998,
Frasconi et al., 1998, Micheli et al., 2001, 2003, Baldi and Pollastri, 2003] can
be viewed as a variation of the graphical model approach with Bayesian net-
works. The key difference is that relationships between graph variables are de-
terministic and parameterized by neural networks. Stationarity assumptions,
also known as weight-sharing, lead to recurrent (in time) or more generally
to recursive (in space and time) neural networks. The directed acyclic nature

3

of the underlying graph allows error gradients to be back-propagated. The
loss of semantic power and flexibility imposed by the deterministic relation-
ships is compensated by a considerable increase in propagation and learning
speeds, although gradient descent in RNNs requires often some delicate tun-
ing. Note that while the guts of a RNN are deterministic, the overall model
can remain probabilistic since, for instance, in a classification task the ac-
tivity of the (normalized exponential) output units can be interpreted as
class-membership probabilities. Indeed, RNNs can be viewed formally as a
limiting case of Bayesian networks when the local density functions approach
Kronecker or Dirac delta functions [Baldi and Rosen-Zvi, 2005]. The RNN
approach has been successfully applied to problems in protein structure pre-
diction [Pollastri et al., 2001, Baldi and Pollastri, 2003] and some problems in
computational chemistry [Micheli et al., 2001, 2003]. The major challenges in
the recursive neural network approach, shared with graphical models, are first
the design of the underlying acyclic graph and then the choice of the structure
and complexity of the neural networks used to parameterize the relationships
between node variables. In particular, when RNNs are applied to molecular
data represented by graphs of covalent bonds, important issues that need to
be resolved are the acyclic orientation of the bonds and possibly the selection
of a center for each molecule. These operations can be done but introduce
some degree of arbitrariness due to the lack of a canonical solution.

Finally, in recent years, kernel methods have emerged as an important class
of machine learning methods suitable for variable-size structured data [Cris-
tianini and Shawe-Taylor, 2000, Schölkopf and Smola, 2002]. Given two input
objects u and v, such as two molecules, the basic idea behind kernel meth-
ods is, to construct a kernel k(u,v) which measures the similarity between
u and v. This kernel can also be viewed as an inner product of the form
k(u,v) = 〈φ(u), φ(v)〉 in an embedding feature space determined by the map
φ which needs not be given explicitly. Regression, classification, and other
tasks can then be tackled using linear (convex) methods based solely on inner
products computed via the kernel in the embedding space, rather than the
original input space. The challenge for kernel methods is to build or learn
suitable kernels for a given task. Indeed, neural networks can be viewed as
a special kind of kernel method where kernel parameters (associated with
the feature embedding implemented by the lower layers) and linear weights
(implemented by the output layer) are learnt simultaneously. Applications of
kernel methods to graphical objects such as molecular bond graphs require the
construction of graph kernels, that is functions that are capable of measuring
similarity between graphs with labeled nodes and edges.

In the next sections, we first review kernel methods and some of the existing
graph kernels, including graph kernels for chemical applications, that have
been developed in the literature [Gärtner, 2003, Gärtner et al., 2003, Kashima
et al., 2003]. We then develop new graph kernels for computational chem-

4

separating surfaceone possible separating hyperplaneno separating hyperplane

input space Xfeature space H
φ

input space X

Fig. 1. The kernel approach for classification. Left: non-linearly separable input
provided by black and white dots. Middle: perfect or approximate linear-separability
can be achieved in feature space via the mapping φ. Right: linear decision surface
in feature space defines a complex decision surface in input space.

istry applications based on molecular fingerprinting techniques and depth-first
searches. We apply these kernels to the problem of predicting toxicity, muta-
genicity, and cancer rescue activity on different data sets. Additional kernels
and their tradeoffs are presented and discussed at the end.

2 Graph Kernels

2.1 Kernel Methods

Although the basic idea behind kernel methods is quite old (e.g. Kimeldorf
and Wahba [1971]), over the last decade it has regained considerable interest
spurred by the work of Boser et al. [1992] and Cortes and Vapnik [1995]
on support vector machines. Many new kernel methods have been developed
and/or successfully applied to challenging problems in recent years [Cristianini
and Shawe-Taylor, 2000, Schölkopf and Smola, 2002].

In essence, kernel methods handle non-linear complex tasks using linear meth-
ods in a new space (Figure 1). To fix the ideas, consider a classification prob-
lem with training set S = {(u1, y1), . . . , (u�, y�)}, (ui, yi) ∈ X ×Y , i = 1, . . . , �,
where X is an inner-product space (e.g. R

d) with inner product denoted by
〈·, ·〉, and Y = {−1, +1}. In this setting, learning is the task of building a
function f ∈ YX from the training set S associating a class y ∈ Y to a pattern
u ∈ X such that the generalization error of f is as low as possible (for a more
formal presentation of kernels and statistical learning theory see, for instance,
[Vapnik, 1998, Herbrich, 2002, Schölkopf and Smola, 2002]).

A simple functional form for f is the hyperplane: f(u) = sign (〈w,u〉 + b),
where sign (·) is the function returning the sign of its argument. The decision
function f outputs a prediction depending on which side of the hyperplane
〈w,u〉 + b = 0 the input pattern u lies. Under reasonable assumptions dis-

5

cussed in the references (e.g. maximum margin classification), solving for the
“best” hyperplane leads to a convex quadratic optimization problem such that
the solution vector w is a (usually sparse) linear combination of the training
vectors: w =

∑�
i=1 αiyiui, for some αi ∈ R

+, i = 1, . . . , � (e.g. Müller et al.
[2001]). More generally, this is known as the representer theorem [Kimeldorf
and Wahba, 1971, Schölkopf et al., 2000]. Thus the linear classifier f can be
rewritten as

f(u) = sign

(
�∑

i=1

αiyi〈ui,u〉+ b

)
(1)

However, for complex classification problems (Figure 1), the set of all possible
linear decision surfaces may not be rich enough to provide good classification,
no matter what the values of the parameters w ∈ X and b ∈ R are. The pur-
pose of the kernel trick [Aizerman et al., 1964, Boser et al., 1992], is precisely
to overcome this limitation by applying a linear approach to the transformed
data φ(u1), . . . , φ(ul) rather than the raw data. Here φ denotes an embedding
function from the input space X to a feature space H, equipped with a dot
product. Using the representer theorem, the separating function must now be
of the form:

f(u) = sign

(
�∑

i=1

αiyi〈φ(ui), φ(u)〉+ b

)
(2)

The key ingredient in the kernel approach is to replace the dot product in
feature space with a kernel k(u,v) = 〈φ(u), φ(v)〉 using the definition of
positive definite kernels, Gram matrices, and Mercer’s theorem.

Definition 1 (Positive definite kernel) Let X be a nonempty space. Let
k ∈ R

X×X be a continuous and symmetric function. k is a positive defi-
nite kernel iff for all � ∈ N, for all u1, . . . ,u� ∈ R, the square � × � ma-
trix K = (k(ui,uj))1≤i,j≤� is positive semi-definite, i.e. all its eigenvalues are
nonnegative.

For a given set Su = {u1, . . . ,u�}, K is called the Gram matrix of k with
respect to Su. Positive definite kernels are also referred to as Mercer kernels.

Theorem 2 (Mercer’s property) For any positive definite kernel function
k ∈ R

X×X , there exists a mapping φ ∈ HX into the feature space H equipped
with the inner product 〈·, ·〉H, such that:

∀u,v ∈ X k(u,v) = 〈φ(u), φ(v)〉H

The kernel approach consists in replacing all inner products in Equation 2
and all related expressions for computing the real coefficients αi and b, by a

6

Mercer kernel k. For any input pattern u, the corresponding decision function
f is given by:

f(u) = sign

(
�∑

i=1

αiyik(ui,u) + b

)
(3)

The kernel approach is equivalent to transforming the input patterns u1, . . . ,u�

into the corresponding vectors φ(u1), . . . , φ(u�) ∈ H through the mapping
φ ∈ HX (cf. Mercer’s property, Theorem 2), and to use hyperplanes in the fea-
ture space H for classification, as illustrated in Figure 1. While the natural dot
product 〈u,v〉 =

∑d
i=1 uivi of R

d is indeed a Mercer kernel, other well-known
Mercer kernels, such as polynomial and gaussian kernels, usually correspond
to nonlinear mappings φ into high-dimensional (even infinite-dimensional) fea-
ture spaces H. The Gram matrix implicitly defines the geometry of the em-
bedding space and allows the use of linear techniques in feature space to derive
complex decision surfaces in input space X . The same ideas can be applied be-
yond classification problems to, for instance, regression or unsupervised tasks
(e.g. kernel PCA). In fact, any linear algorithm that relies exclusively on dot
products between inputs can easily be “kernelized” [Friess et al., 1998, Mika
et al., 1999, Müller et al., 2001, Bach and Jordan, 2002].

In summary, the application of kernel methods require two independent mod-
ules: (1) a module for computing the kernel and the Gram matrix; and (2) a
module for computing the optimal manifold in feature space (e.g. a hyperplane
in binary classification problems). Since the second module is usually readily
available “off-the-shelf”, the main effort for processing structured, variable-size
data ought to go into the design of suitable kernel functions to assess similar-
ity between input patterns. The design of efficient graph kernels in chemistry
is an important step towards addressing the difficult problem – particularly
in organic chemistry – of classifying compounds according to their physical,
chemical, or biological properties. Thus we turn now to the design of efficient
kernels for molecular structures represented by labeled, undirected, graph of
bonds, with labels assigned to both nodes (atoms) and edges (bond type).

2.2 Convolution and Spectral Kernels

All the graph kernels discussed in this paper are special cases of, or related to,
convolution/spectral kernels. Given two kernels k1 and k2 over the same set
of objects, new kernels can be built using several operations, including convex
linear combinations and convolutions. The convolution of k1 and k2 is a new
kernel k with the form

7

d

s
s

s

s
ss

O H

H

H

H

O

CC H

HO

s
s s

s s
s

s

s
s

d
d

s
s

s

H

C C

O

H

O

H

H

H

H

s

ss
s

d
d

C-s-H-s-C
O

C-s-C-d-O

CC

Fig. 2. Left: molecule represented as an undirected labeled graph. Vertex labels
correspond to atom symbols and edge lables correspond to bond type (e.g. ‘s’ for
single bond, ‘d’ for double bond). Middle: graph orientation. Right: example of two
paths that may be used by generic graph kernels. The path C-s-H-s-C defines a
rather irrelevant feature, whereas the path path C-s-C-d-O is more informative.

k1 � k2(u,v) =
∑

(u1,u2)=u;(v1,v2)=v

k1(u1,v1)k2(u2,v2) (4)

where u = (u1,u2) denotes a partition of u into two substructures u1 and
u2 [Haussler, 1999, Schölkopf and Smola, 2002]. The nature of the substruc-
tures depends on the domain of course and could be, for instance, subsets or
substrings in the case of kernels defined over sets or strings. Spectral kernels
can be viewed as a special case of convolution kernels based on feature vec-
tors derived by counting substructures contained in a given structure. In the
case of graphs, the substructures are subgraphs. Different kernels can be de-
rived by considering different classes of subgraphs (e.g. directed/undirected, la-
beled/unlabeled, paths/trees/cycles/subgraphs, deterministic/random walks,
bounded/unbounded size) and different ways of listing and counting them (e.g.
binary indicators/number of occurrences, depth-first/breadth-first). Due to
the combinatorial explosion associated with variable-size substructures, space
and time complexity consideration for computing convolution/spectral kernels
are important.

