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Abstract: Given i.i.d. observations of a random vector X ∈ Rp, we study
the problem of estimating both its covariance matrix Σ∗, and its inverse
covariance or concentration matrix Θ∗ = (Σ∗)−1. When X is multivari-
ate Gaussian, the non-zero structure of Θ∗ is specified by the graph of
an associated Gaussian Markov random field; and a popular estimator for
such sparse Θ∗ is the ℓ1-regularized Gaussian MLE. This estimator is sen-
sible even for for non-Gaussian X, since it corresponds to minimizing an
ℓ1-penalized log-determinant Bregman divergence. We analyze its perfor-
mance under high-dimensional scaling, in which the number of nodes in
the graph p, the number of edges s, and the maximum node degree d, are
allowed to grow as a function of the sample size n. In addition to the pa-
rameters (p, s, d), our analysis identifies other key quantities that control
rates: (a) the ℓ∞-operator norm of the true covariance matrix Σ∗; and (b)
the ℓ∞ operator norm of the sub-matrix Γ∗

SS , where S indexes the graph
edges, and Γ∗ = (Θ∗)−1 ⊗ (Θ∗)−1; and (c) a mutual incoherence or irrep-
resentability measure on the matrix Γ∗ and (d) the rate of decay 1/f(n, δ)

on the probabilities {|Σ̂n
ij − Σ∗

ij | > δ}, where Σ̂n is the sample covariance
based on n samples. Our first result establishes consistency of our estimate
Θ̂ in the elementwise maximum-norm. This in turn allows us to derive con-
vergence rates in Frobenius and spectral norms, with improvements upon
existing results for graphs with maximum node degrees d = o(

√
s). In our

second result, we show that with probability converging to one, the esti-
mate Θ̂ correctly specifies the zero pattern of the concentration matrix Θ∗.
We illustrate our theoretical results via simulations for various graphs and
problem parameters, showing good correspondences between the theoretical
predictions and behavior in simulations.
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1. Introduction

The area of high-dimensional statistics deals with estimation in the “large p,
small n” setting, where p and n correspond, respectively, to the dimensional-
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ity of the data and the sample size. Such high-dimensional problems arise in
a variety of applications, among them remote sensing, computational biology
and natural language processing, where the model dimension may be compa-
rable or substantially larger than the sample size. It is well-known that such
high-dimensional scaling can lead to dramatic breakdowns in many classical
procedures. In the absence of additional model assumptions, it is frequently im-
possible to obtain consistent procedures when p ≫ n. Accordingly, an active line
of statistical research is based on imposing various restrictions on the model–for
instance, sparsity, manifold structure, or graphical model structure–and then
studying the scaling behavior of different estimators as a function of sample size
n, ambient dimension p and additional parameters related to these structural
assumptions.

In this paper, we study the following problem: given n i.i.d. observations
{X(k)}nk=1 of a zero mean random vector X ∈ Rp, estimate both its covariance

matrix Σ∗, and its inverse covariance or concentration matrix Θ∗ :=
(
Σ∗
)−1

.
Perhaps the most natural candidate for estimating Σ∗ is the empirical sample
covariance matrix, but this is known to behave poorly in high-dimensional set-
tings. For instance, when p/n → c > 0, and the samples are drawn i.i.d. from a
multivariate Gaussian distribution, neither the eigenvalues nor the eigenvectors
of the sample covariance matrix are consistent estimators of the population ver-
sions [16, 17]. Accordingly, many regularized estimators have been proposed to
estimate the covariance or concentration matrix under various model assump-
tions. One natural model assumption is that reflected in shrinkage estimators,
such as in the work of Ledoit and Wolf [19], who proposed to shrink the sample
covariance to the identity matrix. An alternative model assumption, relevant in
particular for time series data, is that the covariance or concentration matrix is
banded, meaning that the entries decay based on their distance from the diago-
nal. Furrer and Bengtsson [12] proposed to shrink the covariance entries based
on this distance from the diagonal. Wu and Pourahmadi [30] and Huang et al.
[15] estimate these banded concentration matrices by using thresholding and ℓ1-
penalties respectively, as applied to a Cholesky factor of the inverse covariance
matrix. Bickel and Levina [2] prove the consistency of these banded estimators

so long as (log p)2

n → 0 and the model covariance matrix is banded as well, but
as they note, these estimators depend on the presented order of the variables.
In recent work, Cai et al. [7] have studied such banded covariance models and
derived optimal rates of convergence.

A related class of models are based on positing some kind of sparsity, either
in the covariance matrix, or in the inverse covariance. Bickel and Levina [1]
study thresholding estimators of covariance matrices, assuming that each row
satisfies an ℓq-ball sparsity assumption. In independent work, El Karoui [10] also
studied thresholding estimators of the covariance, but based on an alternative
notion of sparsity, one which captures the number of closed paths of any length
in the associated graph. Other work has studied models in which the inverse
covariance or concentration matrix has an elementwise sparse structure. As will
be clarified in the next section, when the random vector is multivariate Gaussian,
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the set of non-zero entries in the concentration matrix correspond to the set of
edges in an associated Gaussian Markov random field (GMRF). In this setting,
imposing sparsity on the entries of the concentration matrix can be interpreted
as requiring that the graph underlying the GMRF have relatively few edges.
A minimum mean-squared error estimator for such GMRFs with relatively few
edges has been analyzed by Giraud [13]. Another line of recent papers [9, 11, 31]
have proposed an estimator that minimizes the Gaussian negative log-likelihood
regularized by the ℓ1 norm of the entries (or the off-diagonal entries) of the
concentration matrix. The resulting optimization problem is a log-determinant
program, which can be solved in polynomial time with interior point methods [3],
or by faster co-ordinate descent algorithms [9, 11]. In recent work, Rothman et al.
[27] have analyzed some aspects of high-dimensional behavior of this estimator;
assuming that the minimum and maximum eigenvalues of Σ∗ are bounded,
they show that consistent estimates can be achieved in Frobenius and spectral

norm, in particular at the rate O(
√

(s+p) log p
n ). Lam and Fan [18] analyze a

generalization of this estimator based on regularizers more general than the ℓ1
norm. For the case of ℓ1 regularization, they too obtain the same Frobenius
and spectral norm rates as the paper [27]. They also show that the ℓ1-based
estimator succeeds in recovering the zero-pattern of the concentration matrix
Θ∗ so long as the number of edges s scales as s = O(

√
p), and the number of

observations n scales as n = Ω((s+ p) log p).

The focus of this paper is the problem of estimating the concentration matrix
Θ∗ under sparsity conditions. We do not impose specific distributional assump-
tions on X itself, but rather analyze the estimator in terms of the tail behavior
of the maximum deviation maxi,j |Σ̂n

ij − Σ∗
ij | of the sample and population co-

variance matrices. To estimate Θ∗, we use the ℓ1-penalized Gaussian maximum
likelihood estimator that has been proposed in past work [9, 11, 31]. We show it
actually corresponds to minimization of an ℓ1-penalized log-determinant Breg-
man divergence and thus use it without assuming thatX is necessarily multivari-
ate Gaussian. We analyze the behavior of this estimator under high-dimensional
scaling, in which the number of nodes p in the graph, and the maximum node
degree d are all allowed to grow as a function of the sample size n.

In addition to the triple (n, p, d), we also explicitly keep track of certain
other measures of model complexity, that could potentially scale as well. The
first of these measures is the ℓ∞-operator norm of the covariance matrix Σ∗,
which we denote by κΣ∗ := |||Σ∗|||∞. The next quantity involves the Hessian
of the log-determinant objective function, Γ∗ := (Θ∗)−1 ⊗ (Θ∗)−1. When the
distribution of X is multivariate Gaussian, this Hessian has the more explicit
representation Γ∗

(j,k),(ℓ,m) = cov{XjXk, XℓXm}, showing that it measures the
covariances of the random variables associated with each edge of the graph. For
this reason, the matrix Γ∗ can be viewed as an edge-based counterpart to the
usual node-based covariance matrix Σ∗. Using S to index the variable pairs (i, j)
associated with non-zero entries in the inverse covariance. our analysis involves
the quantity κΓ∗ = |||(Γ∗

SS)
−1|||∞. Finally, we also impose a mutual incoherence

or irrepresentability condition on the Hessian Γ∗; this condition is similar to
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assumptions imposed on Σ∗ in previous work on the Lasso [22, 28, 29, 32]. We
provide some examples where the Lasso irrepresentability condition holds, but
our corresponding condition on Γ∗ fails; however, we do not know currently
whether one condition strictly dominates the other.

Our first result establishes consistency of our estimator Θ̂ in the element-
wise maximum-norm, providing a rate that depends on the tail behavior of the
entries in the random matrix Σ̂n−Σ∗. For the special case of sub-Gaussian ran-
dom vectors with concentration matrices having at most d non-zeros per row
(corresponding to graphs with maximal degree d) and at most s off-diagonal
non-zero entries, a corollary of our analysis is consistency in spectral norm
at rate |||Θ̂−Θ∗|||2 = O(

√
min{d2 log p, (s+ p) log p}/n), with high probability.

When the maximum degree d is large relative to the number of non-zeros (i.e.,
d2 ≥ s), this rate is equivalent to the spectral norm rates obtained in past
work [18, 27]. However, when the graph has relatively small degrees (a special
case being bounded degree), then our result provides a faster rate in spectral
norm, but requires stronger conditions than the Rothman et al. [27] result. Sec-
tion 3.5.2 provides a more detailed comparison between our results and this
past work [18, 27]. Under the milder restriction of each element of X having
bounded 4m-th moment, we derive a rate in spectral norm that is substantially
slower—namely, |||Θ̂ −Θ∗|||2 = O(d p1/2m/

√
n)—showing that the familiar loga-

rithmic dependence on the model size p is linked to particular tail behavior of
the distribution of X . Finally, we show that under the same scalings as above,
with probability converging to one, the estimate Θ̂ correctly specifies the zero
pattern of the concentration matrix Θ∗.

The remainder of this paper is organized as follows. In Section 2, we set up
the problem and give some background. Section 3 is devoted to statements of
our main results, as well as discussion of their consequences. Section 4 provides
an outline of the proofs, with the more technical details deferred to appendices.
In Section 5, we report the results of some simulation studies that illustrate our
theoretical predictions.

Notation For the convenience of the reader, we summarize here notation to
be used throughout the paper. Given a vector u ∈ Rd and parameter a ∈
[1,∞], we use ‖u‖a to denote the usual ℓa norm. Given a matrix U ∈ Rp×p and
parameters a, b ∈ [1,∞], we use |||U |||a,b to denote the induced matrix-operator
norm max‖y‖a=1 ‖Uy‖b; see Horn and Johnson [14] for background. Three cases
of particular importance in this paper are the operator norm |||U |||2, which is
equal to the maximal singular value of U ; the ℓ∞/ℓ∞-operator norm, given by

|||U |||∞ := max
j=1,...,p

p∑

k=1

|Ujk|, (1)

and the ℓ1/ℓ1-operator norm, given by |||U |||1 = |||UT |||∞. Finally, we use ‖U‖∞
to denote the element-wise maximum maxi,j |Uij |; note that this is not a matrix
norm, but rather a norm on the vectorized form of the matrix. For any matrix
U ∈ Rp×p, we use vec(U) or equivalently U ∈ Rp2

to denote its vectorized
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form, obtained by stacking up the rows of U . We use 〈〈U, V 〉〉 :=
∑

i,j UijVij to
denote the trace inner product on the space of symmetric matrices. Note that

this inner product induces the Frobenius norm |||U |||F :=
√∑

i,j U
2
ij . Finally, for

asymptotics, we use the following standard notation: we write f(n) = O(g(n))
if f(n) ≤ cg(n) for some constant c < ∞, and f(n) = Ω(g(n)) if f(n) ≥ c′g(n)
for some constant c′ > 0. The notation f(n) ≍ g(n) means that f(n) = O(g(n))
and f(n) = Ω(g(n)). Furthermore, we recall the standard matrix notation ≻
and �. For two k × k matrices A and B, A ≻ B means that A − B is positive
definite and A � B mean A−B is positive semi-definite. For a matrix C and a
set of tuples S, CS denotes the set of numbers (C(j,k))(j,k)∈S .

2. Background and problem set-up

LetX = (X1, . . . , Xp) be a zero mean p-dimensional random vector. The focus of
this paper is the problem of estimating the covariance matrix Σ∗ := E[XXT ] and
concentration matrix Θ∗ := Σ∗−1 of the random vector X given n i.i.d. observa-
tions {X(k)}nk=1. In this section, we provide background, and set up this prob-
lem more precisely. We begin by describing Gaussian graphical models, which
provide motivation for estimation of (sparse) concentration matrices. We then
describe an estimator based on minimizing an ℓ1-regularized log-determinant
divergence; when the data are drawn from a Gaussian graphical model, this
estimator corresponds to ℓ1-regularized maximum likelihood. We conclude by
discussing various distributional assumptions that we consider in this paper.

2.1. Gaussian graphical models

One motivation for this paper is the problem of Gaussian graphical model selec-
tion. Let X = (X1, X2, . . . , Xp) denote a zero-mean Gaussian random vector; its
density can be parameterized by the inverse covariance or concentration matrix
Θ∗ = (Σ∗)−1 ≻ 0, and can be written as

f(x1, . . . , xp; Θ
∗) =

1√
(2π)p det((Θ∗)−1)

exp

{
− 1

2
xTΘ∗x

}
. (2)

Suppose that the variables (X1, . . . , Xp) are associated with the vertex set
V = {1, 2, . . . , p} of an undirected graph G = (V,E). We say that the concen-
tration matrix Θ∗ respects the edge structure1 of the graph if Θ∗

ij = 0 for all
(i, j) /∈ E. The family of Gaussian distributions with this property is known
as a Gauss-Markov random field with respect to the graph G. Figure 1 illus-
trates this correspondence between the graph structure (panel (a)), and the
sparsity pattern of the concentration matrix Θ∗ (panel (b)). The problem of
estimating the entries of the concentration matrix Θ∗ corresponds to parameter

1As a remark on notation, note the difference between this edge set E and the expectation
E of a random variable.
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Fig 1. (a) Simple undirected graph. A Gauss Markov random field has a Gaussian variable
Xi associated with each vertex i ∈ V . This graph has p = 5 vertices, maximum degree d = 3
and s = 6 edges. (b) Zero pattern of the inverse covariance Θ∗ associated with the GMRF in
(a). The set E(Θ∗) corresponds to the off-diagonal non-zeros (white blocks); the diagonal is
also non-zero (grey squares), but these entries do not correspond to edges. The black squares
correspond to non-edges, or zeros in Θ∗.

estimation, while the problem of determining which off-diagonal entries of Θ∗

are non-zero—that is, the set

E(Θ∗) := {i, j ∈ V | i 6= j,Θ∗
ij 6= 0}, (3)

corresponds to the problem of Gaussian graphical model selection.
With a slight abuse of notation, we define the sparsity index s := |E(Θ∗)| as

the total number of non-zero elements in off-diagonal positions of Θ∗; equiva-
lently, this corresponds to twice the number of edges in the case of a Gaussian
graphical model. We also define the maximum degree or row cardinality

d := max
i=1,...,p

∣∣∣∣
{
j ∈ V | Θ∗

ij 6= 0
}∣∣∣∣, (4)

corresponding to the maximum number of non-zeros in any row of Θ∗; this
corresponds to the maximum degree in the graph of the underlying Gaussian
graphical model. Note that we have included the diagonal entry Θ∗

ii in the degree
count, corresponding to a self-loop at each vertex.

It is convenient throughout the paper to use graphical terminology, such as
degrees and edges, even though the distributional assumptions that we impose,
as described in Section 2.3, are milder and hence apply even to distributions
that are not Gaussian MRFs.

2.2. ℓ1-penalized log-determinant divergence

An important set in this paper is the cone

Sp
+ :=

{
A ∈ R

p×p | A = AT , A � 0
}
, (5)

formed by all symmetric positive semi-definite matrices in p dimensions.
We assume that the covariance matrix Σ∗ and concentration matrix Θ∗ of
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the random vector X are strictly positive definite, and so lie in the interior
Sp
++ :=

{
A ∈ Rp×p | A = AT , A ≻ 0

}
of the cone Sp

+.
The focus of this paper is a particular type of M -estimator for the concen-

tration matrix Θ∗, based on minimizing a Bregman divergence between positive
definite matrices. A function is of Bregman type if it is strictly convex, continu-
ously differentiable and has bounded level sets [4, 8]. Any such function induces
a Bregman divergence of the form Dg(A‖B) = g(A)− g(B)− 〈∇g(B), A−B〉.
From the strict convexity of g, it follows that Dg(A‖B) ≥ 0 for all A and B,
with equality if and only if A = B.

As a candidate Bregman function, consider the log-determinant barrier func-
tion, defined for any matrix A ∈ Sp

+ by

g(A) :=

{
− log det(A) if A ≻ 0

+∞ otherwise.
(6)

As is standard in convex analysis, we view this function as taking values in
the extended reals R∗ = R ∪ {+∞}. With this definition, the function g is
strictly convex, and its domain is the set of strictly positive definite matrices.
Moreover, it is continuously differentiable over its domain, with ∇g(A) = −A−1;
see Boyd and Vandenberghe [3] for further discussion. The Bregman divergence
corresponding to this log-determinant Bregman function g is given by

Dg(A‖B) := − log detA+ log detB + 〈〈B−1, A−B〉〉, (7)

valid for any A,B ∈ Sp
+ that are strictly positive definite. This divergence sug-

gests a natural way to estimate concentration matrices—namely, by minimizing
the divergence Dg(Θ‖Θ∗)—or equivalently, by minimizing the function

min
Θ≻0

{
〈〈Θ, Σ∗〉〉 − log detΘ

}
, (8)

where we have discarded terms independent of Θ, and used the fact that the
inverse of the concentration matrix is the covariance matrix (i.e., (Θ∗)−1 =
Σ∗ = E[XXT ]). Of course, the convex program (8) cannot be solved without
knowledge of the true covariance matrix Σ∗, but one can take the standard
approach of replacing Σ∗ with an empirical version, with the possible addition
of a regularization term.

In this paper, we analyze a particular instantiation of this strategy. Given n
samples, we define the sample covariance matrix

Σ̂n :=
1

n

n∑

k=1

X(k)(X(k))T . (9)

To lighten notation, we occasionally drop the superscript n, and simply write Σ̂
for the sample covariance. We also define the off-diagonal ℓ1 regularizer

‖Θ‖1,off :=
∑

i6=j

|Θij |, (10)
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where the sum ranges over all i, j = 1, . . . , p with i 6= j. Given some regular-
ization constant λn > 0, we consider estimating Θ∗ by solving the following
ℓ1-regularized log-determinant program:

Θ̂ := arg min
Θ∈Sp

++

{
〈〈Θ, Σ̂n〉〉 − log det(Θ) + λn‖Θ‖1,off

}
, (11)

which returns a symmetric positive definite matrix Θ̂. As shown in Appendix A,
for any λn > 0 and sample covariance matrix Σ̂n with strictly positive diagonal
entries, this convex optimization problem has a unique optimum, so there is no
ambiguity in equation (11). When the data is actually drawn from a multivariate
Gaussian distribution, then the problem (11) is simply ℓ1-regularized maximum
likelihood. As described in Section 2.1, the equality Θij = 0 indicates the absence
of an edge between nodes i and j for the corresponding Gaussian graphical
model, so the penalty ‖Θ‖1,off encourages a sparse graphical model.

Remarks It is worth noting that in principle, one could use other Bregman
divergences Dg in the population equation (8); examples include the von Neu-
mann Entropy Dvn(A||B) = Tr[A(logA − logB) − A + B], or the Frobenius
divergence, DF (A||B) = ‖ vec(A)−vec(B)‖22. These different choices would lead
to alternative forms of regularized divergence minimizations (11) for estimating
the concentration matrix, and are an interesting direction for future work. Let
us remark here on three properties of the log-determinant Bregman function (6)
that make it especially suitable to estimating the concentration matrix. First,
the log-determinant function acts as a barrier to the positive definite cone S+

(see Boyd and Vandenberghe [3]). This makes the corresponding problem (11)
easier to optimize, and has been taken advantage of by the optimization al-
gorithms in [9, 11]. Second, it is also helpful that the population optimization
problem (8) involves only the population covariance Σ∗ and not its inverse Θ∗;
this feature allowed us to take the standard approach of replacing Σ∗ with an
empirical version Σ̂ (and adding the regularization function). In contrast, substi-
tuting other divergences Dg(Θ‖Θ∗) for instance the Frobenius divergence in (8)
could involve the population concentration matrix Θ∗ itself, for which no ready
sample version exists in high-dimensional regimes (since the sample covariance

matrix Σ̂ is not invertible if p > n.) Third, the log-determinant divergence gives
rise to likelihood in the multivariate Gaussian case.

We also observe that the diagonal entries of the covariance matrix Σ∗ cor-
respond to variances, while its off-diagonal entries correspond to pairwise co-
variances. For a general random vector, the diagonal and off-diagonal entries of
the concentration matrix Θ∗ do not lend themselves to natural interpretations.
However, when X is multivariate Gaussian, as discussed in Section 2.1, the
off-diagonal entries of Θ∗ correspond to the edge-weights in the corresponding
Gaussian graphical model. Consequently, imposing a prior preference for sparse
graphs is a natural motivation for using the regularizer (10), corresponding to
the ℓ1-norm applied to the off-diagonal entries of the concentration matrix. Of
course, other priors, on either the covariance or concentration matrix, could well
motivate the use of different regularization functions.
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2.3. Tail conditions

In this section, we describe the tail conditions that underlie our analysis. Since
the estimator (11) is based on using the sample covariance Σ̂n as a surrogate
for the (unknown) covariance Σ∗, any type of consistency requires bounds on

the difference Σ̂n − Σ∗. In particular, we define the following tail condition:

Definition 1 (Tail conditions). The random vector X satisfies tail condition
T (f, v∗) if there exists a constant v∗ ∈ (0,∞] and a function f : N× (0,∞) →
(0,∞) such that for any (i, j) ∈ V × V :

P[|Σ̂n
ij − Σ∗

ij | ≥ δ] ≤ 1/f(n, δ) for all δ ∈ (0, 1/v∗]. (12)

We adopt the convention 1/0 := +∞, so that the value v∗ = 0 indicates the
inequality holds for any δ ∈ (0,∞).

Two important examples of the tail function f are the following:

(a) an exponential-type tail function, meaning that f(n, δ) = exp(c n δa), for
some scalar c > 0, and exponent a > 0; and

(b) a polynomial-type tail function, meaning that f(n, δ) = c nm δ2m, for some
positive integer m ∈ N and scalar c > 0.

As might be expected, if X is multivariate Gaussian, then the deviations of sam-
ple covariance matrix have an exponential-type tail function with a = 2. A bit
more generally, in the following subsections, we provide broader classes of dis-
tributions whose sample covariance entries satisfy exponential and a polynomial
tail bounds (see Lemmata 1 and 2 respectively).

Given a larger number of samples n, we expect the tail probability bound
1/f(n, δ) to be smaller, or equivalently, for the tail function f(n, δ) to larger.
Accordingly, we require that f is monotonically increasing in n, so that for each
fixed δ > 0, we can define the inverse function

nf (δ; r) := argmax
{
n | f(n, δ) ≤ r

}
. (13)

Similarly, we expect that f is monotonically increasing in δ, so that for each
fixed n, we can define the inverse in the second argument

δf (r;n) := argmax
{
δ | f(n, δ) ≤ r

}
, (14)

where r ∈ [1,∞). For future reference, we note a simple consequence of the
monotonicity of the tail function f—namely

n > nf (δ, r) for some δ > 0 =⇒ δf (n, r) ≤ δ. (15)

The inverse functions nf and δf play an important role in describing the be-
havior of our estimator. We provide concrete examples in the following two
subsections.
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2.3.1. Sub-Gaussian distributions

In this subsection, we study the case of i.i.d. observations of sub-Gaussian ran-
dom variables.

Definition 2. A zero-mean random variable Z is sub-Gaussian if there exists
a constant σ ∈ (0,∞) such that

E[exp(tZ)] ≤ exp(σ2 t2/2) for all t ∈ R. (16)

By the Chernoff bound, this upper bound (16) on the moment-generating
function implies a two-sided tail bound of the form

P[|Z| > z] ≤ 2 exp

(
− z2

2σ2

)
. (17)

Naturally, any zero-mean Gaussian variable with variance σ2 satisfies the
bounds (16) and (17). In addition to the Gaussian case, the class of sub-Gaussian
variates includes any bounded random variable (e.g., Bernoulli, multinomial,
uniform), any random variable with strictly log-concave density [6, 20], and any
finite mixture of sub-Gaussian variables.

The following lemma, proved in Appendix D, shows that the entries of the
sample covariance based on i.i.d. samples of sub-Gaussian random vector satisfy
an exponential-type tail bound with exponent a = 2. The argument is along the
lines of a result due to Bickel and Levina [1], but with more explicit control of
the constants in the error exponent:

Lemma 1. Consider a zero-mean random vector (X1, . . . , Xp) with covariance
Σ∗ such that each Xi/

√
Σ∗

ii is sub-Gaussian with parameter σ. Given n i.i.d.

samples, the associated sample covariance Σ̂n satisfies the tail bound

P
[
|Σ̂n

ij − Σ∗
ij | > δ

]
≤ 4 exp

{
− nδ2

128(1 + 4σ2)2 maxi(Σ∗
ii)

2

}
,

for all δ ∈
(
0,maxi(Σ

∗
ii) 8(1 + 4σ2)

)
.

Thus, the sample covariance entries the tail condition T (f, v∗) with v∗ =[
maxi(Σ

∗
ii) 8(1 + 4σ2)

]−1
, and an exponential-type tail function with a = 2—

namely

f(n, δ) =
1

4
exp(c∗nδ

2), with c∗ =
[
128(1 + 4σ2)2 max

i
(Σ∗

ii)
2
]−1

(18)

A little calculation shows that the associated inverse functions take the form

δf (r;n) =

√
log(4 r)

c∗ n
, and nf (r; δ) =

log(4 r)

c∗δ2
. (19)
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2.3.2. Tail bounds with moment bounds

In the following lemma, proved in Appendix E, we show that given i.i.d. obser-
vations from random variables with bounded moments, the sample covariance
entries satisfy a polynomial-type tail bound. See the book by Petrov [24] for
related results on tail bounds for variables with bounded moments.

Lemma 2. Suppose there exists a positive integer m and scalar Km ∈ R such
that for i = 1, . . . , p,

E

[(
Xi√
Σ∗

ii

)4m
]

≤ Km. (20)

For i.i.d. samples {X(k)
i }nk=1, the sample covariance matrix Σ̂n satisfies the

bound

P

[∣∣∣Σ̂n
ij − Σ∗

ij

∣∣∣ > δ
]

≤
{
22m(maxi Σ

∗
ii)

2m Cm(Km + 1)
}

nm δ2m
, (21)

where Cm is a constant depending only on m.