Within the general framework of convolution kernels, two main approaches
have been proposed for the design of graph kernels: (1) graph kernels based
on powers of adjacency matrices [Gärtner, 2003, Gärtner et al., 2003]; and
(2) marginalized graph kernels [Kashima et al., 2003]. For completeness, we
review both approaches below. However, when applied to real-world chemical
compound problems, these approaches are faced with several challenges such
as the problem of orienting the unoriented bonds (Figure 2) and the com-
putational cost involved in evaluating the kernel function. In addition, these
kernels involve parameters that cannot be set easily, such as the parameters
of the graph-product kernel of Gärtner et al. [2003].

8

2.3 Notation

An undirected graph G = (V, E) is defined by a finite set of vertices V =
{v1, . . . , vn} and a finite set of edges E = {e1, . . . , em}. In the chemistry ap-
plications, we consider vertex- and edge-labeled graphs with two finite sets of
labels A = {la1, . . . , lap} for the atoms and B = {lb1, . . . , lbq} for the bonds. The
m ×m adjacency matrix E of a graph G is such that its (i, j)-coefficient Eij

is equal to 1 if and only if there is an edge between vertices vi and vj . A walk
h = [h1, . . . , hs+1] of length s is a sequence of integers in the range 1, . . . , n
such that there exists an edge between each pair of vertices (vhi

, vhi+1
). The

label l(h) of a walk h is the string obtained by concatenating the labels of
all the vertices and edges encountered along the walk. A path is a self avoid-
ing walk, i.e. a walk that never goes through the same edge twice. A path,
however, can visit a vertex more than once and therefore can contain cycles.

2.4 Graph Kernels Based on Powers of Adjacency Matrices

Here we describe two sub-classes of graph kernels, proposed in Gärtner et al.
[2003], that are derived from the adjacency matrix and exploit label informa-
tion to various degrees.

2.4.1 Kernels Based on Labeled Pairs

For a graph G, let the vertex-label matrix L be the p×n matrix such that its
(r, i)-coefficient Lri is equal to 1 if and only if the label of vertex i is equal to
lar .

The labeled-pair graph kernels described in Gärtner [2003] are defined by:

k(G1, G2) =

〈
L1

(∞∑
i=0

λiE
i
1

)
L′

1, L2

(∞∑
i=0

λiE
i
2

)
L′

2

〉
(5)

where M ′ denotes the transpose of M . The inner product 〈·, ·〉 is the Frobenius
matrix product. The Frobenius product of two m × n matrices A and B is
defined by the trace tr (A∗B), where A∗ = Ā′ is the conjugate transpose of
A. These kernels are called labeled-pair kernels because, given two graphs G1

and G2, they count the number of walks in G1 and G2 of the same length and
with the same labels on their first and last nodes. Within this family, three
specific kernels have been proposed that can be specified in terms of the real
coefficients λi and the sum

∑∞
i=0 λiE

i described below:

9

(1) exponential kernel:
∞∑
i=0

λiE
i =

∞∑
i=0

(γE)i

i!

(2) truncated power series kernel:

∞∑
i=0

λiE
i =

p∑
i=0

(γE)i

(3) convergent geometric kernel:

∞∑
i=0

λiE
i = (1− γE)−1

when the infinite power series is convergent (p =∞).

The problem with kernels based on labeled pairs is that the feature space as-
sociated with such kernels is of dimension |A|2, i.e. the square of the number
of different labels. Hence, if the number of labels for the atoms is low, the
expressivity of the kernel is limited and may not be able to take into account
important features of chemical compounds. Moreover, these kernels are derived
from counting walks of the same length having the same start and end points,
without giving any consideration to the sequence of nodes traversed by the
walks. Clearly the actual sequence of atoms and bonds traversed along a walk
often contains relevant information. Finally, these kernels give equal impor-
tance to uninformative (Figure 2) and possibly noisy and/or self-intersecting
walks. To overcome some of these limitations a richer class of kernels is pro-
posed in Gärtner et al. [2003]. These kernels rely also on adjacency matrices
but use shared labeled sequences to compute graph similarity.

2.4.2 Kernels Based on Sequences of Labels (Product Graph Kernels)

To count shared labeled sequences, product graph kernels use an elegant,
polynomial-time (with respect to the size of the graphs), procedure. This pro-
cedure is based on the direct graph product of two graphs [Gärtner et al.,
2003].

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex- and edge-labeled graphs.
The direct graph product G× = (V×, E×) of G1 and G2 is defined as:

V× = {(v1, v2) ∈ V1 × V2 : (label(v1) = label(v2))}
E× = {((u1, u2), (v1, v2)) ∈ V× × V× : (u1, v1) ∈ E1
∧ (u2, v2) ∈ E2 ∧ (label(u1, v1) = label(u2, v2))}

and a vertex (edge) in G× is assigned the same label as the corresponding
vertices (edges) in G1 and G2.

10

Given two graphs G1 and G2, the graph product kernel k× is defined by:

k×(G1, G2) =
|V×|∑
i,j=1

[∞∑
n=0

λnEn
×

]
ij

(6)

for a suitable choice of λ0, λ1, λ2, This kernel corresponds to a weighted
sum of the number of shared labeled sequences in the graphs G1 and G2.
Note that the exponential, truncated power series, and convergent geometric
kernels described in the previous sections are special cases of product graph
kernels. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the product graph
has O(|V1||V2|) vertices and O(|E1||E2|) edges. To compute the product graph
kernel requires O(|V×|3) steps since it is sufficient to compute the eigenvalues
of E×, which takes O(|V×|3) steps, to efficiently evaluate its powers.

2.5 Marginalized Graph Kernels

Marginalized graph kernels are another class of related graph kernels derived as
a a generalization of marginalized sequence kernels [Tsuda et al., 2002]. Here,
again, the similarity between two graphs is computed with respect to the
number of labeled walks they share. Unlike the case of product graph kernels,
marginalized kernels use Markov random walks on the underlying graph. First-
order Markov walks are described by a transition probability matrix pij , where
pij is the probability of moving from vertex vi to vertex vj, and the initial
probability vector pi [Kashima et al., 2003].

The general form for these kernels is:

km(G1, G2) =
∞∑
i=1

∑
h1=[h1

1,...,h1
i]

h2=[h2
1,...,h2

i]

klabel(l1(h
1), l2(h

2))p(h1|G1)p(h2|G2)

where lg(h
g) is the label of random walk hg with respect to graph Gg, klabel is

a specific kernel on labels (i.e. on strings), and p(hg|Gg) is the probability of
generating walk hg from Gg given the transition parameters pij and the initial
probabilities pi.

More recently, there have been attempts to combine random walks and graph
products [Mahé et al., 2004]. To computer these kernels, Kashima et al. [2003]
propose a two-step approach consisting of an iterative procedure followed
by the solution of a corresponding system of linear equations. In addition,
these authors derive a sufficient condition on klabel to ensure finiteness of the
marginalized kernel value. Marginalized kernels have been further enhanced
to reduce computational costs by increasing the specificity of the vertex la-
bels and thus reducing the number of common walks between two graphs. In

11

addition, the Markov process driving the generation of random walks [Mahé
et al., 2004] can be modified in order to remove “totters”, i.e. irrelevant loops
resulting from the orientation of the bonds. Irrelvent paths, such as C-H-C in
Figure 2 can be avoided by, for instance, using a second-order Markov chain
that assigns 0 probability to such short loops. In spite of these improvements,
the computation of these kernels requires an iterative procedure that remains
computationally expensive. Furthermore, higher-order Markov random walk
models require more complex sets of parameters that need to be determined.

2.6 Other Graph Kernels

There are several other classes of graphs kernels, such as diffusion kernels
[Kondor and Lafferty, 2002]. Diffusion kernels, however, do not consider graph
instances, but rather instances that are vertices of a space whose structure is
described by a graph. Thus in general the problems that can be tackled with
diffusion kernels are different from those considered here (see, for example,
Vert and Kanehisa [2003]).

Tree kernels [Collins and Duffy, 2002, Vert, 2002, Vishwanathan and Smola,
2003] have also been studied in the literature. The central idea used to define
this class of kernels is to count shared subtrees between two graphs. String
kernels [Leslie et al., 2003, Lodhi et al., 2000] based on noncontiguous sub-
strings can also be viewed as a particular case of tree kernels [Vishwanathan
and Smola, 2003].

Recently, Horváth et al. [2004] have proposed cyclic pattern kernels, derived
by counting common occurrences of cycles and trees between two graphs. Al-
though they have demonstrated the applicability of cyclic pattern kernels on a
chemical classification problem, these kernels do not take directly into account
the important information provided by simple walks/paths.

Finally, Fisher kernels [Jaakkola and Haussler, 1998] use a probabilistic gen-
erative model of the training objects to build a fixed-length feature vector
based on the derivatives of the likelihood with respect to the parameters of
the generative model. The Fisher matrix, or some approximation thereof, is
then used to compute the kernel. While the idea of Fisher kernels is very gen-
eral, deriving suitable probabilistic generative models for graphs in general,
and molecular compounds in particular, remains a challenging task. It is clear,
however, that simple generative tree models could be tested.

12

3 Convolution Kernels for Chemistry

In this section, we develop classes of graph kernels that can be viewed as
spectral kernels derived by counting and comparing walks in the underlying
graphs. To circumvent the limitations posed by other graph kernels and ad-
dress problems of molecular classification, we propose to use and extend the
common technique of molecular fingerprinting [Flower, 1998, Raymond and
Willett, 2001] used by chemists to build new feature vector representations of
molecules. What differentiates our approach from the kernels in the previous
section are the types of feature vectors we derive and how similarity between
feature vectors is computed. The kernels we derive can be computed efficiently
and leverage the peculiar properties of small-molecule graphs in organic chem-
istry. In particular these graphs are fairly small both in terms of the number
of vertices and the number of edges and they are highly constrained by the
laws of chemistry. These graphs have at most a few dozen vertices and the
average degree is typically only slightly above two.