Thus, in this case, the sample covariance satisfies the tail condition T (f, v∗)
with v∗ = 0, so that the bound holds for all δ ∈ (0,∞), and with the polynomial-
type tail function

f(n, δ) = c∗n
mδ2m where c∗ = 1/

{
22m(maxi Σ

∗
ii)

2m (Km + 1)
}
. (22)

Finally, a little calculation shows that in this case, the inverse tail functions take
the form

δf (n, r) =
(r/c∗)

1/2m

√
n

, and nf (δ, r) =
(r/c∗)

1/m

δ2
. (23)

3. Main results and some consequences

In this section, we state our main results, and discuss some of their consequences.
We begin in Section 3.1 by stating some conditions on the true concentration
matrix Θ∗ required in our analysis, including a particular type of incoherence
or irrepresentability condition. Section 3.1.2 is devoted to illustrations of our
irrepresentability assumption for some simple graphs. In Section 3.2, we state
our first main result—namely, Theorem 1 on consistency of the estimator Θ̂, and
the rate of decay of its error in elementwise ℓ∞ norm. Section 3.3 is devoted to
Theorem 2 on the model selection consistency of the estimator. In Section 3.4,
we state and prove some corollaries of Theorem 1, regarding rates in Frobenius
and spectral norms. Finally, in Section 3.5 we compare our results to some
related works, including a discussion on the relation between the log-determinant
estimator and the ordinary Lasso (neighborhood-based approach) as methods
for graphical model selection.
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3.1. Conditions on covariance and Hessian

Our results involve some quantities involving the Hessian of the log-determinant
barrier (6), evaluated at the true concentration matrix Θ∗. Using standard re-
sults on matrix derivatives [3], it can be shown that this Hessian takes the form

Γ∗ := ∇2
Θg(Θ)

∣∣∣
Θ=Θ∗

= Θ∗−1 ⊗Θ∗−1, (24)

where ⊗ denotes the Kronecker matrix product. By definition, Γ∗ is a p2 × p2

matrix indexed by vertex pairs, so that entry Γ∗
(j,k),(ℓ,m) corresponds to the sec-

ond partial derivative ∂2g
∂Θjk∂Θℓm

, evaluated at Θ = Θ∗. When X has multivariate

Gaussian distribution, then Γ∗ is the Fisher information of the model, and by
standard results on cumulant functions in exponential families [5], we have the
more specific expression Γ∗

(j,k),(ℓ,m) = cov{XjXk, XℓXm}. For this reason, Γ∗

can be viewed as an edge-based counterpart to the usual covariance matrix Σ∗.
The set of non-zero off-diagonal entries in the model concentration matrix is

denoted

E(Θ∗) := {(i, j) ∈ V × V | i 6= j,Θ∗
ij 6= 0}, (25)

and we let S(Θ∗) = {E(Θ∗)∪{(1, 1), . . . , (p, p)} be the augmented set including
the diagonal elements. We use Sc(Θ∗) to denote the complement of S(Θ∗) in the
set {1, . . . , p} × {1, . . . , p}, corresponding to all pairs (ℓ,m) for which Θ∗

ℓm = 0.
When it is clear from context, we adopt the shorthand S and Sc respectively;
also note that |S| = |E(Θ∗)|+ p = s+ p. Finally, for any two subsets T and T ′

of V × V , we use Γ∗
TT ′ to denote the |T | × |T ′| matrix with rows and columns

of Γ∗ indexed by T and T ′ respectively.
Our main results involve the ℓ∞/ℓ∞ norm applied to the covariance matrix

Σ∗, and to the inverse of a sub-block of the Hessian Γ∗. First, we define the term

κΣ∗ := |||Σ∗|||∞ =

(
max

i=1,...,p

p∑

j=1

|Σ∗
ij |
)
, (26)

corresponding to the ℓ∞-operator norm of the true covariance matrix Σ∗. Now
consider the the matrix

Γ∗
SS := [Θ∗−1 ⊗Θ∗−1]SS ∈ R

(s+p)×(s+p),

and the parameter

κΓ∗ := |||(Γ∗
SS)

−1|||∞. (27)

Our analysis keeps explicit track of these quantities, so that they can scale in a
non-trivial manner with the problem dimension p.

Finally, we assume the Hessian satisfies the following type of mutual incoher-
ence or irrepresentability condition:
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Assumption 1. There exists some α ∈ (0, 1] such that

max
e∈Sc

‖Γ∗
eS(Γ

∗
SS)

−1‖1 ≤ (1− α). (28)

The underlying intuition is that this assumption limits the influence that the
non-edge terms, indexed by Sc, can have on the edge-based terms, indexed by S.
To elaborate on this intuition, let us define the zero-mean edge random variables
by

Y(j,k) := XjXk − E[XjXk], for all j, k ∈ {1, 2, . . . , p},

and note that Γ∗
(j,k),(ℓ,m) = E[Y(j,k)Y(ℓ,m)]. Defining the vector YS := {Y(j,k),

(j, k) ∈ S}, then the incoherence condition reduces to

max
e∈Sc

‖E(YeY
T
S )E(YSY

T
S )−1‖1 ≤ (1− α).

This condition shares an exact parallel with the incoherence condition for the
Lasso [22, 28, 32], except as applied to the edge variables Y(j,k) as opposed
to the node variables Xj . It enforces the requirement that there should be no
edge variable Y(j,k) that is not included in the graph (i.e., (j, k) ∈ Sc) that is
highly correlated with variables within the true edge-set ES . In the following
section, we illustrate the form taken by Assumption 1 for some concrete cases
of graphical models.

A remark on notation: although our analysis allows the quantities κΣ∗ , κΓ∗ as
well as the model size p and maximum node-degree d to grow with the sample
size n, we suppress this dependence on n so as to simplify notation.

3.1.1. Illustration of irrepresentability: Diamond graph

Consider the following Gaussian graphical model example from Meinshausen
[21]. Figure 2(a) shows a diamond-shaped graph G = (V,E), with vertex set
V = {1, 2, 3, 4} and with all edges except (1, 4). Introducing a parameter ρ ∈

1

2

3

4 1

2 3

4

(a) (b)

Fig 2. (a) Graph of the example discussed by Meinshausen [21]. (b) A simple 4-node star
graph.
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[0, 1/
√
2], we consider the family of covariance matrices Σ∗ with diagonal entries

Σ∗
ii = 1 for all i ∈ V ; off-diagonal elements Σ∗

ij = ρ for all edges (i, j) ∈
E\{(2, 3)}; Σ∗

23 = 0; and finally the entry corresponding to the non-edge (1, 4)
is set as Σ∗

14 = 2ρ2. It can verified that (Σ∗)−1 respects the structure of the
graph. For this family, Meinshausen [21] showed that—for any sample size—the

ℓ1-penalized log-determinant estimator Θ̂ fails to recover the graph structure if
ρ > −1 + (3/2)1/2 ≈ 0.23. It is instructive to compare this necessary condition
to the sufficient condition provided in our analysis, namely the incoherence
Assumption 1 as applied to the Hessian Γ∗. For this particular example, a little
calculation shows that Assumption 1 is equivalent to the constraint

4|ρ|(|ρ|+ 1) < 1,

an inequality which holds for all ρ ∈ (−0.2017, 0.2017). Note that the upper
value 0.2017 is just below the necessary threshold discussed by Meinshausen
[21]. We can also compare this to the irrepresentability conditions for the Lasso
problems obtained by regressing each node on its neighbors (see the discussion
of the neighborhood-based approach of Meinshausen and Bühlmann [22] in Sec-
tion 3.5.1); which requires only that 2|ρ| < 1, i.e., ρ ∈ (−0.5, 0.5). Thus, in the
regime |ρ| ∈ [0.2017, 0.5), the irrepresentability condition for the neighborhood-
based approach holds while the log-determinant counterpart fails.

3.1.2. Illustration of irrepresentability: Star graphs

A second interesting example is the star-shaped graphical model, illustrated in
Figure 2(b), which consists of a single hub node connected to the rest of the
spoke nodes. We consider a four node graph, with vertex set V = {1, 2, 3, 4} and
edge-set E = {(1, a) | a ∈ {2, 3, 4}}. The covariance matrix Σ∗ is parameterized
by the correlation parameter ρ ∈ [−1, 1]: the diagonal entries are set to Σ∗

ii = 1,
for all i ∈ V ; the entries corresponding to edges are set to Σ∗

ij = ρ for (i, j) ∈ E;

while the non-edge entries are set as Σ∗
ij = ρ2 for (i, j) /∈ E. Consequently, for

this particular example, Assumption 1 reduces to the constraint |ρ|(|ρ|+2) < 1,
which holds for all ρ ∈ (−0.414, 0.414). On the other hand, the irrepresentabil-
ity condition for the nodewise Lasso problems (cf. the neighborhood-based ap-
proach in Meinshausen and Bühlmann [22]) allows for the full range ρ ∈ (−1, 1).
Thus, there is again an interval |ρ| ∈ [0.414, 1) in which the irrepresentability
condition for the neighborhood-based approach holds while the log-determinant
counterpart fails.

3.2. Rates in elementwise ℓ∞-norm

We begin with a result that provides sufficient conditions on the sample size n
for bounds in the elementwise ℓ∞-norm. This result is stated in terms of the tail
function f , and its inverses nf and δf (equations (13) and (14)), and so covers
a general range of possible tail behaviors. So as to make it more concrete, we



Rates for ℓ1-penalized log-determinant divergences 949

follow the general statement with corollaries for the special cases of exponential-
type and polynomial-type tail functions, corresponding to sub-Gaussian and
moment-bounded variables respectively.

In the theorem statement, the choice of regularization constant λn is specified
in terms of a user-defined parameter τ > 2. Larger choices of τ yield faster rates
of convergence in the probability with which the claims hold, but also lead to
more stringent requirements on the sample size.

Theorem 1. Consider a distribution satisfying the incoherence assumption (28)
with parameter α ∈ (0, 1], and the tail condition (12) with parameters T (f, v∗).

Let Θ̂ be the unique solution (cf. Lemma 3 on page 957) of the log-determinant
program (11) with regularization parameter λn = (8/α) δf (n, p

τ ) for some τ > 2.
Then, if the sample size is lower bounded as

n > nf

(
1
/
max

{
v∗, 6

(
1 + 8α−1

)
d max{κΣ∗κΓ∗ , κ3

Σ∗κ2
Γ∗}
}
, pτ

)
, (29)

then with probability greater than 1− 1/pτ−2 → 1, we have:

(a) The estimate Θ̂ satisfies the elementwise ℓ∞-bound:

‖Θ̂−Θ∗‖∞ ≤
{
2
(
1 + 8α−1

)
κΓ∗

}
δf (n, p

τ ). (30)

(b) It specifies an edge set E(Θ̂) that is a subset of the true edge set E(Θ∗),
and includes all edges (i, j) with |Θ∗

ij | >
{
2(1 + 8α−1)κΓ∗

}
δf (n, p

τ ).

If we assume that the various quantities κΓ∗ , κΣ∗ , α remain constant as a func-
tion of (n, p, d), we have the elementwise ℓ∞ bound ‖Θ̂−Θ∗‖∞ = O(δf (n, p

τ )),
so that the inverse tail function δf (n, p

τ ) from equation (14) specifies rate of
convergence in the element-wise ℓ∞-norm. In the following section, we derive
the consequences of this ℓ∞-bound for two specific tail functions, namely those
of exponential-type with a = 2, and polynomial-type tails (see Section 2.3).
Turning to the other factors involved in the theorem statement, the quantities
κΣ∗ and κΓ∗ measure the sizes of the entries in the covariance matrix Σ∗ and
inverse Hessian (Γ∗)−1 respectively. Finally, the factor (1 + 8

α ) depends on the
irrepresentability condition, growing in particular as the incoherence parameter
α approaches 0.

3.2.1. Exponential-type tails

We now discuss the consequences of Theorem 1 for distributions in which the
sample covariance satisfies an exponential-type tail bound with exponent a =
2. In particular, recall from Lemma 1 that such a tail bound holds when the
variables are sub-Gaussian.

Corollary 1. Under the same conditions as Theorem 1, suppose moreover that
the variables Xi/

√
Σ∗

ii are sub-Gaussian with parameter σ, and the samples are
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drawn independently. Then if the sample size n satisfies the bound

n > C1 d2
(
1 +

8

α

)2 (
τ log p+ log 4

)
(31)

where C1 :=
{
48

√
2 (1 + 4σ2) maxi(Σ

∗
ii) max{κΣ∗κΓ∗ , κ3

Σ∗κ2
Γ∗}
}2

, then with

probability greater than 1− 1/pτ−2, the estimate Θ̂ satisfies the bound,

‖Θ̂−Θ∗‖∞ ≤
{
16

√
2 (1 + 4σ2) max

i
(Σ∗

ii) (1 + 8α−1)κΓ∗

}
√

τ log p+ log 4

n
.

Proof. From Lemma 1, when the rescaled variables Xi/
√
Σ∗

ii are sub-Gaussian
with parameter σ, the sample covariance entries satisfies a tail bound T (f, v∗)

with with v∗ =
[
maxi(Σ

∗
ii) 8(1+4σ2)

]−1
and f(n, δ) = (1/4) exp(c∗nδ

2), where

c∗ =
[
128(1 + 4σ2)2 maxi(Σ

∗
ii)

2
]−1

. As a consequence, for this particular model,

the inverse functions δf (n, p
τ ) and nf(δ, p

τ ) take the form

δf (n, p
τ ) =

√
log(4 pτ )

c∗ n
=
√
128(1 + 4σ2)2 max

i
(Σ∗

ii)
2

√
τ log p+ log 4

n
, and

(32a)

nf (δ, p
τ ) =

log(4 pτ )

c∗δ2
= 128(1 + 4σ2)2 max

i
(Σ∗

ii)
2

(
τ log p+ log 4

δ2

)
. (32b)

Substituting these forms into the claim of Theorem 1 and doing some simple
algebra yields the stated corollary.

When κΓ∗ , κΣ∗ , α remain constant as a function of (n, p, d), the corollary can
be summarized succinctly as a sample size of n = Ω(d2 log p) samples ensures

that an elementwise ℓ∞ bound ‖Θ̂−Θ∗‖∞ = O
(√

log p
n

)
holds with high proba-

bility. In practice, one frequently considers graphs with maximum node degrees
d that either remain bounded, or that grow sub-linearly with the graph size
(i.e., d = o(p)). In such cases, the sample size allowed by the corollary can
be substantially smaller than the graph size, so that for sub-Gaussian random
variables, the method can succeed in the p ≫ n regime.

3.2.2. Polynomial-type tails

We now state a corollary for the case of a polynomial-type tail function, such
as those ensured by the case of random variables with appropriately bounded
moments.

Corollary 2. Under the assumptions of Theorem 1, suppose the rescaled vari-
ables Xi/

√
Σ∗

ii have 4mth moments upper bounded by Km, and the sampling is
i.i.d. Then if the sample size n satisfies the bound

n > C2 d
2

(
1 +

8

α

)2

pτ/m, (33)
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where C2 :=
{
12m [m(Km+1)]

1
2m maxi(Σ

∗
ii)max{κ2

Σ∗κΓ∗ , κ4
Σ∗κ2

Γ∗}
}2

, then with

probability greater than 1− 1/pτ−2, the estimate Θ̂ satisfies the bound,

‖Θ̂−Θ∗‖∞ ≤
{
4m[m(Km + 1)]

1
2m

(
1 +

8

α

)
κΓ∗

} √
pτ/m

n
.

Proof. Recall from Lemma 2 that when the rescaled variables Xi/
√
Σ∗

ii have

bounded 4mth moments, then the sample covariance Σ̂ satisfies the tail condition
T (f, v∗) with v∗ = 0, and with f(n, δ) = c∗n

mδ2m with c∗ defined as c∗ =
1/
{
m2m+122m(maxiΣ

∗
ii)

2m (Km + 1)
}
. As a consequence, for this particular

model, the inverse functions take the form

δf (n, p
τ ) =

(pτ/c∗)
1/2m

√
n

= {2m[m(Km + 1)]
1

2m max
i

Σ∗
ii}
√

pτ/m

n
, and

(34a)

nf (δ, p
τ ) =

(pτ/c∗)
1/m

δ2
= {2m[m(Km + 1)]

1
2m max

i
Σ∗

ii}2
(
pτ/m

δ2

)
. (34b)

The claim then follows by substituting these expressions into Theorem 1 and
performing some algebra.

When the quantities (κΓ∗ , κΣ∗ , α) remain constant as a function of (n, p, d),
Corollary 2 can be summarized succinctly as n = Ω(d2 pτ/m) samples are
sufficient to achieve a convergence rate in elementwise ℓ∞-norm of the order

‖Θ̂−Θ∗‖∞ = O
(√

pτ/m

n

)
, with high probability. Consequently, both the re-

quired sample size and the rate of convergence of the estimator are polyno-
mial in the number of variables p. It is worth contrasting these rates with the
case of sub-Gaussian random variables, where the rates have only logarithmic
dependence on the problem size p.

3.3. Model selection consistency

Part (b) of Theorem 1 asserts that the edge set E(Θ̂) returned by the estimator
is contained within the true edge set E(Θ∗)—meaning that it correctly excludes
all non-edges—and that it includes all edges that are “large” relative to the
δf (n, p

τ ) decay of the error. The following result, essentially a minor refinement
of Theorem 1, provides sufficient conditions linking the sample size n and the
minimum value

θmin := min
(i,j)∈E(Θ∗)

|Θ∗
ij | (35)

for model selection consistency. More precisely, define the event

M(Θ̂; Θ∗) :=
{
sign(Θ̂ij) = sign(Θ∗

ij) ∀(i, j) ∈ E(Θ∗)
}

(36)

that the estimator Θ̂ has the same edge set as Θ∗, and moreover recovers the
correct signs on these edges. With this notation, we have:
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Theorem 2. Under the same conditions as Theorem 1, suppose that the sample
size satisfies the lower bound

n > nf

(
1
/
max

{
2κΓ∗(1 + 8α−1) θ−1

min, v∗,

6
(
1 + 8α−1

)
d max{κΣ∗κΓ∗ , κ3

Σ∗κ2
Γ∗}
}
, pτ
)
. (37)

Then the estimator is model selection consistent with high probability as p → ∞,

P
[
M(Θ̂; Θ∗)

]
≥ 1− 1/pτ−2 → 1. (38)

In comparison to Theorem 1, the sample size requirement (37) differs only

in the additional term
2κΓ∗ (1+ 8

α )

θmin
involving the minimum value. This term can

be viewed as constraining how quickly the minimum can decay as a function of
(n, p), as we illustrate with some concrete tail functions.

3.3.1. Exponential-type tails

Recall the setting of Section 2.3.1, where the random variables {X(k)
i /

√
Σ∗

ii} are
sub-Gaussian with parameter σ. Let us suppose that the parameters (κΓ∗ , κΣ∗ , α)
are viewed as constants (not scaling with (p, d). Then, using the expression (32)
for the inverse function nf in this setting, a corollary of Theorem 2 is that a
sample size

n = Ω
(
(d2 + θ−2

min) τ log p
)

(39)

is sufficient for model selection consistency with probability greater than 1 −
1/pτ−2. Alternatively, we can state that n = Ω(τd2 log p) samples are sufficient,

as along as the minimum value scales as θmin = Ω(
√

log p
n ).

3.3.2. Polynomial-type tails

Recall the setting of Section 2.3.2, where the rescaled random variablesXi/
√
Σ∗

ii

have bounded 4mth moments. Using the expression (34) for the inverse function
nf in this setting, a corollary of Theorem 2 is that a sample size

n = Ω
(
(d2 + θ−2

min) p
τ/m

)
(40)

is sufficient for model selection consistency with probability greater than 1 −
1/pτ−2. Alternatively, we can state than n = Ω(d2pτ/m) samples are sufficient,
as long as the minimum value scales as θmin = Ω(pτ/(2m)/

√
n).
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3.4. Rates in Frobenius and spectral norm

We now derive some corollaries of Theorem 1 concerning estimation of Θ∗ in
Frobenius norm, as well as the spectral norm. Recall that s = |E(Θ∗)| denotes
the total number of off-diagonal non-zeros in Θ∗.

Corollary 3. Under the same assumptions as Theorem 1, with probability at
least 1− 1/pτ−2, the estimator Θ̂ satisfies

|||Θ̂ −Θ∗|||F ≤
{
2κΓ∗

(
1 +

8

α

)}√
s+ p δf (n, p

τ ), and (41a)

|||Θ̂ −Θ∗|||2 ≤
{
2κΓ∗

(
1 +

8

α

)}
min{√s+ p, d} δf (n, p

τ ). (41b)

Proof. With the shorthand notation ν := 2κΓ∗(1 + 8/α) δf(n, p
τ ), Theorem 1

guarantees that, with probability at least 1 − 1/pτ−2, ‖Θ̂ − Θ∗‖∞ ≤ ν. Since

the edge set of Θ̂ is a subset of that of Θ∗, and Θ∗ has at most p+ s non-zeros
(including the diagonal elements), we conclude that

|||Θ̂− Θ∗|||F =

[ p∑

i=1

(Θ̂ii −Θ∗
ii)

2 +
∑

(i,j)∈E

(Θ̂ij −Θ∗
ij)

2

]1/2

≤ ν
√
s+ p,

from which the bound (41a) follows. On the other hand, for a symmetric matrix,
we have

|||Θ̂ −Θ∗|||2 ≤ |||Θ̂ −Θ∗|||∞ ≤ dν, (42)

using the definition of the ν∞-operator norm, and the fact that Θ̂ and Θ∗ have at
most d non-zeros per row. Since the Frobenius norm upper bounds the spectral
norm, the bound (41b) follows.

3.4.1. Exponential-type tails

For the exponential tail function case where the rescaled random variables
Xi/

√
Σ∗

ii are sub-Gaussian with parameter σ, we can use the expression (32) for

the inverse function δf to derive rates in Frobenius and spectral norms. When
the quantities κΓ∗ , κΣ∗ , α remain constant, these bounds can be summarized
succinctly as a sample size n = Ω(d2 log p) is sufficient to guarantee the bounds

|||Θ̂ −Θ∗|||F = O
(√

(s+ p) log p

n

)
, and (43a)

|||Θ̂ −Θ∗|||2 = O
(√

min{s+ p, d2} log p

n

)
, (43b)

with probability at least 1− 1/pτ−2.
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3.4.2. Polynomial-type tails

Similarly, let us again consider the polynomial tail case, in which the rescaled
variates Xi/

√
Σ∗

ii have bounded 4mth moments and the samples are drawn
i.i.d. Using the expression (34) for the inverse function we can derive rates in
the Frobenius and spectral norms. When the quantities κΓ∗ , κΣ∗ , α are viewed
as constant, we are guaranteed that a sample size n = Ω(d2 pτ/m) is sufficient
to guarantee the bounds

|||Θ̂−Θ∗|||F = O
(√

(s+ p) pτ/m

n

)
, and (44a)

|||Θ̂−Θ∗|||2 = O
(√

min{s+ p, d2} pτ/m
n

)
, (44b)

with probability at least 1− 1/pτ−2.

Remark It is worth observing that our results also have implications for esti-
mating the covariance matrix Σ∗ in operator norm. By Lemma 3, the estimated
concentration matrix Θ̂ is positive definite, and hence can be inverted to obtain
an estimate of the covariance matrix, and we state explicit rates in Corollary 4
on pp. 15 of our extended tech-report [25]. These rates are equivalent to those
obtained by and Levina [1] and El Karoui [10] for thresholding estimators, as
applied to sparse covariance matrices, whereas our rates are applicable to sparse
inverse covariance matrices.

3.5. Comparisons to other results

In this section, we compare our results against those in some related work.

3.5.1. Comparison to neighbor-based graphical model selection

Suppose that X follows a multivariate Gaussian distribution, so that the struc-
ture of the concentration matrix Θ∗ specifies the structure of a Gaussian graphi-
cal model. In this case, the neighborhood-based method, first proposed by Mein-
shausen and Bühlmann [22], estimates the full graph structure by performing an
ℓ1-regularized linear regression (Lasso)—of the form Xi =

∑
j 6=i θijXj + W—

of each node on its neighbors and using the support of the estimated regres-
sion vector θ to predict the neighborhood set. These neighborhoods are then
combined, by either an OR rule or an AND rule, to estimate the full graph.
It is interesting to compare our conditions for graphical model consistency of
the log-determinant approach, as specified in Theorem 2, to those of the Lasso
based neighborhood selection method. Various aspects of the high-dimensional
model selection consistency of the Lasso are now understood [22, 29, 32]. It is
known that mutual incoherence or irrepresentability conditions are necessary
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and sufficient for its success [28, 32]. In terms of scaling, Wainwright [29] shows
that the Lasso succeeds with high probability if and only if the sample size scales
as n ≍ c({d+ θ−2

min} log p), assuming sub-Gaussian noise where c is a constant
determined by the covariance matrix Σ∗. By a union bound over the p nodes
in the graph, it then follows that the neighbor-based graph selection method in
turn succeeds with high probability if n = Ω({d+ θ−2

min} log p).
For comparison, consider the application of Theorem 2 to the case where the

variables are sub-Gaussian (which includes the Gaussian case). For this setting,
we have seen that the scaling required by Theorem 2 is n = Ω({d2+θ−2

min} log p),
so that the dependence of the log-determinant approach on θmin is identical, but
it depends quadratically on the maximum degree d. We suspect that that the
quadratic dependence d2 might be an artifact of our analysis, but have not
yet been able to reduce it to d. Otherwise, the primary difference between the
two methods is in the nature of the irrepresentability assumptions that are
imposed: our method requires Assumption 1 on the Hessian Γ∗, whereas the
neighborhood-based method imposes the same type of condition on a set of p
covariance matrices, each of size (p − 1) × (p − 1), one for each node of the
graph. In section 3.1.2 we showed two cases where the Lasso irrepresentability
condition holds, while the log-determinant requirement fails. However, in gen-
eral, we do not know whether the log-determinant irrepresentability strictly is
more restrictive than its analog for the Lasso.