3.1 Molecular Fingerprinting

Traditional fingerprints are bit-vectors of a given size l, typically taken in the
range of 100-1,000 (usually l = 512 or 1024). Given a molecule M having
n atoms and m bonds, building a corresponding fingerprint requires start-
ing depth-first search explorations from each atom in the molecule. Thus the
substructures being considered are labeled paths, which may include labeled
cycles. A hash value v is computed for each path described by the sequence of
atoms and bonds visited (e.g. C-s-C-d-O, see Figure 2). For each such path, v
is used to initialize a random number generator and b integers are produced
(typically b = 1 or b = 4). The b integers are reduced modulo l and the
corresponding bits are set to one in the fingerprint. If a bit in the nascent
fingerprint is set to one by a path, it is left unchanged by all the other paths
(i.e. “1 + 1 = 1” in case of a clash).

A very attractive feature of these bit vectors is that if the maximal path
length d is set to +∞, i.e. if we want to extract all the paths starting from
all the atoms of a molecule, the complexity of the procedure is only O(nm) if
we do not allow path emanating from a vertex to share edges once they have
diverged (see cases 1 and 2 in Section 3.2). In practice, d is often set to a lower
value, typically in the range of eight to ten. Moreover, since fingerprinting is
commonly used by chemists, typical values for l, b, and d are readily available
together, if needed, with additional information, such as irrelevant paths that
can be discarded. Lastly, a growing number of chemical databases already
include some kind of fingerprint field in their tables, although standards have

13

B

E

C

A

D

Fig. 3. Example of simple graph containing a loop used to illustrate various options
in the depth first search extraction of paths of depth d = 4 (see text).

not yet emerged.

3.2 Depth-First Search Implementation

In a tree, starting from a fixed node A, depth first search exploration of depth
d yields a list of all the paths of length d emanating from that node. However,
because molecular graphs contain cycles, there can be different implementa-
tions of the depth-first seach leading to different sets of paths. Variations arise
depending on whether cycles are allowed or not in a given path and whether
two different paths, emanating from the same node, are allowed to share any
edges after the first point of divergence from each other. The four possible
resulting variations are illustrated using the graph of Figure 3 starting from
node A with the ordering induced by alphabetic ordering and depth up to
d = 4.

(1) DFS with no cycles:
• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-E

14

• A-C
• Note that A-B-D-C-A is not allowed because it contains a cycle, and

A-C-D is not allowed because C-D has already been traversed.
(2) DFS with cycles:
• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-C-A (cycles are OK)
• A-B-D-E
• Note that A-C is not allowed because A-C has already been traversed.

(3) DFS with all paths and no cycles:
• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-E
• A-C
• A-C-D (traversing CD twice is OK)
• A-C-D-B
• A-C-D-E
• Note that A-B-D-C-A is not allowed because it contains a cycle.

(4) DFS with all paths and with cycles:
• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-C-A (cycles are OK)
• A-B-D-E
• A-C (traversing A-C twice is OK)
• A-C-D
• A-C-D-B
• A-C-D-B-A (cycles are OK)
• A-C-D-E

For a molecule with n atoms and m edges, the complexity of extracting all
the paths (of any depth) is O(nm) in the first and the second cases. In the
third and fourth cases, for paths of length up to d, the complexity is at most
O(nαd), where α is the branching factor. Because the average degree of graphs
in organic chemistry is typically only slightly above two, this branching factor
is only slightly above 1. This still yields very reasonable time complexity es-
timates for typical values of d, such as d = 10. The implementation that does
not allow sharing of edges once two paths have diverged is faster, but also less
balanced because the resulting paths around cycles depend on the ordering of
the nodes and edges used to define the depth-first search.

15

3.3 Generalized Fingerprints

In addition to conventional fingerprints, we use several generalized fingerprints.
To circumvent the loss of information associated with clashes, for example, we
use long binary feature vectors with a unique bit position reserved for each
possible path. We also consider fingerprints constructed using path counts
rather than binary indicator variables. We also consider weighting the vec-
tors according to the TF-IDF scheme [Salton, 1991] commonly used in text
retrieval. In this case, a molecule can be viewed as a text document consisting
of all the labeled paths of length up to d that can be retrieved by depth-first
searches. Our preliminary experiments using the TF-IDF approach, however,
did not yield any significant improvements and therefore it is not used here.
An alternative to the TF-IDF scheme, originated also in the field of informa-
tion retrieval, is to consider a reduced set of paths selected according to the
mutual information criterion [Yang and Pedersen, 1997, Dumais et al., 1998]
in order to preserve or enhance paths carrying the most relevant information
for a given classification task. An interesting aspect of this approach, besides
that of reducing the path vocabulary size, is that the automatically-extracted
paths may be validated (or invalidated) by chemists.

To summarize the situation, let P(d) be the set of all possible atom-bond
labeled paths containing a maximum of d bonds. Using a depth-first search
approach, the binary feature map φ for a molecule u and a given depth d can
be written as:

φd(u) = (φpath(u))path∈P(d)

Here φpath(u) is equal to 1 if at least one depth-first search of depth less
or equal to d starting from one of the atoms of u produces the path path.
The counting feature map ϕd is defined similarly by using ϕpath to count the
number of labeled paths of each kind. The feature map giving fixed-size vectors
of size l corresponds to the particular feature map φ̄d,l given by:

φ̄d,l(u) = (φγl(path)(u))path∈P(d)

where γl : P(d)→ {1, . . . , l}b is a function mapping paths to (set of) indices.
Standard chemical fingerprints are a special case where the hash function,
random generation, and congruence operations are captured by the function
φγl(path).

3.4 Chemical Kernels Using Different Notions of Fingerprint Similarity

With these feature maps or generalized fingerprints, different kernels can be
derived by using different measures of similarity between fingerprints. For two
molecules u,v, the simple inner product kd(·, ·) = 〈·, ·〉d yields the kernel:

16

01

0.4

0 2 1 0 2 1

0 00110 10 0 00101 11 �

�

�

�
�������

�

�����

��������

����

Fig. 4. Connection between Tanimoto and MinMax kernels. If the feature vectors
ϕ(u) and ϕ(v) are transformed into the bit vectors ũ and ṽ then km

d (u,v) is exactly
the ratio between the number of bits set to one in both ũ and ṽ divided by the total
number of (unique) bits set to one in ũ or ṽ. Given a large integer q, each path in
P(d) is associated with a distinct set of q consecutive indices. If ϕpath(u) > 0 then
ϕpath(u) consecutive bits are set to one in ũ starting from the indices corresponding
to path. The same holds for v and ṽ.

kd(u,v) = 〈u,v〉d =
∑

path∈P(d)

φpath(u)φpath(v)

The corresponding kernel k̄d,l is defined in the same way, using φ̄d,l. Here we
develop three normalized kernels closely related to the Tanimoto similarity
measure in the chemistry literature [Fligner et al., 2002, Flower, 1998, Gower,
1971, Gower and Legendre, 1986].

Definition 3 (Tanimoto kernel) Let u,v denote two molecules and d be
an integer. Consider the feature map φd and the corresponding kernel kd. The
Tanimoto kernel kt

d is defined by:

kt
d(u,v) =

kd(u,v)

kd(u,u) + kd(v,v)− kd(u,v)
(7)

If φ(u) is regarded as the set of features than can be extracted from u using
depth-first search exploration, then kt

d simply computes the ratio between
|φ(u) ∩ φ(v)|, i.e. the number of elements in the intersection of the two sets
φ(u) and φ(v), and |φ(u) ∪ φ(v)|, i.e. the number of elements in the set
corresponding to the union of φ(u) and φ(v). If the feature map used is φ̄d,l

instead of φd, for a given l ∈ N, and thus k̄d,l instead of kd, the corresponding
kernel k̄t

dl is exactly the Tanimoto similarity measure used in chemoinformatics
for fast molecular comparison and retrieval with fixed-size bit vectors of size
l.

Definition 4 (MinMax kernel) Let u,v denote two molecules and d be an
integer. Consider the feature map ϕd(·), and the corresponding ϕpath(·). The

17

MinMax kernel km
d is defined by:

km
d (u,v) =

∑
path∈P(d)

min(ϕpath(u), ϕpath(v))

∑
path∈P(d)

max(ϕpath(u), ϕpath(v))
(8)

This kernel function is closely related to the Tanimoto kernel in at least two
different ways. First, it is identical to the Tanimoto kernel when applied to
binary vectors. Second, in a more subtle way, the MinMax kernel can be
viewed as a Tanimoto kernel on a different set of binary vectors obtained by
transforming the vector of counts. More precisely, for a given d, consider the
two integer-valued feature vectors ϕd(u) and ϕd(v) and an integer q larger
than any count in ϕd(u) and ϕd(v). Expand ϕd(u) and ϕd(v) into two binary
feature vectors ũ and ṽ of size pq, with p = |P(d)|, such that ũi (resp. ṽi′)
is set to one if and only if i mod q < ũi (resp. i′ mod q < ṽi′), This yields
(Figure 4):

km
d (u,v) =

〈ũ, ṽ〉
〈ũ, ũ〉+ 〈ṽ, ṽ〉 − 〈ũ, ṽ〉

The MinMax kernel takes into account the frequency of different paths in a
molecule and, like the Tanimoto kernel, its value is always between 0 and 1.
Using path counts rather than binary indicator variables, the MinMax ker-
nel produces a more reliable way of assessing similarity between molecules of
different sizes (see Section 5).

Definition 5 (Hybrid kernel) Let u and v denote two molecules and let d
and l be two integers. Let θ be a real number in [−1, +2]. The Hybrid kernel
kh

d between u and v is defined by:

kh
d,l(u,v) =

1

3

(
(2− θ) · k̄t

d,l(u,v) + (1 + θ) · ¬k̄t
d,l(u,v)

)
(9)

where ¬k̄t
d,l is the ‘Tanimoto’ kernel based on the feature map (¬φ̄d,l(x)) =

(¬φ̄γl(path)(x))path∈P(d), ¬ is the logical negation, and γ : P(d)→ 1, . . . , l.