3.5.2. Comparison to past work

We now discuss in some detail the differences between our result and past
work [18, 27]. In the first paper to analyze high-dimensional aspects of the log-
determinant estimator (11), Rothman et al. [27] consider the case of multivari-
ate Gaussian data, in which case the estimator coincides with the ℓ1 regularized
Gaussian MLE. In this setting, they obtained convergence rates in Frobenius

norm of |||Θ̂−Θ∗|||F = O
(√ (s+p) log p

n

)
. Since the Frobenius norm upper bounds

the spectral norm, they also obtained the same convergence rate for the spectral
norm. In this paper, for variables with sub-Gaussian tails, we obtained conver-

gence in spectral norm at the rate O
(√min{d2,(s+p)} log p

n

)
, where d denotes the

maximum number of non-zeros per row (or the maximum degree of the graph).
For graphs with degrees that do not grow too quickly (i.e., under the inequality
d2 ≤ s + p, which holds for bounded degree graphs among others), then the
rate obtained here is faster. To be clear, the Rothman et al. [27] analysis in-
volved milder restrictions on the inverse covariance, namely only a lower bound
on its eigenvalues, whereas our results (since they were derived via model selec-
tion consistency) required stronger conditions on the matrix and its incoherence
properties (via the parameters κΓ∗ and κΣ∗ and α). On the other hand, the anal-
ysis of this paper applies somewhat more generally to random vectors with tail
behavior other than sub-Gaussian, where we obtained different rates depending
on the heaviness of the tails.
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In addition, Rothman et al. [27] proposed a slightly different estimator than
(11) for the multivariate Gaussian case: they first estimate the correlation ma-
trix by solving the program (11) with the sample correlation matrix substituted
in place of the sample covariance matrix, and use this to obtain an estimate of
the concentration matrix. They obtained a an improved ℓ2 operator norm con-

vergence rate for this estimator—namely, |||Θ̂−Θ∗|||2 = O
(√ (s+1) log p

n

)
—which

is better when s ≪ p. Although this yields improvements for very sparse graphs,
for any connected graph, the number of edges scales as s = Ω(p), in which case
it is not substantially better than the ordinary estimator. Nonetheless, it would
be interesting to extend our analysis to their “improved” estimator to see if one
could improve the bound in (43b).

In subsequent work, Lam and Fan [18] proposed a generalization of the
log-determinant estimator (11) involving more general regularization functions.
Most germane to this discussion are their results for ℓ1-regularization, in which
case their estimator is equivalent to the log-determinant estimator (11), and
their Frobenius and ℓ2 operator norm convergence rates match those in Roth-
man et al. [27]. In addition, Lam and Fan [18] provide a result on model-selection
consistency of the estimator (11), but one which needs fairly restrictive condi-
tions on the sparsity of the graph and the sample size. In particular, they require
that the number of edges s be upper bounded as s = O(

√
p), and that the sample

size be lower bounded as n = Ω((s+p) log p). Note that the first condition limits
their result to graphs that are very sparse, in particular excluding any connected
graph, or any graph with constant node degrees d (for which s = dp/2). Addi-
tionally, the lower bound on the sample size implies that consistency cannot be
obtained in the high-dimensional setting with p ≫ n. In contrast, we guarantee
model selection consistency with sample size n = Ω(d2 log p), which allows for
connected graphs and constant degree graphs as well as for high-dimensional
scaling. Note that our result is based on the incoherence condition imposed in
Assumption 1.

4. Proofs of main result

In this section, we work through the proofs of Theorems 1 and 2. We break
down the proofs into a sequence of lemmas, with some of the more technical
aspects deferred to appendices. Our proofs are based on a technique that we call
a primal-dual witness method, used previously in analysis of the Lasso [29]. It

involves following a specific sequence of steps to construct a pair (Θ̃, Z̃) of sym-
metric matrices that together satisfy the optimality conditions associated with
the convex program (11) with high probability. Thus, when the constructive pro-

cedure succeeds, Θ̃ is equal to the unique solution Θ̂ of the convex program (11),

and Z̃ is an optimal solution to its dual. In this way, the estimator Θ̂ inher-
its from Θ̃ various optimality properties in terms of its distance to the truth
Θ∗, and its recovery of the signed sparsity pattern. To be clear, our procedure
for constructing Θ̃ is not a practical algorithm for solving the log-determinant
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problem (11), but rather is used as a proof technique for certifying the behavior
of the M -estimator (11).

4.1. Primal-dual witness approach

As outlined above, at the core of the primal-dual witness method are the stan-
dard convex optimality conditions that characterize the optimum Θ̂ of the con-
vex program (11). For future reference, we note that the sub-differential of the
norm ‖ · ‖1,off evaluated at some Θ consists the set of all symmetric matrices
Z ∈ Rp×p such that

Zij =





0 if i = j

sign(Θij) if i 6= j and Θij 6= 0

∈ [−1,+1] if i 6= j and Θij = 0.

(45)

The following result is proved in Appendix A:

Lemma 3. For any λn > 0 and sample covariance Σ̂ with strictly positive
diagonal elements, the ℓ1-regularized log-determinant problem (11) has a unique

solution Θ̂ ≻ 0 characterized by

Σ̂− Θ̂−1 + λnẐ = 0, (46)

where Ẑ is an element of the subdifferential ∂‖Θ̂‖1,off .

Based on this lemma, we construct the primal-dual witness solution (Θ̃, Z̃)
as follows:

(a) We determine the matrix Θ̃ by solving the restricted log-determinant prob-
lem

Θ̃ := arg min
Θ≻0,Θ=ΘT , ΘSc=0

{
〈〈Θ, Σ̂〉〉 − log det(Θ) + λn‖Θ‖1,off

}
. (47)

Note that by construction, we have Θ̃ ≻ 0, and moreover Θ̃Sc = 0.
(b) We choose Z̃ as a member of the sub-differential of the regularizer ‖·‖1,off ,

evaluated at Θ̃.
(c) For each (i, j) ∈ Sc, we replace Z̃ij with the quantity

Z̃ij :=
1

λn

{
− Σ̂ij + [Θ̃−1]ij

}
, (48)

which ensures that constructed matrices (Θ̃, Z̃) satisfy the optimality con-
dition (46).

(d) We verify the strict dual feasibility condition

|Z̃ij | < 1 for all (i, j) ∈ Sc.
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To clarify the nature of the construction, steps (a) through (c) suffice to ob-

tain a pair (Θ̃, Z̃) that satisfy the optimality conditions (46), but do not guar-

antee that Z̃ is an element of the sub-differential ∂‖Θ̃‖1,off . By construction,

specifically step (b) of the construction ensures that the entries Z̃ in S sat-

isfy the sub-differential conditions, since Z̃S is a member of the sub-differential
[∂‖Θ̃‖1,off ]S . The purpose of step (d), then, is to verify that the remaining ele-

ments of Z̃ satisfy the necessary conditions to belong to the sub-differential.
If the primal-dual witness construction succeeds, then it acts as a witness to

the fact that the solution Θ̃ to the restricted problem (47) is equal to the solu-

tion Θ̂ to the original (unrestricted) problem (11). We exploit this fact in our
proofs of Theorems 1 and 2 that build on this: we first show that the primal-dual
witness technique succeeds with high-probability, from which we can conclude
that the support of the optimal solution Θ̂ is contained within the support
of the true Θ∗. In addition, we exploit the characterization of Θ̂ provided by
the primal-dual witness construction to establish the elementwise ℓ∞ bounds
claimed in Theorem 1. Theorem 2 requires checking, in addition, that certain
sign consistency conditions hold, for which we require lower bounds on the value
of the minimum value θmin. Note that if (d) fails then the converse holds and we

can conclude that the support of the optimal solution Θ̂ is not contained within
the support of the true Θ∗. This claim follows from uniqueness of the solution
Θ̂, and the fact that any solution of the convex program (11) must satisfy the
stationary condition (46).

In the analysis to follow, some additional notation is useful. We let W ∈ Rp×p

denote the “effective noise” in the sample covariance matrix Σ̂—namely, the
quantity

W := Σ̂− (Θ∗)−1. (49)

Second, we use ∆ = Θ̃ − Θ∗ to measure the discrepancy between the primal
witness matrix Θ̃ and the truth Θ∗. Note that by the definition of Θ̃, ∆Sc = 0.
Finally, recall the log-determinant barrier g from equation (6). We let R(∆)

denote the difference of the gradient ∇g(Θ̃) = Θ̃−1 from its first-order Taylor
expansion around Θ∗. Using known results on the first and second derivatives
of the log-determinant function (see p. 641 in Boyd and Vandenberghe [3]), this
remainder takes the form

R(∆) = Θ̃−1 −Θ∗−1 +Θ∗−1∆Θ∗−1. (50)

4.2. Auxiliary results

We begin with some auxiliary lemmata, required in the proofs of our main
theorems. In Section 4.2.1, we provide sufficient conditions on the quantities W
and R for the strict dual feasibility condition to hold. In Section 4.2.2, we control
the remainder term R(∆) in terms of ∆, while in Section 4.2.3, we control ∆
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itself, providing elementwise ℓ∞ bounds on ∆. In Section 4.2.4, we show that
under appropriate conditions on the minimum value θmin, the bounds in the
earlier lemmas guarantee that the sign consistency condition holds. All of the
analysis in these sections is deterministic in nature. In Section 4.2.5, we turn to
the probabilistic component of the analysis, providing control of the noise W in
the sample covariance matrix. Finally, the proofs of Theorems 1 and 2 follows
by using this probabilistic control of W and the stated conditions on the sample
size to show that the deterministic conditions hold with high probability.

4.2.1. Sufficient conditions for strict dual feasibility

We begin by stating and proving a lemma that provides sufficient condition for
strict dual feasibility to hold, so that ‖Z̃Sc‖∞ < 1.

Lemma 4 (Strict dual feasibility). Suppose that

max
{
‖W‖∞, ‖R(∆)‖∞

}
≤ αλn

8
. (51)

Then the vector Z̃Sc constructed in step (c) satisfies ‖Z̃Sc‖∞ < 1, and therefore

Θ̃ = Θ̂.

Proof. Using the definitions (49) and (50), we can re-write the stationary con-
dition (46) in an alternative but equivalent form

Θ∗−1∆Θ∗−1 +W −R(∆) + λnZ̃ = 0. (52)

This is a linear-matrix equality, which can be re-written as an ordinary linear
equation by “vectorizing” the matrices. We use the notation vec(A), or equiva-
lently A for the vector version of the set or matrix A obtained by stacking up
the rows of A into a single column vector.

vec
(
Θ∗−1∆Θ∗−1) =

(
Θ∗−1 ⊗Θ∗−1)∆ = Γ∗∆.

In terms of the disjoint decomposition S and Sc, equation (52) can be re-written
as two blocks of linear equations as follows:

Γ∗
SS∆S +WS −RS + λnZ̃S = 0 (53a)

Γ∗
ScS∆S +WSc −RSc + λnZ̃Sc = 0. (53b)

Here we have used the fact that ∆Sc = 0 by construction.

Since Γ∗
SS is invertible, we can solve for ∆S from equation (53a) as follows:

∆S =
(
Γ∗
SS

)−1[−WS +RS − λnZ̃S

]
.
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Substituting this expression into equation (53b), we can solve for Z̃Sc as follows:

Z̃Sc = − 1

λn
Γ∗
ScS∆S +

1

λn
RSc − 1

λn
WSc

= − 1

λn
Γ∗
ScS

(
Γ∗
SS

)−1
(WS −RS) + Γ∗

ScS

(
Γ∗
SS

)−1
Z̃S

− 1

λn
(WSc −RSc). (54)

Taking the ℓ∞ norm of both sides yields

‖Z̃Sc‖∞ ≤ 1

λn
|||Γ∗

ScS

(
Γ∗
SS

)−1|||∞(‖WS‖∞ + ‖RS‖∞)

+ ‖Γ∗
ScS

(
Γ∗
SS

)−1
Z̃S‖∞ +

1

λn
(‖WS‖∞ + ‖RS‖∞).

Recalling Assumption 1, we obtain that ‖Γ∗
ScS

(
Γ∗
SS

)−1
Z̃Sc‖∞ ≤ (1−α), so that

we have

‖Z̃Sc‖∞ ≤ 2− α

λn
(‖WS‖∞ + ‖RS‖∞) + (1− α), (55)

where we have used the fact that ‖Z̃S‖∞ ≤ 1, since Z̃ belongs to the sub-
differential of the norm ‖ · ‖1,off by construction. Finally, applying assump-
tion (51) from the lemma statement, we have

‖Z̃Sc‖∞ ≤ (2− α)

λn

(
αλn

4

)
+ (1 − α) ≤ α

2
+ (1− α) < 1,

as claimed.

4.2.2. Control of remainder term

Our next step is to relate the behavior of the remainder term (50) to the devi-

ation ∆ = Θ̃−Θ∗.

Lemma 5 (Control of remainder). Suppose that the elementwise ℓ∞-bound

‖∆‖∞ ≤ 1
3 κΣ∗d holds. Then the matrix J :=

∑∞
k=0(−1)k

(
Θ∗−1∆

)k
satisfies

the ℓ∞-operator norm |||JT |||∞ ≤ 3/2, and moreover, the matrix

R(∆) = Θ∗−1∆Θ∗−1∆JΘ∗−1, (56)

has elementwise ℓ∞-norm bounded as

‖R(∆)‖∞ ≤ 3

2
d‖∆‖2∞ κ3

Σ∗ . (57)

We provide the proof of this lemma in Appendix B using matrix expansion
techniques.
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4.2.3. Sufficient conditions for ℓ∞ bounds

Our next lemma provides control on the deviation ∆ = Θ̃−Θ∗, measured in
elementwise ℓ∞ norm.

Lemma 6 (Control of ∆). Suppose that

r := 2κΓ∗

(
‖W‖∞ + λn

)
≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗ κΓ∗d

}
. (58)

Then we have the elementwise ℓ∞ bound

‖∆‖∞ = ‖Θ̃−Θ∗‖∞ ≤ r. (59)

We prove the lemma in Appendix C; at a high level, the main steps in-
volved are the following. We begin by noting that Θ̃Sc = Θ∗

Sc = 0, so that

‖∆‖∞ = ‖∆S‖∞. Next, we characterize Θ̃S in terms of the zero-gradient con-
dition associated with the restricted problem (47). We then define a continuous
map F : ∆S 7→ F (∆S) such that its fixed points are equivalent to zeros of this

gradient expression in terms of ∆S = Θ̃S −Θ∗
S. We then show that the function

F maps the ℓ∞-ball

B(r) := {ΘS | ‖ΘS‖∞ ≤ r}, with r := 2κΓ∗

(
‖W‖∞ + λn

)
, (60)

onto itself. Finally, with these results in place, we can apply Brouwer’s fixed
point theorem (e.g., p. 161; Ortega and Rheinboldt [23]) to conclude that F
does indeed have a fixed point inside B(r).