Thus the Hybrid kernel is a convex combination of two kernels, respectively
measuring the number of common paths and common missing-paths between
two molecules [Fligner et al., 2002]. When θ = −1, the Hybrid kernel reduces
to the Tanimoto kernel. In practice, θ is typically set to the average density
of the bit vectors, between 0 and 1. It should be clear that a hybrid ver-
sion of the MinMax kernel is possible along the same lines. In simulations,
however, the hybrid kernel did not yield any significant improvements and
therefore it is only briefly mentioned in the simulation results. It should be
noted that the kernels above are also conceptually related to the notions of
precision/recall/sensitivity/specificity/F measures in classification, with the
caveat that molecules, unlike positive and negative classes, play a symmet-

18

ric role. Indeed, the Tanimoto coefficient is essentially a variation on the F
measure of information retrieval. The corresponding F kernel is given by:

kt
d(u,v) =

2kd(u,v)

kd(u,u) + kd(v,v)
(10)

The F similarity is also a special case of the more general Tversky similarity
[Tversky, 1977, Rouvray, 1992] defined by:

kt
d(u,v) =

2kd(u,v)

αkd(u,u) + βkd(v,v)
(11)

Proposition 6 The Tanimoto kernel, MinMax kernel and Hybrid kernel are
Mercer kernels.

PROOF. A sketch of the proof that kt
d, km

d , kh
d,l are Mercer kernels follows

from a result given by Gower [1971] showing that, for any integer p and any set
of � binary vectors x1, . . . ,x� ∈ R

p, the similarity matrix S = (kt(xi,xj)1≤i,j≤�)
is positive semi-definite. Thus kt is a positive definite kernel or Mercer kernel.
Given that for any Mercer kernel k ∈ R

X×X and any mapping g ∈ XX ′
,

k(g(·), g(·)) ∈ R
X ′×X ′

is a Mercer kernel (see, for instance Schölkopf and Smola
[2002]), the MinMax kernel is also a Mercer kernel. Finally, using the same
argument, and the fact that a convex combination of Mercer kernels is a Mercer
kernel, it follows that the Hybrid kernel is also a Mercer kernel.

In the following section we will use these kernels, with different parameter
settings, to tackle three different chemical classification problems.

3.5 Fast Computation of Chemical Kernels

An important issue is whether these kernels can be computed efficiently. At
first glance, the computations may appear prohibitive as the feature vectors
produced by the feature map are of large dimension. However, using a suffix
tree data structure [Ukkonen, 1995, Weiner, 1973] as also proposed in [Leslie
et al., 2002, Vishwanathan and Smola, 2003], allows us to compute each of
the proposed kernels in time O(d(n1m1 + n2m2)), where d is the depth of the
search and ni (resp. mi) the number of vertices/atoms (resp. edges/bonds)
of the two molecules considered. This time complexity is for the case where
depth-first paths starting from the same vertex are not allowed to share edges
once they have diverged.

19

More precisely, given a molecule M1 consisting of n1 atoms and m1 bonds, per-
forming all depth-first search explorations up to depth d starting from every
atom is a process with complexity O(n1m1). This process produces O(n1m1)
paths of length d or less. It is possible to store all those paths in a suffix tree
resorting to an algorithm in O(dn1m1) [Ukkonen, 1995]. It is worth noting that
in our implementation we do not distinguish the orientation of a given path
(e.g. C-C-H is the same path as H-C-C) and the reverse of each path is also
stored in the suffix tree. Following the same line of reasoning with a second
molecule M2 with n2 atoms and m2 bonds, and knowing that searching for a
string s of length |s| in a suffix tree takes O(|s|) steps, O(dn2m2) steps are re-
quired to count the number of depth-first search paths extracted from M2 that
are also in the set of depth-first search paths found in M1. The same holds con-
versely, exchanging the roles of M1 and M2. Thus it takes O(d(n1m1 +n2m2))
steps to compute the Tanimoto, MinMax, and Hybrid Kernels. This analysis
applies to the implementation of depth-first search where paths emanating
from a vertex are not allowed to share eges once they have diverged. If paths
are allowed to share edges once they have diverged, the complexity may in-
crease slightly but remains manageable, as discussed in Section 3.2. In short,
these kernels can be computed very rapidly and hence can be used to tackle
large-scale chemical classification and regression problems.

3.6 Voted Perceptron Classifier

Finally, in the simulations below we combine kernels with the Voted Percep-
tron learning algorithm. The Voted Perceptron algorithm, proposed by Freund
and Schapire [1999], is an efficient learning algorithm based on the idea of vot-
ing perceptrons. It builds a classifier f of the form f(x) =

∑
αtht(x) where

each ht is a perceptron, and makes its prediction according to the sign of
f(x). Freund and Schapire [1999] proposed a natural extension of this algo-
rithm to the case where kernel perceptrons functions ht are used instead of
linear perceptrons to further enhance the quality of the classifier. The learning
algorithm, summarized in pseudocode form below, is an iterative procedure
which adds one perceptron at a time. While a specific maximum number of
iterations can be fixed beforehand, running the algorithm until the training er-
ror stabilizes yields high-quality classifiers and avoids having to set additional
hyperparameters.

Algorithm 1 (Voted Perceptron [Freund and Schapire, 1999])
input: S = {(x1, y1), . . . , (x�, y�)} and a Mercer kernel k
output: a list of weighted perceptrons (α1, c1), . . . , (αk, ck)

• p← 0,α1 ← 0, c1 ← 0

• repeat until convergence of the training error

20

· for i = 1, . . . , �
compute prediction ŷ ← sign (

∑�
j=1 αpjk(xj ,xi))

if ŷ = yi

cp ← cp + 1
else

αp+1 ← αp

αp+1,i ← αpi + yi

cp+1 ← 1

p← p + 1
end if

· end for

• end repeat

4 Data

We apply the kernels introduced in the previous section together with the
Voted Perceptron classifier to the problems of predicting mutagenicity, toxi-
city, and anti-cancer activity on three different data sets (Mutag, PTC, and
NCI).

4.1 Mutag Dataset

The Mutag dataset [Debnath et al., 1991] consists originally of 230 chemical
compounds assayed for mutagenicity in Salmonella typhimurium (Table 1).
Among the 230 compounds, however, only 188 (125 positive, 63 negative) are
considered to be learnable [Debnath et al., 1991] and thus are used in our
simulations (Table 3). The results from other groups that are reported for
comparison purposes were obtained also on the same subset of 188 molecules.
The accuracy reported in the simulations is estimated by a leave-one-out pro-
cedure.

4.2 PTC Dataset

The Predictive Toxicology Challenge (PTC) dataset [Helma et al., 2001] re-
ports the carcinogenicity of several hundred chemical compounds for Male
Mice (MM), Female Mice (FM), Male Rats (MR) and Female Rats (FR)

21

(Table 1). As with the Mutag dataset, the accuracy reported in Table 3 is
estimated by a leave-one-out procedure.

4.3 NCI Dataset

The Mutag and PTC datasets are useful but somewhat small. The NCI dataset,
made publicly available by the National Cancer Institute (NCI), provides
screening results for the ability of roughly 70,000 compounds to kill or in-
hibit the growth of a panel of 60 human tumor cell lines. We use the dataset
corresponding to the concentration parameter GI50, essentially the concen-
tration that causes 50% growth inhibition 1 . For each cell line, approximately
3,500 compounds, described by their 2D structures, are provided with infor-
mation on their anti-tumor activity. The distributions of positive (compounds
with anti-tumor activity) and negative examples for the 60 cell lines are re-
ported in Table 2. Not only is the NCI dataset considerably larger than the
Mutag and PTC datasets, but overall it is also more balanced. Thus the triv-
ial background statistical predictor always predicting the class encountered
more frequently has poorer performance on the NCI dataset. Performance on
the NCI dataset is analyzed by cross validation methods using 20 random
80/20 training/test splits of each subset associated with each cell line. Values
reported correspond to averages obtained over these 20 splits.

1 A complete description of the cell lines is available at the url
http://dtp.nci.nih.gov/docs/misc/common files/cell list.html

Mutag MM FM MR FR

#pos. 125 (66.5%) 129 (38.4%) 143 (41.0%) 152 (44.2%) 121 (34.5%)

#neg. 63 (33.5%) 207 (61.6%) 206 (59.0%) 192 (55.8%) 230 (65.5%)

total ex. 188 336 349 344 351

Avg. #atoms/mol. 17.93 25.05 25.25 25.56 26.08

Avg. #bonds/mol. 19.79 25.39 25.62 25.96 26.53

Avg. degree 2.21 2.03 2.03 2.03 2.03

Table 1
Distribution of positive and negative examples and molecular graph statistics in the
Mutag and PTC datasets.

22

Screen #pos. #neg. Screen #pos. #neg.

786-0 1832 (52.3%) 1674 (47.7%) NCI-H226 1781 (51.4%) 1683 (48.6%)

A498 1782 (51.2%) 1698 (48.8%) NCI-H23 1968 (52.9%) 1751 (47.1%)

A549 1901 (50.9%) 1833 (49.1%) NCI-H322M 1765 (47.8%) 1925 (52.2%)

ACHN 1795 (50.8%) 1736 (49.2%) NCI-H460 2049 (56.9%) 1550 (43.1%)

BT-549 1399 (50.4%) 1379 (49.6%) NCI-H522 2138 (59.8%) 1435 (40.2%)

CAKI-1 1865 (52.1%) 1715 (47.9%) OVCAR-3 2001 (54.2%) 1690 (45.8%)

CCRF-CEM 2217 (63.7%) 1263 (36.3%) OVCAR-4 1840 (51.4%) 1742 (48.6%)

COLO-205 1943 (53.3%) 1702 (46.7%) OVCAR-5 1651 (45.0%) 2019 (55.0%)

DU-145 1416 (48.1%) 1529 (51.9%) OVCAR-8 1979 (53.3%) 1735 (46.7%)

EKVX 1968 (53.5%) 1713 (46.5%) PC-3 1522 (51.0%) 1460 (49.0%)

HCC-2998 1804 (56.8%) 1373 (43.2%) RPMI-8226 2116 (59.4%) 1448 (40.6%)

HCT-116 2049 (55.0%) 1674 (45.0%) RXF-393 1850 (54.4%) 1551 (45.6%)

HCT-15 1993 (53.4%) 1738 (46.6%) SF-268 2020 (54.3%) 1701 (45.7%)

HL-60-TB 2188 (64.6%) 1198 (35.4%) SF-295 2027 (54.1%) 1718 (45.9%)

HOP-62 1888 (52.0%) 1740 (48.0%) SF-539 1920 (56.7%) 1464 (43.3%)

HOP-92 1982 (56.6%) 1521 (43.4%) SK-MEL-28 1774 (47.6%) 1950 (52.4%)

HS-578T 1550 (54.0%) 1320 (46.0%) SK-MEL-2 1783 (49.5%) 1817 (50.5%)

HT29 2004 (54.0%) 1708 (46.0%) SK-MEL-5 2034 (55.2%) 1651 (44.8%)

IGROV1 1956 (53.0%) 1734 (47.0%) SK-OV-3 1711 (48.8%) 1792 (51.2%)

K-562 2139 (59.1%) 1479 (40.9%) SN12C 1918 (52.1%) 1764 (47.9%)

KM12 1941 (52.4%) 1764 (47.6%) SNB-19 1840 (49.4%) 1885 (50.6%)

LOX-IMVI 2053 (57.0%) 1550 (43.0%) SNB-75 2131 (61.1%) 1359 (38.9%)

M14 1815 (51.1%) 1736 (48.9%) SR 1869 (62.2%) 1137 (37.8%)

MALME-3M 1886 (53.8%) 1621 (46.2%) SW-620 1940 (51.7%) 1813 (48.3%)

MCF7 1733 (57.0%) 1306 (43.0%) T-47D 1550 (53.3%) 1359 (46.7%)

MDA-MB-231 1475 (50.0%) 1473 (50.0%) TK-10 1650 (47.3%) 1840 (52.7%)

MDA-MB-435 1519 (51.0%) 1462 (49.0%) U251 2044 (54.4%) 1711 (45.6%)

MDA-N 1503 (50.7%) 1459 (49.3%) UACC-257 1873 (50.9%) 1808 (49.1%)

MOLT-4 2175 (61.5%) 1359 (38.5%) UACC-62 2046 (55.5%) 1638 (44.5%)

NCI-ADR-RES 1586 (51.0%) 1525 (49.0%) UO-31 1994 (55.2%) 1621 (44.8%)

Table 2
Distribution of the 60 NCI screens studied. Positive examples correspond to anti-
cancer activity.

5 Results

We conducted several experiments to compare the various classes of kernels
with different parameter settings. Here we report representative subsets of
results together with the main findings. In addition to the usual accuracy
measure, we also measure the ROC score, which is the normalized area under
the ROC curve plotting the proportion of true positive (TP) predictions as a
function of the proportion of false positive (FP) predictions, as the classifica-
tion threshold is varied [Hanley and McNeil, 1982]. Precision [TP/(TP+FP)]
and recall [TP/(TP+FN)] measures are also computed together with their

23

harmonic mean (F-measure).

5.1 Mutag and PTC Datasets

The results on the Mutag and PTC datasets are reported in Table 3. In this
table, we also report the results obtained by Kashima et al. [2003] using their
marginalized kernels and a frequent pattern mining approach [Kramer and
De Raedt, 2001]. A first observation that can be drawn from the table is
that the Tanimoto kernel and the MinMax kernels for a depth d = 10 always
rank among the top two methods and produce results that are significantly
above chance, and consistently close or above those reported previously in the
literature. In Table 3, we also see that using the 2D kernels in combination
with the traditional molecular fingerprinting procedure, i.e. using fixed-size
bit vectors of length l, yields good results. These results, however are not as
good as those obtained with unbounded l and the deterioration in performance
accentuates when l is reduced from 1024 to 512 (except for MM), most likely
resulting from the increase in the number of clashes. On the Mutag dataset,
the PD (Pattern Discovery) algorithm achieves 89.1% accuracy versus 87.8%
for the Tanimoto kernel. Performances of up to 89.4% have actually been
reported in King et al. [1996] (Table 4). Such a difference, however, may not
be significant because the Mutag dataset is too small.

This is confirmed by further refining the 2D kernels and implementing an
exhaustive search of all possible paths up to depth d, allowing paths to share
edges once they have diverged, which can still be implemented efficiently as
discussed in Section 3.2, thanks to the small size and small degree of these
graphs (the average degree for the large NCI dataset, for instance, is 2.11). The
corresponding results in Table 5 show, for example, that the MinMax kernel
achieves a cross-validated performance accuracy of 91.5%, above all previously
reported results [King et al., 1996, Mahé et al., 2004]. Table 5 shows also that
the choice of atom labels can impact performance and that too fine-grained
labels may not be optimal for datasets comparable in size to those used here.

Overall, these results indicate that the kernels introduced here, and particu-
larly the 2D Tanimoto and MinMax kernel, are effective kernels for molecular
classification tasks. We also conducted tests using a mutual information cri-
terion [Yang and Pedersen, 1997, Dumais et al., 1998] to select informative
paths. We computed the mutual information between the binary (0-1) vari-
able associated with a given path and the binary (±1) variable associated with
the class. We ranked the paths accordingly and removed those corresponding
to low mutual information. Surprisingly, for vectors of equal size, the results
with mutual information are not better than those obtained using the simple,
short-length, fingerprint approach. We conjecture that this is a size effect– the

24

Kernel/Method Mutag MM FM MR FR

PD [Kashima et al., 2003] 89.1 61.0 61.0 62.8 66.7

MK [Kashima et al., 2003] 85.1 64.3 63.4 58.4 66.1

Tanimoto 87.8 66.4 64.2 63.7 66.7

MinMax 86.2 64.0 64.5 64.5 66.4

Tanimoto, l = 1024, b = 1 87.2 66.1 62.4 65.7 66.9

Hybrid l = 1024, b = 1 87.2 65.2 61.9 64.2 65.8

Tanimoto, l = 512, b = 1 84.6 66.4 59.9 59.9 66.1

Hybrid l = 512, b = 1 86.7 65.2 61.0 60.7 64.7

Tanimoto, l = 1024 + MI 84.6 63.1 63.0 61.9 66.7

Hybrid l = 1024 + MI 84.6 62.8 63.7 61.9 65.5

Tanimoto, l = 512 + MI 85.6 60.1 61.0 61.3 62.4

Hybrid l = 512 + MI 86.2 63.7 62.7 62.2 64.4
Table 3
Leave-one-out accuracy results for the Mutag and PTC datasets. b denotes the
number of bits set to one for a given path and MI indicates that paths have been
selected using the mutual information criterion. Depth of search is set to d = 10.
The value of θ used for the Hybrid kernel is the average density of the fingerprints
contained in the training set. Best results are in bold font and second best are
italicized.

Lin. Reg. NNet Dec. Trees ILP

89.3% 89.4% 88.3% 87.8%

Table 4
Accuracies for different machine learning methods on the Mutag problem reported
in the literature: linear regression, neural networks, decision trees, inductive logic
programming [King et al., 1996].

set of informative paths that is retained is too small–and a difference ougth
to become noticeable with a larger value of l.

5.2 NCI dataset

In this larger set of experiments, we focused exclusively on the Tanimoto and
the MinMax kernels since they gave the best preliminary results on the smaller
Mutag and PTC datasets using the faster, but less exhaustive, implementation
of depth-first search. The results for the 60 screens of the NCI dataset are

25

Kernel Type Atom. # Val.

Tanimoto 87.8 90.4 90.4

Tanimoto+cycle 86.2 87.8 89.9

MinMax 89.4 91.0 91.5

MinMax+cycle 89.9 91.5 89.4

Table 5
Classification accuracies (%) obtained on Mutag using exhaustive path extraction
and the Tanimoto and the MinMax kernel with a depth set to d = 10. ’Type’
corresponds to the case where atom descriptions are fully retained (e.g. in the paths
constructed, a carbon connected to two hydrogens is different from one connected
to three), ’Atom. #’ corresponds to the equivalence class where only the atomic
numbers are used to label atoms and ’Val.’ to the situation where all atoms having
the same valence are considered equivalent.

reported in Tables 6 and 7 using a Tanimoto kernel of depth d = 10. Tables 8
and 9 show the results obtained using the MinMax kernel with depth d = 10. In
each case, the first table reports the results in terms of accuracy and area under
the ROC curve and the second table in terms of precision [TP/(TP+FP)] and
recall [TP/(TP+FN)]. The mean accuracy for the Tanimoto kernel is 71.55%
versus 72.29% for the MinMax kernel. Likewise, the mean ROC score is 77.86%
versus 78.74%, the mean precision is 72.55% versus 73.02%, and the mean
recall is 74.90% versus 76.05%.

On the NCI dataset, we observe in general that both kernels have performance
accuracies above 70% in general, well above chance level for this balanced
dataset. The MinMax kernel gives better results than the Tanimoto kernel
almost consistently, albeit by a fairly small margin. We believe this results
from the fact that this kernel uses actual counts rather than binary indicator
variables. Using counts in the future ought to provide a richer representation
and allow better comparison and classification of molecules.

6 Discussion

We have reviewed graph kernels and developed new graph kernels for chemical
molecules that yield state-of-the art results on several datasets. These kernels
measure the similarity between feature vectors, or molecular fingerprints, con-
sisting of binary vectors or vectors of counts associated with all labeled paths
of length less or equal to some value d derived by depth-first searches, starting
from each vertex of a molecule. The accuracies obtained, for instance 72% on
the NCI dataset, are encouraging and suggest that automatic classification of
compounds may become a viable alternative, but not a substitute, to laborious

26

Screen Accuracy (%) ROC (%) Screen Accuracy (%) ROC (%)