4.2.4. Sufficient conditions for sign consistency

A lower bound on the minimum value θmin, when combined with Lemma 6
immediately yields a guarantee on the sign consistency of the primal witness
matrix Θ̃.

Lemma 7 (Sign Consistency of Oracle Estimator Θ̃). Suppose the conditions
of Lemma 6 hold, and further that the minimum absolute value θmin of non-zero
entries in the true concentration matrix Θ∗ is lower bounded as

θmin ≥ 4κΓ∗

(
‖W‖∞ + λn

)
, (61)

then sign(Θ̃S) = sign(Θ∗
S) holds.

Proof. From the bound (59), we have |Θ̃ij − Θ∗
ij | ≤ r, ∀(i, j) ∈ S. Combining

the definition (58) of r with the bound (61) on θmin yields that for all (i, j) ∈ S,

the estimate Θ̃ij cannot differ enough from Θ∗
ij to change sign.
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4.2.5. Control of noise term

The final ingredient required for the proofs of Theorems 1 and 2 is control on
the sampling noise W = Σ̂−Σ∗. This control is specified in terms of the decay
function f from equation (12).

Lemma 8 (Control of Sampling Noise). For any τ > 2 and sample size n such
that δf (n, p

τ ) ≤ 1/v∗, we have

P

[
‖W‖∞ ≥ δf (n, p

τ )

]
≤ 1

pτ−2
→ 0. (62)

Proof. Using the definition (12) of the decay function f , and applying the union
bound over all p2 entries of the noise matrix, we obtain that for all δ ≤ 1/v∗,

P
[
max
i,j

|Wij | ≥ δ
]

≤ p2/f(n, δ).

Setting δ = δf (n, p
τ ) yields that

P
[
max
i,j

|Wij | ≥ δf (n, p
τ )
]

≤ p2/
[
f(n, δf (n, p

τ ))
]
= 1/pτ−2,

as claimed. Here the last equality follows since f(n, δf (n, p
τ )) = pτ , using the

definition (14) of the inverse function δf .

4.3. Proof of Theorem 1

We now have the necessary ingredients to prove Theorem 1. We first show
that with high probability the witness matrix Θ̃ is equal to the solution Θ̂ to
the original log-determinant problem (11), in particular by showing that the
primal-dual witness construction (described in in Section 4.1) succeeds with
high probability. Let A denote the event that ‖W‖∞ ≤ δf (n, p

τ ). Using the
monotonicity of the inverse tail function (15), the lower lower bound (29) on
the sample size n implies that δf (n, p

τ ) ≤ 1/v∗. Consequently, Lemma 8 implies
that P(A) ≥ 1− 1

pτ−2 . Accordingly, we condition on the event A in the analysis
to follow.

We proceed by verifying that assumption (51) of Lemma 4 holds. Recalling
the choice of regularization penalty λn = (8/α) δf (n, p

τ ), we have ‖W‖∞ ≤
(α/8)λn. In order to establish condition (51) it remains to establish the bound
‖R(∆)‖∞ ≤ αλn

8 . We do so in two steps, by using Lemmas 6 and 5 consecutively.
First, we show that the condition (58) required for Lemma 6 to hold is satisfied
under the specified conditions on n and λn. From Lemma 8 and our choice of
regularization constant λn = (8/α) δf (n, p

τ ),

2κΓ∗

(
‖W‖∞ + λn

)
≤ 2κΓ∗

(
1 +

8

α

)
δf (n, p

τ ),
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provided δf (n, p
τ ) ≤ 1/v∗. From the lower bound (29) and the monotonicity (15)

of the tail inverse functions, we have

2κΓ∗

(
1 +

8

α

)
δf (n, p

τ ) ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗ κΓ∗d

}
, (63)

showing that the assumptions of Lemma 6 are satisfied. Applying this lemma,
we conclude that

‖∆‖∞ ≤ 2κΓ∗

(
‖W‖∞ + λn

)
≤ 2κΓ∗

(
1 +

8

α

)
δf(n, p

τ ). (64)

Turning next to Lemma 5, we see that its assumption ‖∆‖∞ ≤ 1
3κΣ∗d holds,

by applying equations (63) and (64). Consequently, we have

‖R(∆)‖∞ ≤ 3

2
d ‖∆‖2∞ κ3

Σ∗

≤ 6κ3
Σ∗κ2

Γ∗ d

(
1 +

8

α

)2

[δf (n, p
τ )]2

=

{
6κ3

Σ∗κ2
Γ∗ d

(
1 +

8

α

)2
δf (n, p

τ )

}
αλn

8

≤ αλn

8
,

as required, where the final inequality follows from our condition (29) on the
sample size, and the monotonicity property (15).

Overall, we have shown that the assumption (51) of Lemma 4 holds, allowing

us to conclude that Θ̃ = Θ̂. The estimator Θ̂ then satisfies the ℓ∞-bound (64)

of Θ̃, as claimed in Theorem 1(a), and moreover, we have Θ̂Sc = Θ̃Sc = 0, as
claimed in Theorem 1(b). Since the above was conditioned on the event A, these
statements hold with probability P(A) ≥ 1− 1

pτ−2 .

4.4. Proof of Theorem 2

We now turn to the proof of Theorem 2. A little calculation shows that the as-
sumed lower bound (37) on the sample size n and the monotonicity property (15)
together guarantee that

θmin > 4κΓ∗

(
1 +

8

α

)
δf (n, p

τ )

Proceeding as in the proof of Theorem 1, with probability at least 1 − 1/pτ−2,

we have the equality Θ̃ = Θ̂, and also that ‖Θ̃−Θ∗‖∞ ≤ θmin/2. Consequently,

Lemma 7 can be applied, guaranteeing that sign(Θ∗
ij) = sign(Θ̃ij) for all (i, j) ∈

E. Overall, we conclude that with probability at least 1 − 1/pτ−2, the sign

consistency condition sign(Θ∗
ij) = sign(Θ̂ij) holds for all (i, j) ∈ E, as claimed.
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(a) (b) (c)

Fig 3. Illustrations of different graph classes used in simulations. (a) Chain (d = 2). (b)
Four-nearest neighbor grid (d = 4) and (c) Star-shaped graph (d ∈ {1, . . . , p− 1}).

5. Experiments

In this section, we illustrate our results with various experimental simulations,
reporting results in terms of the probability of correct model selection (Theo-
rem 2) or the ℓ∞-error (Theorem 1). For these illustrations, we study the case
of Gaussian graphical models, and results for three different classes of graphs,
namely chains, grids, and star-shaped graphs. In addition to varying the triple
(n, p, d), we also report results concerning the role of the parameters κΣ∗ , κΓ∗

and θmin that we have identified in the main theorems. For all results reported
here, we solved the resulting ℓ1-penalized log-determinant program (11) using
the glasso program of Friedman et al. [11], which builds on the block co-
ordinate descent algorithm of d’Asprémont et al. [9].

Figure 3 illustrates the three types of graphs used in our simulations: chain
graphs (panel (a)), four-nearest neighbor lattices or grids (panel (b)), and star-
shaped graphs (panel (c)). For the chain and grid graphs, the maximal node
degree d is fixed (by definition) to d = 2 for chains, and d = 4 for the grids.
Consequently, these graphs can capture the dependence of the required sample
size n only as a function of the graph size p, and the parameters (κΣ∗ , κΓ∗ ,
θmin). The star graph allows us to vary both d and p, since the degree of the
central hub can be varied between 1 and p− 1. For each graph type, we varied
the size of the graph p in different ranges, from p = 64 upwards to p = 375.

For the chain and star graphs, we define a covariance matrix Σ∗ with entries
Σ∗

ii = 1 for all i = 1, . . . , p, and Σ∗
ij = ρ for all (i, j) ∈ E for specific values of ρ

specified below. Note that these covariance matrices are sufficient to specify the
full model. For the four-nearest neighbor grid graph, we set the entries of the
concentration matrix Θ∗

ij = ω for (i, j) ∈ E, with the value ω specified below.

In all cases, we set the regularization parameter λn proportional to
√
log(p)/n,

as suggested by Theorems 1 and 2, which is reasonable since the main purpose
of these simulations is to illustrate our theoretical results. However, for general
data sets, the relevant theoretical parameters cannot be computed (since the
true model is unknown), so that a data-driven approach such as cross-validation
might be required for selecting the regularization parameter λn.
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Given a Gaussian graphical model instance, and the number of samples n,
we drew N = 100 batches of n independent samples from the associated mul-
tivariate Gaussian distribution. We estimated the probability of correct model
selection as the fraction of the N = 100 trials in which the estimator recovers
the signed-edge set exactly.

Note that any multivariate Gaussian random vector is sub-Gaussian; in par-
ticular, the rescaled variates Xi/

√
Σ∗

ii are sub-Gaussian with parameter σ = 1,
so that the elementwise ℓ∞-bound from Corollary 1 applies. Suppose we collect
relevant parameters such as θmin and the covariance and Hessian-related terms
κΣ∗ , κΓ∗ and α into a single “model-complexity” term K defined as

K :=

[
(1 + 8α−1)(max

i
Σ∗

ii)max

{
κΣ∗κΓ∗ , κ3

Σ∗κ2
Γ∗ ,

κΓ∗

d θmin

}]
. (65)

Then, as a corollary of Theorem 2, a sample size of order

n = Ω
(
K2 d2 τ log p

)
, (66)

is sufficient for model selection consistency with probability greater than 1 −
1/pτ−2. In the subsections to follow, we investigate how the empirical sample
size n required for model selection consistency scales in terms of graph size p,
maximum degree d, as well as the “model-complexity” term K defined above.

5.1. Dependence on graph size

Panel (a) of Figure 4 plots the probability of correct signed edge-set recovery
against the sample size n for a chain-structured graph of three different sizes.
For these chain graphs, regardless of the number of nodes p, the maximum
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Fig 4. Simulations for chain graphs with varying number of nodes p, edge covariances Σ∗

ij =
0.20. Plots of probability of correct signed edge-set recovery plotted versus the ordinary sample
size n in panel (a), and versus the rescaled sample size n/ log p in panel (b). Each point
corresponds to the average over 100 trials.
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Fig 5. Simulations for a star graph with varying number of nodes p, fixed maximal degree
d = 40, and edge covariances Σ∗

ij = 1/16 for all edges. Plots of probability of correct signed

edge-set recovery versus the sample size n in panel (a), and versus the rescaled sample size
n/ log p in panel (b). Each point corresponds to the average over N = 100 trials.

node degree is constant d = 2, while the edge covariances are set as Σij = 0.2
for all (i, j) ∈ E, so that the quantities (κΣ∗ , κΓ∗ , α) remain constant. Each of
the curve in panel (a) corresponds to a different graph size p. For each curve,
the probability of success starts at zero (for small sample sizes n), but then
transitions to one as the sample size is increased. As would be expected, it is
more difficult to perform model selection for larger graph sizes, so that (for
instance) the curve for p = 375 is shifted to the right relative to the curve for
p = 64. Panel (b) of Figure 4 replots the same data, with the horizontal axis
rescaled by (1/ log p). This scaling was chosen because for sub-Gaussian tails,
our theory predicts that the sample size should scale logarithmically with p
(see equation (66)). Consistent with this prediction, when plotted against the
rescaled sample size n/ log p, the curves in panel (b) all stack up. Consequently,
the ratio (n/ log p) acts as an effective sample size in controlling the success of
model selection, consistent with the predictions of Theorem 2 for sub-Gaussian
variables.

Figure 5 shows the same types of plots for a star-shaped graph with fixed
maximum node degree d = 40, and Figure 6 shows the analogous plots for a
grid graph with fixed degree d = 4. As in the chain case, these plots show the
same type of stacking effect in terms of the scaled sample size n/ log p, when
the degree d and other parameters ((α, κΓ∗ , κΣ∗)) are held fixed.

5.2. Dependence on the maximum node degree

Panel (a) of Figure 7 plots the probability of correct signed edge-set recovery
against the sample size n for star-shaped graphs; each curve corresponds to
a different choice of maximum node degree d, allowing us to investigate the
dependence of the sample size on this parameter. So as to control these com-
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Fig 6. Simulations for 2-dimensional lattice with 4-nearest-neighbor interaction, edge strength
interactions Θ∗

ij = 0.1, and a varying number of nodes p. Plots of probability of correct signed

edge-set recovery versus the sample size n in panel (a), and versus the rescaled sample size
n/ log p in panel (b). Each point corresponds to the average over N = 100 trials.
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Fig 7. Simulations for star graphs with fixed number of nodes p = 200, varying maximal
(hub) degree d, edge covariances Σ∗

ij = 2.5/d. Plots of probability of correct signed edge-set

recovery versus the sample size n in panel (a), and versus the rescaled sample size n/d in
panel (b).

parisons, the models are chosen such that quantities other than the maximum
node-degree d are fixed: in particular, we fix the number of nodes p = 200,
and the edge covariance entries are set as Σ∗

ij = 2.5/d for (i, j) ∈ E so that the
quantities (κΣ∗ , κΓ∗ , α) remain constant. The minimum value θmin in turn scales
as 1/d. Observe how the plots in panel (a) shift to the right as the maximum
node degree d is increased, showing that star-shaped graphs with higher degrees
are more difficult. In panel (b) of Figure 7, we plot the same data versus the
rescaled sample size n/d. Recall that if all the curves were to stack up under
this rescaling, then it means the required sample size n scales linearly with d.
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Fig 8. Simulations for chain graph with fixed number of nodes p = 120, and varying model
complexity K. Plot of probability of correct signed edge-set recovery versus the sample size n.

These plots are closer to aligning than the unrescaled plots, but the agreement
is not perfect. In particular, observe that the curve d = 100 (right-most in panel
(a)) remains a bit to the right in panel (b), which suggests that a somewhat
more aggressive rescaling—perhaps n/dγ for some γ ∈ (1, 2)—is appropriate.

Note that for θmin scaling as 1/d, the sufficient condition from Theorem 2,
as summarized in equation (66), is n = Ω(d2 log p), which appears to be overly
conservative based on these data. Thus, it might be possible to tighten our
theory under certain regimes.

5.3. Dependence on covariance and Hessian terms

Next, we study the dependence of the sample size required for model selection
consistency on the model complexity termK defined in (65), which is a collection
of the quantities κΣ∗ , κΓ∗ and α defined by the covariance matrix and Hessian, as
well as the minimum value θmin. Figure 8 plots the probability of correct signed
edge-set recovery versus the sample size n for chain graphs. Here each curve
corresponds to a different setting of the model complexity factor K, but with
a fixed number of nodes p = 120, and maximum node-degree d = 2. We varied
the actor K by varying the value ρ of the edge covariances Σij = ρ, (i, j) ∈ E.
Notice how the curves, each of which corresponds to a different model complexity
factor, shift rightwards as K is increased so that models with larger values of K
require greater number of samples n to achieve the same probability of correct
model selection. These rightward-shifts are in qualitative agreement with the
prediction of Theorem 1, but we suspect that our analysis is not sharp enough
to make accurate quantitative predictions regarding this scaling.

5.4. Convergence rates in elementwise ℓ∞-norm

Finally, we report some simulation results on the convergence rate in element-
wise ℓ∞-norm. According to Corollary 1, in the case of sub-Gaussian tails, the
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Fig 9. Simulations for a star graph with varying number of nodes p, maximum node degree d =
⌈0.1p⌉, edge covariances Σ∗

ij = 2.5/d. Plot of the element-wise ℓ∞ norm of the concentration

matrix estimate error ‖Θ̂−Θ∗‖∞ versus the rescaled sample size n/ log(p).

elementwise ℓ∞-norm should decay at the rate O(
√

log p
n ). Figure 9 shows the

behavior of the elementwise ℓ∞-norm for star-shaped graphs of varying sizes p.
The results reported here correspond to the maximum degree d = ⌈0.1p⌉; we also
performed analogous experiments for d = O(log p) and d = O(1), and observed
qualitatively similar behavior. The edge correlations were set as Σ∗

ij = 2.5/d for
all (i, j) ∈ E so that the quantities (κΣ∗ , κΓ∗ , α) remain constant. With these
settings, each curve in Figure 9 corresponds to a different problem size, and
plots the elementwise ℓ∞-error versus the rescaled sample size n/ log p, so that
we expect to see curves of the form f(t) = 1/

√
t. The curves show that when

the rescaled sample size (n/ log p) is larger than some threshold (roughly 40 in

the plots shown), the elementwise ℓ∞ norm decays at the rate
√

log p
n , which is

consistent with Corollary 1.

6. Discussion

The focus of this paper is the analysis of the high-dimensional scaling of the ℓ1-
regularized log determinant problem (11) as an estimator of the concentration
matrix of a random vector. Our main contributions were to derive sufficient
conditions for its model selection consistency as well as convergence rates in both
elementwise ℓ∞-norm, as well as Frobenius and spectral norms. Our results allow
for a range of tail behavior, ranging from the exponential-type decay provided
by Gaussian random vectors (and sub-Gaussian more generally), to polynomial-
type decay guaranteed by moment conditions. In the Gaussian case, our results
have natural interpretations in terms of Gaussian Markov random fields.

Our main results relate the i.i.d. sample size n to various parameters of the
problem required to achieve consistency. In addition to the dependence on ma-
trix size p, number of edges s and graph degree d, our analysis also illustrates
the role of other quantities, related to the structure of the covariance matrix Σ∗
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and the Hessian of the objective function, that have an influence on consistency
rates. Our main assumption is an irrepresentability or mutual incoherence con-
dition, similar to that required for model selection consistency of the Lasso, but
involving the Hessian of the log-determinant objective function (11), evaluated
at the true model. Such an irrepresentability condition is typical for obtain-
ing model selection consistency, but is not necessary for bounds on Frobenius
and spectral norms [27]. When the distribution of X is multivariate Gaussian,
this Hessian is the Fisher information matrix of the model, and thus can be
viewed as an edge-based counterpart to the usual node-based covariance ma-
trix. We report some examples where irrepresentability condition for the Lasso
hold and the log-determinant condition fails, but we do not know in general if
one requirement dominates the other. In addition to these theoretical results, we
provided a number of simulation studies showing how the sample size required
for consistency scales with problem size, node degrees, and the other complexity
parameters identified in our analysis.

There are various interesting questions and possible extensions to this paper.
First, in the current paper, we have only derived sufficient conditions for model
selection consistency. As in past work on the Lasso [29], it would also be inter-
esting to derive a converse result—namely, to prove that if the sample size n is
smaller than some function of (p, d, s) and other complexity parameters, then
regardless of the choice of regularization constant, the log-determinant method
fails to recover the correct graph structure. Second, while this paper studies the
problem of estimating a fixed graph or concentration matrix, a natural exten-
sion would allow the graph to vary over time, a problem setting which includes
the case where the observations are dependent. For instance, Zhou et al. [33]
study the estimation of the covariance matrix of a Gaussian distribution in a
time-varying setting, and it would be interesting to extend results of this paper
to this more general setting.
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Appendix A: Proof of Lemma 3

In this appendix, we show that the regularized log-determinant program (11)
has a unique solution whenever λn > 0, and the diagonal elements of the sample
covariance Σ̂n are strictly positive. By the strict convexity of the log-determinant
barrier [3], if the minimum is attained, then it is unique, so that it remains to
show that the minimum is achieved. If λn > 0, then by Lagrangian duality, the
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problem can be written in an equivalent constrained form:

min
Θ∈Sp

++
,‖Θ‖1,off≤C(λn)

{
〈〈Θ, Σ̂n〉〉 − log det(Θ)

}
(67)

for some C(λn) < +∞. Since the off-diagonal elements remain bounded within
the ℓ1-ball, the only possible issue is the behavior of the objective function
for sequences with possibly unbounded diagonal entries. Since any Θ in the
constraint set is positive-definite, its diagonal entries are positive. Further, by
Hadamard’s inequality for positive definite matrices [14], we have log detΘ ≤∑p

i=1 logΘii, so that

p∑

i=1

ΘiiΣ̂
n
ii − log detΘ ≥

p∑

i=1

{
ΘiiΣ̂

n
ii − logΘii}.

As long as Σ̂n
ii > 0 for each i = 1, . . . , p, this function is coercive, meaning that

it diverges to infinity for any sequence ‖(Θt
11, . . . ,Θ

t
pp)‖2 → +∞. Consequently,

the minimum is attained, and as argued above, is also unique.

Returning to the penalized form (11), by standard optimality conditions for

convex programs, a matrix Θ̂ ∈ Sp
++ is optimal for (11) if and only the zero

matrix belongs to the sub-differential of the objective, or equivalently if and
only if there exists a matrix Ẑ in the sub-differential of the off-diagonal norm
‖ · ‖1,off evaluated at Θ̂ such that

Σ̂− Θ̂−1 + λẐ = 0,

as claimed.

Appendix B: Proof of Lemma 5

We write the remainder in the form

R(∆) = (Θ∗ +∆)−1 −Θ∗−1 +Θ∗−1∆Θ∗−1.

By sub-multiplicativity of the ||| · |||∞ matrix norm, for any two p × p matrices
A,B, we have |||AB|||∞ ≤ |||A|||∞|||B|||∞, so that

|||Θ∗−1∆|||∞ ≤ |||Θ∗−1|||∞|||∆|||∞
≤ κΣ∗ d‖∆‖∞ < 1/3, (68)

where we have used the definition of κΣ∗ , the fact that ∆ has at most d non-
zeros per row/column, and our assumption ‖∆‖∞ < 1/(3κΣ∗p). Consequently,
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we have the convergent matrix expansion
(
Θ∗ +∆

)−1
=

(
Θ∗
(
I +Θ∗−1∆

))−1

=
(
I +Θ∗−1∆

)−1(
Θ∗
)−1

=

∞∑

k=0

(−1)k
(
Θ∗−1∆

)k(
Θ∗
)−1

= Θ∗−1 −Θ∗−1∆Θ∗−1 +
∞∑

k=2

(−1)k
(
Θ∗−1∆

)k(
Θ∗
)−1

= Θ∗−1 −Θ∗−1∆Θ∗−1 +Θ∗−1∆Θ∗−1∆JΘ∗−1,

where J =
∑∞

k=0(−1)k
(
Θ∗−1∆

)k
.

We now prove the bound (57) on the remainder as follows. Let ei denote the
unit vector with 1 in position i and zeroes elsewhere. From equation (56), we
have

‖R(∆)‖∞ = max
i,j

|eTi Θ∗−1∆ Θ∗−1∆JΘ∗−1ej|

≤ max
i

‖eTi Θ∗−1∆‖∞ max
j

‖Θ∗−1∆JΘ∗−1ej‖1,

which follows from the fact that for any vectors a, b ∈ Rp, |aT b| ≤ ‖a‖∞‖b‖1.
This in turn can be simplified as,

‖R(∆)‖∞ ≤ max
i

‖eTi Θ∗−1‖1 ‖∆‖∞ max
j

‖Θ∗−1∆JΘ∗−1ej‖1

since for any vector u ∈ Rp, ‖uT∆‖∞ ≤ ‖u‖1‖∆‖∞, where ‖∆‖∞ is the elemen-
twise ℓ∞-norm. Continuing on, we have

‖R(∆)‖∞ ≤ |||Θ∗−1|||∞ ‖∆‖∞‖ |||Θ∗−1∆JΘ∗−1|||1,
where |||A|||1 := max‖x‖1=1 ‖Ax‖1 is the ℓ1-operator norm. Since |||A|||1 = |||AT |||∞,
we have

‖R(∆)‖∞ ≤ ‖∆‖∞|||Θ∗−1|||∞ |||Θ∗−1JT∆Θ∗−1|||∞
≤ ‖∆‖∞ κΣ∗ |||Θ∗−1|||2∞|||JT |||∞|||∆|||∞ (69)

Recall that J =
∑∞

k=0(−1)k
(
Θ∗−1∆

)k
. By sub-multiplicativity of ||| · |||∞ matrix

norm, we have

|||JT |||∞ ≤
∞∑

k=0

|||∆Θ∗−1|||k∞ ≤ 1

1− |||Θ∗−1|||∞|||∆|||∞
≤ 3

2
,

since |||Θ∗−1|||∞|||∆|||∞ < 1/3 from equation (68). Substituting this in (69), we
obtain

‖R(∆)‖∞ ≤ 3

2
‖∆‖∞ κΣ∗ |||Θ∗−1|||2∞|||∆|||∞

≤ 3

2
d‖∆‖2∞ κ3

Σ∗ ,
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where the final line follows since |||∆|||∞ ≤ d‖∆‖∞, and since ∆ has at most d
non-zeroes per row/column.

Appendix C: Proof of Lemma 6

By following the same argument as Lemma 3 in Appendix A, we conclude that
the restricted problem (47) has a unique optimum Θ̃. If we take partial deriva-
tives of the Lagrangian of the restricted problem (47) with respect to the un-
constrained elements ΘS , these partial derivatives must vanish at the optimum,
meaning that we have the zero-gradient condition

G(ΘS) = −[Θ−1]S + Σ̂S + λnZ̃S = 0. (70)

To be clear, Θ is the p× p matrix with entries in S equal to ΘS and entries in
Sc equal to zero. Since this zero-gradient condition is necessary and sufficient
for an optimum of the Lagrangian problem, it has a unique solution (namely,

Θ̃S).
Our goal is to bound the deviation of this solution from Θ∗

S , or equivalently

to bound the deviation ∆ = Θ̃−Θ∗. Our strategy is to show the existence of a
solution ∆ to the zero-gradient condition (70) that is contained inside the ball
B(r) defined in equation (60). By uniqueness of the optimal solution, we can thus

conclude that Θ̃−Θ∗ belongs this ball. In terms of the vector ∆S = Θ̃S −Θ∗
S ,

let us define a map F : R|S| → R|S| via

F (∆S) := −
(
Γ∗
SS

)−1(
G(Θ∗

S +∆S)
)
+∆S , (71)

whereG denotes the vectorized form ofG. Note that by construction, F (∆S) = ∆S

holds if and only if G(Θ∗
S +∆S) = G(Θ̃S) = 0.