786-0 72.63 ± 1.33 78.78 ± 1.18 NCI-H226 70.17 ± 1.42 76.55 ± 1.55

A498 71.28 ± 2.08 77.82 ± 2.03 NCI-H23 71.64 ± 1.31 78.50 ± 1.22

A549 71.71 ± 1.29 78.77 ± 1.23 NCI-H322M 69.67 ± 1.62 76.00 ± 1.37

ACHN 72.59 ± 1.77 79.56 ± 1.79 NCI-H460 71.81 ± 1.63 77.82 ± 1.38

BT-549 70.63 ± 1.33 77.78 ± 1.29 NCI-H522 72.76 ± 1.51 78.48 ± 1.80

CAKI-1 72.20 ± 1.47 79.05 ± 1.29 OVCAR-3 71.81 ± 1.76 77.88 ± 1.59

CCRF-CEM 71.74 ± 1.62 75.95 ± 1.71 OVCAR-4 71.37 ± 1.41 77.95 ± 1.31

COLO-205 71.84 ± 1.68 78.53 ± 1.43 OVCAR-5 70.38 ± 1.53 77.04 ± 1.64

DU-145 71.79 ± 1.88 78.92 ± 1.85 OVCAR-8 71.97 ± 1.81 78.23 ± 1.32

EKVX 70.42 ± 2.11 76.41 ± 2.02 PC-3 72.50 ± 1.79 79.47 ± 1.73

HCC-2998 69.58 ± 1.44 75.39 ± 1.24 RPMI-8226 72.23 ± 1.30 77.57 ± 1.38

HCT-116 73.28 ± 1.63 79.75 ± 1.06 RXF-393 70.64 ± 1.33 77.26 ± 1.63

HCT-15 70.91 ± 1.23 77.55 ± 1.06 SF-268 72.35 ± 1.19 78.79 ± 1.84

HL-60-TB 72.04 ± 1.53 75.58 ± 1.88 SF-295 70.19 ± 1.35 77.16 ± 1.61

HOP-62 71.31 ± 1.37 77.89 ± 1.35 SF-539 70.95 ± 1.92 76.50 ± 1.63

HOP-92 70.30 ± 1.07 75.95 ± 1.15 SK-MEL-28 70.51 ± 1.31 77.25 ± 1.63

HS-578T 70.90 ± 1.54 76.89 ± 1.13 SK-MEL-2 71.54 ± 1.30 77.86 ± 1.39

HT29 71.89 ± 1.96 78.62 ± 2.10 SK-MEL-5 73.28 ± 1.30 79.76 ± 1.29

IGROV1 70.37 ± 1.62 76.79 ± 1.17 SK-OV-3 72.10 ± 1.80 78.70 ± 1.63

K-562 71.32 ± 1.55 76.63 ± 1.81 SN12C 70.77 ± 1.58 77.73 ± 1.31

KM12 70.82 ± 1.31 77.79 ± 1.68 SNB-19 71.44 ± 0.72 78.39 ± 1.04

LOX-IMVI 73.24 ± 1.36 79.39 ± 1.54 SNB-75 70.27 ± 1.37 74.66 ± 1.21

M14 72.10 ± 1.81 79.05 ± 1.69 SR 72.76 ± 1.47 77.28 ± 1.51

MALME-3M 71.14 ± 1.57 77.70 ± 1.43 SW-620 72.39 ± 1.34 79.42 ± 1.31

MCF7 73.59 ± 1.68 79.93 ± 1.57 T-47D 71.98 ± 1.77 79.25 ± 2.51

MDA-MB-231 71.21 ± 1.60 78.12 ± 1.28 TK-10 70.54 ± 1.86 76.70 ± 1.84

MDA-MB-435 71.98 ± 1.11 78.91 ± 1.35 U251 71.88 ± 1.42 78.49 ± 1.45

MDA-N 72.45 ± 1.20 79.14 ± 1.22 UACC-257 69.95 ± 1.58 76.71 ± 1.49

MOLT-4 72.89 ± 1.42 77.67 ± 1.31 UACC-62 72.57 ± 1.56 78.73 ± 1.67

NCI-ADR-RES 71.56 ± 1.66 78.28 ± 1.42 UO-31 70.79 ± 1.21 76.96 ± 1.56

Table 6
Classification accuracy and ROC score (and their standard deviations) obtained on
the 60 NCI screens using kvt

10

experimental characterization in the near future. Even if the accuracy is not
perfect–leaving room for further improvements– batteries of such predictors
could be used to sift through large set of molecules and rank them during
screening experiments in drug discovery and other tasks.

One advantage of the feature vectors and kernels we have developed is that
they can be computed very efficiently. The tradeoff, however, is that important
information is sometimes discarded. This is apparent in our results where using
binary vectors or vectors of fixed small length l degrades the performance with
respect to using vectors of counts or large values of l. Likewise, we observe also
a small degradation when depth-first search is implemented in a way that does

27

Screen Precision (%) Recall (%) Screen Precision (%) Recall (%)

786-0 73.59 ± 2.80 74.90 ± 1.75 NCI-H226 70.84 ± 2.21 72.23 ± 2.48

A498 71.62 ± 3.54 72.52 ± 2.26 NCI-H23 72.62 ± 2.31 74.83 ± 1.97

A549 71.49 ± 2.82 72.76 ± 2.49 NCI-H322M 68.68 ± 2.45 67.51 ± 3.02

ACHN 72.03 ± 1.85 74.33 ± 2.69 NCI-H460 74.05 ± 2.43 77.20 ± 1.86

BT-549 71.72 ± 2.16 70.89 ± 2.80 NCI-H522 75.99 ± 2.18 79.74 ± 2.03

CAKI-1 72.55 ± 1.69 74.83 ± 2.72 OVCAR-3 73.35 ± 2.21 75.79 ± 2.27

CCRF-CEM 76.19 ± 2.14 81.15 ± 1.58 OVCAR-4 71.98 ± 1.68 72.84 ± 2.63

COLO-205 73.09 ± 2.16 74.98 ± 2.13 OVCAR-5 66.78 ± 1.80 65.77 ± 2.90

DU-145 70.65 ± 2.85 70.72 ± 2.44 OVCAR-8 73.20 ± 2.64 75.39 ± 2.56

EKVX 71.11 ± 2.26 75.21 ± 3.36 PC-3 72.28 ± 1.77 74.98 ± 3.15

HCC-2998 71.57 ± 1.90 76.39 ± 2.27 RPMI-8226 75.58 ± 1.44 79.49 ± 2.10

HCT-116 74.34 ± 2.23 77.59 ± 2.70 RXF-393 72.50 ± 1.79 74.14 ± 2.44

HCT-15 71.94 ± 1.70 74.66 ± 1.90 SF-268 73.90 ± 1.99 76.55 ± 2.30

HL-60-TB 76.31 ± 2.16 81.85 ± 2.07 SF-295 72.56 ± 1.99 73.14 ± 2.67

HOP-62 71.69 ± 2.19 73.56 ± 2.47 SF-539 73.56 ± 2.18 76.74 ± 3.05

HOP-92 72.26 ± 1.74 76.62 ± 2.01 SK-MEL-28 68.90 ± 2.42 67.73 ± 2.94

HS-578T 72.19 ± 2.33 75.21 ± 2.30 SK-MEL-2 71.31 ± 2.77 70.43 ± 2.25

HT29 73.59 ± 2.50 75.32 ± 2.37 SK-MEL-5 74.59 ± 1.42 77.97 ± 2.47

IGROV1 70.50 ± 1.84 73.74 ± 2.63 SK-OV-3 71.41 ± 2.92 71.37 ± 3.37

K-562 74.23 ± 1.82 78.96 ± 2.77 SN12C 71.61 ± 1.99 72.34 ± 2.87

KM12 71.36 ± 2.32 74.49 ± 2.36 SNB-19 71.26 ± 1.78 71.40 ± 1.92

LOX-IMVI 75.14 ± 1.51 79.49 ± 2.29 SNB-75 73.35 ± 1.98 80.34 ± 1.59

M14 71.40 ± 2.77 74.55 ± 2.24 SR 76.31 ± 1.80 81.74 ± 2.90

MALME-3M 72.71 ± 2.55 74.78 ± 2.16 SW-620 72.94 ± 2.38 74.82 ± 2.23

MCF7 74.95 ± 1.65 80.51 ± 2.53 T-47D 72.60 ± 2.45 75.55 ± 2.23

MDA-MB-231 70.91 ± 1.75 72.29 ± 3.15 TK-10 69.40 ± 2.87 67.42 ± 3.54

MDA-MB-435 71.85 ± 2.16 73.91 ± 2.07 U251 73.26 ± 1.53 75.83 ± 2.47

MDA-N 72.66 ± 2.39 74.13 ± 3.40 UACC-257 70.47 ± 1.91 71.86 ± 2.72

MOLT-4 76.21 ± 2.30 81.09 ± 1.45 UACC-62 73.98 ± 1.92 78.13 ± 2.50

NCI-ADR-RES 71.76 ± 2.73 73.21 ± 2.05 UO-31 72.16 ± 1.78 76.12 ± 2.18

Table 7
Precision and recall (and their standard deviations) obtained on the 60 NCI screens
using kvt

10

not allow paths to share edges once they have diverged. This degradation may
be even stronger in the case of counts versus indicator variables. As we have
seen, exhaustive search of all the paths up to depth d for reasonable values
of d can easily be implemented given the low degree of molecular graphs.
datasets used in the simulations reported here are 2.21 (Mutag), 2.03 (PTC),
and 2.11 (NCI). Thus the typical degree for a compound in organic chemistry
is below 2.3 giving a branching factor of less than 1.3, and a complexity factor
of O(n1.3d) for searching all the paths up to length d.

Howeve, even when all paths of length up to d are considered, information
is partially lost regarding their location (or “phase”) within the molecular

28

Screen Accuracy (%) ROC (%) Screen Accuracy (%) ROC (%)

786-0 72.62 ± 1.09 79.41 ± 0.89 NCI-H226 70.92 ± 1.15 77.53 ± 1.49

A498 71.81 ± 1.71 78.74 ± 1.93 NCI-H23 72.67 ± 1.24 79.27 ± 1.31

A549 72.38 ± 1.32 79.47 ± 1.46 NCI-H322M 70.60 ± 1.66 77.30 ± 1.32

ACHN 73.47 ± 1.78 80.47 ± 1.53 NCI-H460 72.45 ± 1.29 78.70 ± 1.08

BT-549 71.99 ± 1.62 79.39 ± 1.32 NCI-H522 73.89 ± 1.50 79.50 ± 1.71

CAKI-1 72.34 ± 0.88 79.30 ± 1.15 OVCAR-3 72.44 ± 1.29 79.19 ± 1.36

CCRF-CEM 72.36 ± 1.49 76.30 ± 1.72 OVCAR-4 72.64 ± 1.62 79.31 ± 1.39

COLO-205 72.67 ± 1.22 79.77 ± 1.40 OVCAR-5 70.44 ± 1.34 77.28 ± 1.63

DU-145 72.56 ± 1.32 80.18 ± 1.34 OVCAR-8 72.42 ± 1.44 78.82 ± 1.25

EKVX 71.41 ± 1.46 77.24 ± 1.63 PC-3 73.39 ± 1.69 80.66 ± 1.55

HCC-2998 70.62 ± 1.49 76.59 ± 1.32 RPMI-8226 73.02 ± 1.26 78.55 ± 1.57

HCT-116 74.01 ± 1.24 80.29 ± 1.18 RXF-393 71.48 ± 1.32 78.22 ± 1.15

HCT-15 71.87 ± 1.06 78.64 ± 1.24 SF-268 73.66 ± 1.32 79.29 ± 1.61

HL-60-TB 72.89 ± 1.45 76.48 ± 1.68 SF-295 71.62 ± 1.23 78.33 ± 1.13

HOP-62 72.06 ± 1.43 78.81 ± 1.58 SF-539 71.43 ± 1.48 77.29 ± 1.51

HOP-92 71.80 ± 1.41 77.50 ± 1.32 SK-MEL-28 70.89 ± 1.56 77.59 ± 1.47

HS-578T 72.27 ± 1.42 78.41 ± 1.72 SK-MEL-2 71.66 ± 1.47 78.88 ± 1.25

HT29 73.28 ± 1.70 79.50 ± 1.97 SK-MEL-5 74.05 ± 1.44 80.56 ± 1.26

IGROV1 71.03 ± 1.52 77.72 ± 1.51 SK-OV-3 71.83 ± 1.70 78.92 ± 1.58

K-562 71.51 ± 1.59 77.06 ± 1.80 SN12C 71.36 ± 1.27 78.31 ± 1.15

KM12 72.00 ± 1.54 78.84 ± 1.53 SNB-19 72.13 ± 1.07 79.40 ± 1.04

LOX-IMVI 73.59 ± 1.82 80.10 ± 1.64 SNB-75 70.32 ± 1.06 75.13 ± 1.39

M14 72.62 ± 2.08 79.73 ± 1.91 SR 73.32 ± 1.48 77.62 ± 1.46

MALME-3M 71.16 ± 1.41 78.11 ± 1.39 SW-620 72.76 ± 1.39 79.89 ± 1.37

MCF7 74.09 ± 1.74 80.60 ± 1.63 T-47D 73.08 ± 1.71 80.27 ± 1.78

MDA-MB-231 72.14 ± 1.34 79.07 ± 1.46 TK-10 71.17 ± 1.76 77.67 ± 1.70

MDA-MB-435 73.02 ± 1.98 80.07 ± 1.81 U251 73.60 ± 1.49 79.86 ± 1.66

MDA-N 72.81 ± 1.42 80.07 ± 1.35 UACC-257 70.91 ± 1.54 77.61 ± 1.25

MOLT-4 73.82 ± 1.62 78.52 ± 1.29 UACC-62 73.46 ± 1.83 79.70 ± 1.70

NCI-ADR-RES 72.02 ± 1.80 79.24 ± 1.25 UO-31 71.85 ± 0.95 78.06 ± 1.62

Table 8
Classification accuracy and ROC score (and their standard deviations) obtained on
the 60 NCI screens using km

10

graphs or regarding their possible extensions to paths of length greater than
d. Furthermore, none of the graph kernels considered so far contains informa-
tion about the handedness of the molecules. Such information is not present
in the datasets considered here and therefore could not have been used or
evaluated. However it is clear that stereo chemical information is important–
different isomers can have very different biological properties. Thus in time it
will be useful to develop richer kernels, including kernels that are sensitive to
sterochemical properties.

Several other molecular kernels can be considered using 2D graphs, but also
several other molecular representations. In 2D, instead of extracting paths, one

29

Screen Precision (%) Recall (%) Screen Precision (%) Recall (%)

786-0 73.19 ± 2.56 75.72 ± 1.44 NCI-H226 71.61 ± 1.86 72.86 ± 2.64

A498 72.15 ± 2.94 72.99 ± 2.29 NCI-H23 73.23 ± 2.05 76.56 ± 2.17

A549 71.42 ± 2.73 75.18 ± 2.01 NCI-H322M 69.25 ± 2.57 69.41 ± 3.14

ACHN 72.39 ± 2.05 76.37 ± 2.92 NCI-H460 74.48 ± 2.07 77.99 ± 1.66

BT-549 72.58 ± 2.11 73.20 ± 3.38 NCI-H522 76.77 ± 1.72 80.83 ± 1.73

CAKI-1 72.49 ± 1.43 75.33 ± 2.86 OVCAR-3 73.91 ± 1.70 76.31 ± 1.97

CCRF-CEM 76.28 ± 1.87 82.37 ± 1.66 OVCAR-4 73.04 ± 1.83 74.41 ± 2.36

COLO-205 73.72 ± 2.42 76.20 ± 2.47 OVCAR-5 66.95 ± 1.93 65.65 ± 3.25

DU-145 71.00 ± 2.45 72.64 ± 2.12 OVCAR-8 73.51 ± 2.56 76.01 ± 1.72

EKVX 72.21 ± 2.13 75.69 ± 2.93 PC-3 72.63 ± 1.95 77.05 ± 2.84

HCC-2998 72.19 ± 1.70 77.87 ± 2.39 RPMI-8226 76.01 ± 1.51 80.60 ± 1.76

HCT-116 75.06 ± 1.76 78.14 ± 3.26 RXF-393 72.96 ± 2.46 75.62 ± 1.95

HCT-15 72.67 ± 1.43 75.82 ± 2.47 SF-268 74.79 ± 1.87 78.24 ± 2.27

HL-60-TB 76.43 ± 1.89 83.48 ± 2.03 SF-295 73.50 ± 1.87 75.21 ± 2.68

HOP-62 72.42 ± 2.47 74.25 ± 2.44 SF-539 73.61 ± 2.32 78.05 ± 2.04

HOP-92 73.57 ± 1.71 77.80 ± 2.01 SK-MEL-28 69.11 ± 2.53 68.61 ± 2.57

HS-578T 72.98 ± 2.21 77.49 ± 1.68 SK-MEL-2 71.44 ± 2.55 70.57 ± 3.07

HT29 74.85 ± 2.44 76.61 ± 1.94 SK-MEL-5 75.15 ± 1.75 78.90 ± 2.32

IGROV1 71.16 ± 2.00 74.32 ± 2.40 SK-OV-3 71.13 ± 2.82 71.04 ± 3.15

K-562 74.22 ± 2.11 79.50 ± 2.58 SN12C 71.87 ± 2.08 73.64 ± 2.67

KM12 72.02 ± 2.43 76.57 ± 2.75 SNB-19 71.49 ± 1.70 73.15 ± 2.10

LOX-IMVI 75.34 ± 2.12 80.00 ± 2.24 SNB-75 73.36 ± 1.45 80.45 ± 2.22

M14 71.78 ± 2.65 75.31 ± 2.74 SR 76.87 ± 1.64 81.88 ± 1.83

MALME-3M 72.47 ± 2.26 75.39 ± 2.30 SW-620 73.48 ± 2.33 74.69 ± 2.36

MCF7 75.15 ± 1.79 81.38 ± 2.12 T-47D 73.00 ± 2.42 77.99 ± 2.40

MDA-MB-231 71.34 ± 1.93 74.43 ± 3.28 TK-10 69.46 ± 2.26 69.48 ± 3.29

MDA-MB-435 72.45 ± 2.56 75.87 ± 2.58 U251 74.59 ± 1.58 77.87 ± 2.85

MDA-N 73.12 ± 2.61 74.24 ± 3.25 UACC-257 71.07 ± 1.56 73.48 ± 3.13

MOLT-4 76.72 ± 2.42 82.22 ± 1.29 UACC-62 74.65 ± 2.17 79.07 ± 2.01

NCI-ADR-RES 71.97 ± 2.89 74.15 ± 2.28 UO-31 73.14 ± 1.84 76.93 ± 2.49

Table 9
Precision and recall (and their standard deviations) obtained on the 60 NCI screens
using km

10

can focus on extracting breadth-first search and depth-first search spanning
trees, whose computation is essentially the same as the one involved in the ex-
traction of paths. Furthermore, as showed by Vishwanathan and Smola [2003],
there exist very efficient ways to compare trees. In 1D, molecules can be repre-
sented as SMILES strings [James et al., 2004], to which the entire machinery
of string kernels can be applied. In 3D, it is possible to construct kernels from
the coordinates of all the atoms contained in a given molecule. While only a
few hundred thousand molecules are in the Cambridge Structural Database
(http://www.ccdc.cam.ac.uk/products/csd) of experimentally-determined
structures, there exist programs, such as CORINA ([Sadowski et al., 1994,

30

Gasteiger et al., 1996]), that can derive full 3D coordinates for small organic
molecules starting from their 1D or 2D representations. And in applications
where molecular surfaces are the most important, “2.5D” kernels may be de-
veloped to characterize molecular surfaces. Recently, we have developed 1D
kernels using SMILES strings, and 3D kernels using histograms of pairwise
Euclidean distances between atom classes, and have compared them with the
2D kernels described here on the same datasets [Ralaivola et al., 2005]. In the
long run, we can expect that different kernels may be designed for different
tasks in computational chemistry and chemoinformatics.

Many other applications of both unsupervised and supervised machine learn-
ing methods to chemical data are possible. For instance, kernel methods could
be applied to molecular clustering and regression problems, such as predict-
ing the boiling point of alkanes or the QSAR (Quantitative Structure-Activity
Relationship) of benzodiazepines [Cherqaoui and Villemin, 1994, Hadjipavlou-
Litina and Hansch, 1994, Micheli et al., 2003].

More broadly, the penetration and adoption of artificial intelligence, statistics,
and for that matter informatics methods in chemistry has been slower than
in biology or physics, due to many factors including the single-investigator-
nature of chemical research and the related absence of large-scale collabo-
rative efforts in chemistry, in contrast to biology or physics, where genome
sequencing or high-energy physics projects require coordination of hundreds
of scientists. The lack of large, public, free-for-academic datasets of chemical
information has also greatly hampered the development of robust informatics
tools in chemistry. Similarity search tools such as BLAST have revolutionized
biology. Similarity search tools, with kernels as one of their derivatives, are
likelyd to play a similar role in chemistry as data on millions of compounds
are beginning to become freely available [Jonsdottir et al., 2005, Baldi et al.,
2005].

Large training datasets could be derived over time for a variety of problems
in chemistry. However, critical improvements are required at the level of these
datasets and their dissemination and annotation. Current annotated datasets,
including those used in this work, are often small or biased and redundant.
Coordinated, large-scale, annotation efforts, such as those commonly used in
the biological sciences, would go a long way toward producing larger and bet-
ter quality datasets for machine learning and other statistical approaches in
chemistry. We hope that developing efficient kernels and other machine learn-
ing methods for molecular structures will foster over time greater synergies
between bio- and chemical informatics [Dobson, 2004] and help us better un-
derstand chemical space.

31

Acknowledgment

Work supported by a Laurel Wilkening Faculty Innovation award, an NIH
Biomedical Informatics Training grant (LM-07443-01), an NSF MRI grant
(EIA-0321390), a Sun Microsystems award, a grant from the University of
California Systemwide Biotechnology Research and Education Program to PB
and an MD/PhD Harvey Fellowship to S. J. S. We would like also to acknowl-
edge OpenEye Scientific Software for their free academic software license.

References

M. Aizerman, E. Braverman, and L. Rozonoér. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

F. R. Bach and M. I. Jordan. Kernel Independent Component Analysis. Jour-
nal of Machine Learning Research, 3:1–48, 2002.

P. Baldi, J. Bruand, J. Chen, Y. Dou, and S. J. Swamidass. ChemDB: a
public, open source, database of small molecules. 2005. Submitted.

P. Baldi and S. Brunak. Bioinformatics: the machine learning approach. MIT
Press, Cambridge, MA, 2001. Second edition.

P. Baldi and Y. Chauvin. Hybrid modeling, HMM/NN architectures, and
protein applications. Neural Computation, 8(7):1541–1565, 1996.

P. Baldi and G. Pollastri. The principled design of large-scale recursive neu-
ral network architectures–DAG-RNNs and the protein structure prediction
problem. Journal of Machine Learning Research, 4:575–602, 2003.