We now claim that F (B(r)) ⊆ B(r). Since F is continuous and B(r) is convex
and compact, this inclusion implies, by Brouwer’s fixed point theorem [23], that
there exists some fixed point ∆S ∈ B(r). By uniqueness of the zero gradient

condition (and hence fixed points of F ), we can thereby conclude that ‖Θ̃S −
Θ∗

S‖∞ ≤ r.
Let ∆ ∈ Rp×p denote the zero-padded matrix, equal to ∆S on S and zero on

Sc. By definition, we have

G(Θ∗
S +∆S) = −[(Θ∗ +∆)−1]S + Σ̂S + λnZ̃S

=
[
− [(Θ∗ +∆)−1]S + [Θ∗−1]S

]
+
[
Σ̂S − [Θ∗−1]S

]
+ λnZ̃S

=
[
− [(Θ∗ +∆)−1]S + [Θ∗−1]S

]
+WS + λnZ̃S , (72)

where we have used the definition W = Σ̂− Σ∗.
For any ∆S ∈ B(r), we have

|||Θ∗−1∆|||∞ ≤ |||Θ∗−1|||∞|||∆|||∞
≤ κΣ∗ d‖∆‖∞, (73)
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where ‖∆‖∞ denotes the elementwise ℓ∞-norm (as opposed to the ℓ∞-operator
norm |||∆|||∞), and the inequality follows since ∆ has at most d non-zero entries
per row/column.

By the definition (60) of the radius r, and the assumed upper bound (58), we
have ‖∆‖∞ ≤ r ≤ 1

3κΣ∗d , so that the results of Lemma 5 apply. By using the def-

inition (50) of the remainder, taking the vectorized form of the expansion (56),
and restricting to entries in S, we obtain the expansion

vec
((
Θ∗ +∆

)−1 −Θ∗−1)
S
+ Γ∗

SS∆S = vec
(
(Θ∗−1∆)2JΘ∗−1)

S
. (74)

Using this expansion (74) combined with the expression (72) for G, we have

F (∆S) = −
(
Γ∗
SS

)−1
G(Θ∗

S +∆S) + ∆S

=
(
Γ∗
SS

)−1
vec
{[(

Θ∗ +∆
)−1 −Θ∗−1]

S
−WS − λnZ̃S

}
+∆S

=
(
Γ∗
SS

)−1
vec
[
(Θ∗−1∆)2JΘ∗−1]

S︸ ︷︷ ︸
−
(
Γ∗
SS

)−1(
WS + λnZ̃S

)
︸ ︷︷ ︸

.

T1 T2

The second term is easy to deal with: using the definition κΓ∗ = |||(Γ∗
SS)

−1|||∞,
we have ‖T2‖∞ ≤ κΓ∗

(
‖W‖∞ + λn

)
= r/2. It now remains to show that

‖T1‖∞ ≤ r/2. We have

‖T1‖∞ ≤ κΓ∗

∥∥ vec
[
(Θ∗−1∆)2JΘ∗−1]

S

∥∥
∞

≤ κΓ∗‖R(∆)‖∞,

where we used the expanded form (56) of the remainder. Applying the bound (57)
from Lemma 5, we obtain

‖T1‖∞ ≤ 3

2
dκ3

Σ∗κΓ∗ ‖∆‖2∞ ≤ 3

2
dκ3

Σ∗κΓ∗ r2.

Since r ≤ 1
3κ3

Σ∗κΓ∗d
by assumption (58), we conclude that

‖T1‖∞ ≤ 3

2
dκ3

Σ∗κΓ∗

1

3κ3
Σ∗κΓ∗d

r = r/2,

thereby establishing the claim.

Appendix D: Proof of Lemma 1

For each pair (i, j) and ν > 0, define the event

Aij(ν) :=

{∣∣∣∣
1

n

n∑

k=1

X
(k)
i X

(k)
j − Σ∗

ij

∣∣∣∣ > ν

}
.

As the sub-Gaussian assumption is imposed on the variables {X(k)
i } directly, as

in Lemma A.3 of Bickel and Levina [2], our proof proceeds by first decoupling the
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products X
(k)
i X

(k)
j . For each pair (i, j), we define ρ∗ij = Σ∗

ij/
√
Σ∗

iiΣ
∗
jj , and the

rescaled random variables X
(k)
i := X

(k)
ij /

√
Σ∗

ii. Noting that the strict positive
definiteness of Σ∗ implies that |ρ∗ij | < 1, we can also define the auxiliary random
variables

U
(k)
ij := X

(k)
i +X

(k)
j and V

(k)
ij := X

(k)
i −X

(k)
j . (75)

With this notation, we then claim:

Lemma 9. Suppose that each X
(k)
i is sub-Gaussian with parameter σ. Then for

each node pair (i, j), the following properties hold:

(a) For all k = 1, . . . , n, the random variables U
(k)
ij and V

(k)
ij are sub-Gaussian

with parameters 2σ.
(b) For all ν > 0, the probability P[Aij(ν)] is upper bounded by

P

[∣∣∣∣
n∑

k=1

(U
(k)
ij )2 − 2(1 + ρ∗ij)

∣∣∣∣ >
2nν√
Σ∗

iiΣ
∗
jj

]

+ P

[∣∣∣∣
n∑

k=1

(V
(k)
ij )2 − 2(1− ρ∗ij)

∣∣∣∣ >
2nν√
Σ∗

iiΣ
∗
jj

]
.

Proof. (a) For any r ∈ R, we have

E[exp(r U
(k)
ij )] = E

[
exp

(
r X

(k)
i

)
exp

(
rX

(k)
j

)]

≤ E

[
exp

(
2rX

(k)
i

)]1/2 [
exp

(
2rX

(k)
j

)]1/2
,

where we have used the Cauchy-Schwarz inequality. Since the variables X
(k)
i

and X
(k)
j are sub-Gaussian with parameter σ, we have

E

[
exp

(
2rX

(k)
i

)]1/2
E

[
exp

(
2rX

(k)
j

)]1/2
≤ exp

(
σ2 r

2

2

)
exp

(
σ2 r

2

2

)
,

so that U
(k)
ij is sub-Gaussian with parameter 2σ as claimed.

(b) By straightforward algebra, we have the decomposition

n∑

k=1

(X
(k)
i X

(k)
j − ρ∗ij) =

{
1

4

n∑

i=1

{
(X

(k)
i +X

(k)
j )2 − 2(1 + ρ∗st)

}

−
{
1

4

n∑

i=1

{
(X∗(k)

s −X
∗(k)
t )2 − 2(1− ρ∗st)

}
.

By union bound, we obtain that P[Aij(ν)] is upper bounded by

P

[∣∣∣∣
n∑

k=1

(U
(k)
ij )2 − 2 (1 + ρ∗ij)

∣∣∣∣ ≥
4nν

2
√
Σ∗

iiΣ
∗
jj

]

+ P

[∣∣∣∣
n∑

k=1

(V
(k)
ij )2 − 2 (1− ρ∗ij)

∣∣∣∣ ≥
4nν

2
√
Σ∗

iiΣ
∗
jj

]
, (76)
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which completes the proof of Lemma 9(b).

To complete the proof of Lemma 1, it remains to upper bound the tail prob-
abilities

P

[∣∣∣∣
n∑

k=1

(U
(k)
ij )2 − 2 (1 + ρ∗ij)

∣∣∣∣ ≥
4nν

2
√
Σ∗

iiΣ
∗
jj

]
,

and

P

[∣∣∣∣
n∑

k=1

(V
(k)
ij )2 − 2 (1− ρ∗ij)

∣∣∣∣ ≥
4nν

2
√
Σ∗

iiΣ
∗
jj

]
.

For all k ∈ {1, . . . , n} and node-pairs (i, j) ∈ V × V , define the random
variables Zk;ij as follows:

Zk;ij := (U
(k)
ij )2 − 2 (1 + ρ∗ij).

If we can obtain a bound B > 0 such that

sup
m≥2

[
E(|Zk;ij |m)

m!

]1/m
≤ B/2,

it then follows from Bernstein’s inequality based on moment conditions that:

P

[∣∣∣∣
n∑

k=1

|Zk;ij |
∣∣∣∣ ≥ nt

]
≤ 2 exp

(
− nt2

2B2 + 2tB

)
. (77)

Furthermore for t ≤ B,

P

[∣∣∣∣
n∑

k=1

|Zk;ij |
∣∣∣∣ ≥ nt

]
≤ 2 exp

(
− nt2

4B2

)
. (78)

Using the bound (a+ b)m ≤ 2m(am + bm) we obtain the inequality:

E(|Zk;ij |m) ≤ 2m
(
E(|U (k)

ij |2m) + (2(1 + ρ∗ij))
m
)
. (79)

Recalling that U
(k)
ij is sub-Gaussian with parameter 2σ, from Lemma 1.4 of Buldy-

gin and Kozachenko [6] regarding the moments of sub-Gaussian variates, we have

E[|U (k)
ij |2m] ≤ 2(2m/e)m(2σ)2m. Making note of the inequality m! ≥ (m/e)m, it

follows that E[|U (k)
ij |2m]/m! ≤ 23m+1σ2m. Combined with equation (79), we

obtain

[
E(|Zk;ij |m)

m!

]1/m
≤ 21/m

(
(24m+1σ2m)1/m +

4(1 + ρ∗ij)

(m!)1/m

)

≤ 21/m
(
21/m 16 σ2 +

4(1 + ρ∗ij)

(m!)1/m

)
,
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where we have used the inequality (x + y)1/m ≤ 21/m(x1/m + y1/m), valid for
any integer m ∈ N and real numbers x, y > 0. Since the bound is a decreasing
function of m, it follows that

sup
m≥2

[
E(|Zk;ij |m

m!

]1/m
≤ 21/2

(
21/2 16 σ2 +

4(1 + ρ∗ij)

(2)1/2

)

≤ 32σ2 + 8 = 8(1 + 4σ2),

where we have used the fact that |ρ∗ij | ≤ 1. Applying Bernstein’s inequality (78)

with t = 2ν
maxi Σ∗

ii
and B = 8(1 + 4σ2), noting that ( 2ν

maxi Σ∗

ii
) ≤ ( 2ν√

Σ∗

iiΣ
∗

jj

), for

ν ≤ 8(maxiΣ
∗
ii)(1 + 4σ2),

P

[∣∣∣∣
n∑

k=1

(U
(k)
ij )2−2 (1+ρ∗ij)

∣∣∣∣ ≥
4nν

2
√
Σ∗

iiΣ
∗
jj

]
≤ 2 exp

{
− 2nν2

maxi(Σ∗
ii)

2128(1 + 4σ2)2

}
.

A similar argument yields the same tail bound for the deviation involving V
(k)
ij .

Consequently, using Lemma 9(b), we conclude that

P[Aij(ν)] ≤ 4 exp

{
− nν2

maxi(Σ∗
ii)

2 128 (1 + 4σ2)2

}
.,

valid for ν ≤ 8(maxiΣ
∗
ii) (1 + 4σ2), as required.

Appendix E: Proof of Lemma 2

Define the random variables W
(k)
ij = X

(k)
i X

(k)
j − Σ∗

ij , and note that they have
mean zero. By applying the Chebyshev inequality, we obtain

P

[∣∣∣∣
n∑

k=1

W
(k)
ij

∣∣∣∣ > nν

]
= P

[( n∑

k=1

W
(k)
ij

)2m

> (n ν)2m

]

≤
E
[(∑n

k=1 W
(k)
ij

)2m ]

n2m ν2m
. (80)

We now apply Rosenthal’s inequality [26] to obtain that there exists2 a constant
Cm, depending only on m, such that

E

[( n∑

k=1

W
(k)
ij

)2m
]

≤ Cm max

(
n∑

k=1

E[(W
(k)
ij )2m],

( n∑

k=1

E[(W
(k)
ij )2]

)m
)

≤ Cm

(
n∑

k=1

E[(W
(k)
ij )2m] +

( n∑

k=1

E[(W
(k)
ij )2]

)m
)
. (81)

2For precise values of Cm, see Rosenthal [26].
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Turning to each individual expectation, we have

E[
(
W

(k)
ij

)2m
] ≤ E[(X

(k)
i X

(k)
j − Σ∗

ij)
2m]

(i)

≤ 22m
{
E[(X

(k)
i X

(k)
j )2m] + [Σ∗

ij ]
2m
}

(ii)

≤ 22m
{√

E[(X
(k)
i )4m]E[(X

(k)
j )4m] + [Σ∗

ij ]
2m
}

(iii)

≤ 22m(Km[Σ∗
iiΣ

∗
jj ]

m + [Σ∗
ij ]

2m),

where inequality (i) follows since (a + b)2m ≤ 22m(a2m + b2m); inequality (ii)
follows from the Cauchy-Schwartz inequality; and inequality (iii) follows from

the assumed moment bound on E[(X
(k)
i )4m]. Therefore for m = 1, we have the

have the bound.

E[
(
W

(k)
ij

)2
] ≤ 4(Σ∗

iiΣ
∗
jj + [Σ∗

ij ]
2),

and hence

( n∑

k=1

E[(W
(k)
ij )2]

)m

≤ 22mnm([Σ∗
iiΣ

∗
jj ]

m + [Σ∗
ij ]

2m).

Combined with the earlier bound (81) and noting that n ≤ nm, we obtain

E

[( n∑

k=1

W
(k)
ij

)2m
]

≤ 22mCmnm
(
(Km + 1)[Σ∗

iiΣ
∗
jj ]

m + [Σ∗
ij ]

2m
)
,

using the Cauchy-Schwartz inequality. Substituting back into the Chebyshev
bound (80) yields the tail bound

P

[∣∣∣∣
n∑

k=1

W
(k)
ij

∣∣∣∣ > nν

]
≤

[
nm22mCm((Km + 1)[Σ∗

iiΣ
∗
jj ]

m + [Σ∗
ij ]

2m)
]

n2m ν2m

=

[
22mCm((Km + 1)[Σ∗

iiΣ
∗
jj ]

m + [Σ∗
ij ]

2m)
]

nmν2m
,

which establishes the claim.
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