P. Baldi and M. Rosen-Zvi. On the relationship between deterministic and
probabilistic directed graphical models: from Bayesian networks to recursive
neural networks and back. Neural Networks, 2005. Special issue on Neural
Networks and Kernel Methods for Structured Domains. In press.

B. Boser, I. Guyon, and V. Vapnik. A Training Algorithm for Optimal Mar-
gin Classifiers. In Proc. of the 5th Workshop on Comp. Learning Theory,
volume 5, 1992.

D. Cherqaoui and D. Villemin. Use of neural network to determine the boiling
point of alkanes. J. Chem. Soc. Faraday Trans., 90:97–102, 1994.

P. Y. Chou and G. D. Fasman. Prediction of the secondary structure of
proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol.
Biol., 47:45–148, 1978.

M. Collins and N. Duffy. Convolution Kernels for Natural Language. In Adv.
in Neural Information Processing Systems 14, 2002. URL citeseer.nj.

nec.com/542061.html.
C. Cortes and V. Vapnik. Support Vector Networks. Machine Learning, 20:

1–25, 1995.

32

N. Cristianini and J. Shawe-Taylor. Cambridge University Press, Cambridge,
UK, 2000.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch. Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. correlation with molecular orbital energies
and hydrophobicity. Journal of Medicinal Chemistry, 34:786–797, 1991.

C. M. Dobson. Chemical space and biology. Nature, 432:824–828, 2004.
S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algo-

rithms and representations for text categorization. In Proc. of the 7th Int.
Conf. on Information and Knowledge Management, 1998.

M. A. Fligner, J. S. Verducci, and P. E. Blower. A Modification of the Jac-
card/Tanimoto Similarity Index for Diverse Selection of Chemical Com-
pounds Using Binary Strings. Technometrics, pages 1–10, 2002.

D. R. Flower. On the properties of bit string-based measures of chemical
similarity. J. of Chemical Information and Computer Science, 38:378–386,
1998.

P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE Transactions on Neural Networks, 9
(5):768–786, 1998.

Y. Freund and R. E. Schapire. Large Margin Classification Using the Percep-
tron Algorithm. Machine Learning, 37(3):277–296, 1999.

B. J. Frey. Graphical Models for Machine Learning and Digital Communica-
tion. MIT Press, 1998.

T. Friess, N. Cristianini, and N. Campbell. The Kernel-Adatron Algorithm:
a Fast and Simple Learning Procedure for Support Vector Machines. In
J. Shavlik, editor, Proc. of the 15th Int. Conf. on Machine Learning. Morgan
Kaufmann Publishers, 1998.

T. Gärtner. Exponential and Geomteric Kernels for Graphs. NIPS Workshop
on Unreal Data: Principles of Modeling Nonvectorial Data, 2003.

T. Gärtner, P. A. Flach, and S. Wrobel. On Graph Kernels: Hardness Results
and Efficient Alternatives. In Proc. of the 16th Annual Conf. on Computa-
tional Learning Theory and 7th Kernel Workshop, 2003.

J. Gasteiger, J. Sadowski, J. Schuur, P. Selzer, L. Steinhauer, and V. Stein-
hauer. Chemical information in 3D-space. Journal of Chemical Information
and Computer Sciences, 36:1030–1037, 1996.

C. Goller and A. Kuchler. Learning task-dependent distributed structure-
representations by backpropagation through structure. IEEE International
Conference on Neural Networks, pages 347–352, 1996.

J. C. Gower. A general coefficient of similarity and some of its properties.
Biometrics, 27:857–871, 1971.

J. C. Gower and P. Legendre. Metric and euclidean properties of dissimilarity
coefficients. Journal of Classification, 3:5–48, 1986.

D. Hadjipavlou-Litina and C. Hansch. Quantitative structure-activity rela-
tionship of the benzodiazepines. A review and reevaluation. Chemical Re-
views, 94:1483–1505, 1994.

33

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

D. Haussler. Convolution Kernels on Discrete Structures. Technical Report
UCS-CRL-99-10, UC Santa Cruz, 1999.

D. Heckerman. A tutorial on learning with Bayesian networks. In M.I. Jordan,
editor, Learning in Graphical Models. Kluwer, Dordrecht, 1998.

C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The predictive toxicology
challenge 2000-2001. Bioinformatics, 17(1):107–108, 2001.

R. Herbrich. Learning Kernel Classifiers, Theory and Algorithms. MIT Press,
2002.

T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive
graph mining. In Proc. of the 2004 ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 158–167, 2004.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In Adv. in Neural Information Processing Systems, volume 11,
1998.

C. A. James, D. Weininger, and J. Delany. Day-
light theory manual. 2004. Available at
http://www.daylight.com/dayhtml/doc/theory/theory.toc.html.

S. O. Jonsdottir, F. S. Jorgensen, and S. Brunak. Prediction methods and
databases within chemoinformatics: Emphasis on drugs and drug candi-
dates. Bioinformatics, 2005.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized Kernels between La-
beled Graphs. In Proc. of the 20th International Conference on Machine
Learning, 2003.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. E. Sternberg. Structure-
Activity Relationships Derived by Machine Learning: The Use of Atoms
and their Bond Connectivities to Predict Mutagenicity by Inductive Logic
Programming. Proc. of the National Academy of Sciences, 93(1):438–442,
1996.

R. D. King, A. Srinivasan, and M.J. E. Sternberg. Relating chemical activity
to structure: an examination of ILP successes. New Generation Computing,
13:411–433, 1995.

R. I. Kondor and J. Lafferty. Diffusion Kernels on Graphs and other Discrete
Input Spaces. In Proc. of International Conference on Machine Learning,
2002.

J.R. Koza. Evolution of a computer program for classifying protein segments
as transmembrane domains using genetic programming. In R. Altman,
D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of
the Second International Conference on Intelligent Systems for Molecular
Biology, pages 244–252. AAAI Press, Menlo Park, CA, 1994.

S. Kramer and L. De Raedt. Feature construction with version spaces for bio-
chemical application. In Proc. of the 18th Int. Conf. on Machine Learning,

34

pages 258–265, 2001.
S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK,

1996.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. Mismatch string
kernels for SVM protein classification. In Adv. in Neural Information Pro-
cessing Systems, volume 15, 2003.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string ker-
nel for svm protein classification. In Proc. of the Pacific Symposium on
Biocomputing, 2002, pages 564–575, 2002.

H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text Classification
using String Kernels. In Adv. in Neural Information Processing Systems,
volume 15, 2000.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extension of
Marginalized Graph Kernels. In Proc. of the 21st Int. Conf. on Machine
Learning, New York, NY, USA, 2004.

A. Micheli, A. Sperduti, A. Starita, and A. M. Biancucci. A novel approach
to QSPR/QSAR based on neural networks for structures. In H. Cartwright
and L. M. Sztandera, editors, Soft Computing Approaches in Chemistry,
pages 265–296. Springer Verlag, Heidelberg, Germany, 2003.

A. Micheli, A. Sperduti, A. Starita, and A. M. Bianucci. Analysis of the
internal representations developed by neural networks for structures applied
to quantitative structure-activity relationship studies of benzodiazepines. J.
Chem. Inf. Comput. Sci., 41:202–218, 2001.

S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch.
Kernel PCA and De-Noising in Feature Spaces. In Adv. in Neural
Information Processing Systems, 1999. URL citeseer.nj.nec.com/

mika99kernel.html.
S. Muggleton. volume 38 of APIC Series. Academic Press, London, 1992.
K.-R. Müller, G. Rätsch S. Mika, K. Tsuda, and B. Schölkopf. An introduction

to kernel-based learning algorithms. IEEE Neural Networks, 12(2):181–201,
2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA., 1988.

G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of
protein secondary strucure in three and eight classes using recurrent neural
networks and profiles. Proteins, 47:228–235, 2001.

L. Ralaivola, J. Chen, J. Bruand, P. Phung, S. J. Swamidass, and P. Baldi.
Kernels for small molecules and the prediction of mutagenicity, toxicity, and
anti-cancer activity. Bioinformatics, Supplement 1, 2005. Proceedings of
the 2005 ISMB Conference. In press.

J. W. Raymond and P. Willett. Effectiveness of graph-based and fingerprint-
based similarity measures for virtual screening of 2D chemical structure

35

databases. Journal of Computer-Aided Molecular Design, 16:59–71, 2001.
D. Rouvray. Journal of Chemical Information and Computer Sciences, 32(6):

580–586, 1992.
J. Sadowski, J. Gasteiger, and G. Klebe. Comparison of automatic three-

dimensional model builders using 639 X-ray structures. Journal of Chemical
Information and Computer Sciences, 34:1000–1008, 1994.

Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjölander, R. C. Un-
derwood, and D. Haussler. Stochastic context-free grammars for tRNA
modeling. Nucl. Acids Res., 22:5112–5120, 1994.

G. Salton. Developments in automatic text retrieval. Science, 253:974–980,
1991.

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
Technical Report NC-TR-00-081, NeuroCOLT, 2000.

B. Schölkopf and A. J. Smola. Learning with Kernels, Support Vector Ma-
chines, Regularization, Optimization and Beyond. MIT University Press,
2002. URL http://www.learning-with-kernels.org.

A. Sperduti and A. Starita. Supervised neural networks for the classification
of structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

A. Srinivasan, S. Muggleton, R. D. King, and M. Sternberg. Theories for
mutagenicity: a study of first-order and feature based induction. Artificial
Intelligence, 85:277–299, 1996.

K. Tsuda, T. Kin, and K. Asal. Marginalized kernels for biological sequences.
Bioinformatics, 18, 2002.

A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.
E. Ukkonen. On–line construction of suffix trees. Algorithmica, 14:249–60,

1995.
V. Vapnik. Statistical Learning Theory. John Wiley and Sons, inc., 1998.
J.-P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics, 18,

2002.
J.-P. Vert and M. Kanehisa. Graph-driven features extraction from microarray

data using diffusion kernel and kernel cca. In Adv. in Neural Information
Processing Systems, volume 15, 2003.

S. V. N. Vishwanathan and A. J. Smola. Fast Kernels for Strings and Tree
Matching. In Adv. in Neural Information Processing Systems, volume 15,
2003.

P. Weiner. Linear Pattern Matching Algorithms. In Proc. of the 14th IEEE
Ann. Symp. on Switching and Automata Theory, pages 1–11, 1973.

Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In Proc. of the 14th Int. Conf. on Machine Learning, pages
412–420, 1997. URL citeseer.ist.psu.edu/yang97comparative.html.

C. Yanover and Y. Weiss. Approximate inference and protein-folding. In
S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Infor-
mation Processing Systems 15, pages 1457–1464. MIT Press, Cambridge,
MA, 2003.

36

