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ABSTRACT
Motivation: The number of available protein structures still lags
far behind the number of known protein sequences. This makes it
important to predict which residues participate in protein–protein inter-
actions using only sequence information. Few studies have tackled this
problem until now.
Results: We applied support vector machines to sequences in order
to generate a classification of all protein residues into those that are
part of a protein interface and those that are not. For the first time
evolutionary information was used as one of the attributes and this
inclusion of evolutionary importance rankings improves the classifica-
tion. Leave-one-out cross-validation experiments show that prediction
accuracy reaches 64%.
Contact: ires@bcm.tmc.edu; lichtarge@bcm.tmc.edu

1 INTRODUCTION
Protein–protein interactions play a central role in biology since they
mediate the assembly of macromolecular complexes, or the sequen-
tial transfer of information along signaling pathways. To tease apart
the molecular basis of these functions and of protein networks, it
is important to identify individual protein–protein interactions and
selectively disrupt them through targeted mutagenesis (Onrustet al.,
1997; Sowaet al., 2001; Madabushiet al., 2004). Ideally, a pre-
diction of protein interfaces should start with an available protein
structure; many techniques, reviewed below, address this problem.
Yet, in most cases, the protein structure is unknown. This makes the
prediction of protein–protein interface residues, based on a protein
sequence alone, an important problem.

To address this problem, it is instructive to consider that predic-
tions of interacting residues, based on structure information, pool
many different types of information (Chotia and Janin, 1975; Jones
and Thornton, 1996; Lo Conteet al., 1999; Chakrabarti and Janin,
2002; Bahaduret al., 2003; Nooren and Thornton, 2003; Ofran and
Rost, 2003a; Bahaduret al., 2004). These studies consider many
potential markers of protein interfaces, including amino acid fre-
quencies, hydrophobicity, interface size, shape and planarity. For
example, Jones and Thornton (1997a) have studied protein inter-
faces by examining the properties of surface residue patches. Based
on six parameters (solvation potential, residue interface propensit-
ies, hydrophobicity, planarity, protrusion and accessible surface area)
they were able to differentiate the interface patch from other surface
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patches. None of these parameters was better than the others as a dis-
criminator. In a follow up work, Jones and Thornton (1997b) have
successfully predicted protein–protein interaction sites for 66% of
the structures in their dataset.

Given that machine learning algorithms are designed to learn by
example in a multiparameter space, several studies have recently
begun to use them to predict interacting surface residues, using
neural networks and support vector machines (SVMs). Zhou and
Shan (2001) and Fariselliet al. (2002) analyzed the composition of
residues and their structural neighbors and used neural networks to
classify surface residues into interacting and non-interacting ones.
This showed the importance of considering structural neighbors
while building the classifier. Yanet al. (2004a) have trained an SVM
to predict whether or not a surface residue is an interface residue, and
they have achieved high sensitivity (82.3 and 78.5%) and specificity
(81.0 and 77.6%) on two different datasets.

Can similar methods be applied to the proteins of unknown struc-
tures? In that case the information on residue composition is still
available, but the information on neighboring residues and on surface
accessibility is not. Ofran and Rost (2003b) and Yanet al. (2004b)
have independently shown that the interface residues tend to form
clusters in sequence. Based on this observation, Yanet al. (2004b)
have developed a two-stage classifier. It combines both SVM and
Bayesian classifiers to predict which surface residues form inter-
face, and it achieves accuracy of 72% and a correlation coefficient
of 0.30. However, they did not try to classify all residues in a protein
but only those on its surface (which were determined by using the
structure).

In contrast, Ofran and Rost (2003b) attempted to classify residues
from protein sequences into interacting and non-interacting ones.
Their method uses neural networks based on the sequence cluster-
ing of interface residues and interface composition. They report an
accuracy of 70%, with 20% sensitivity. The only other work we are
aware of that attempts to identify interacting residues from sequence
is a study by Galletet al. (2000), where the authors have sugges-
ted that the identification of interacting residues is possible based
on their hydrophobic moments. However, Yanet al. (2004b) tested
this method on their dataset and obtained a negative correlation
coefficient.

One type of information that has not been used in these stud-
ies is residue conservation and evolutionary information based on
phylogenetic trees. The evolutionary trace (ET) method of Lichtarge
et al. (1996a) ranks residues based on invariance within functional
branches of a phylogenetic tree. ET has been successful in finding
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novel functional sites (Lichtargeet al., 1996b; Onrustet al., 1997;
Sowaet al., 2001; Yaoet al., 2003; Madabushiet al., 2004) and in
protein structure evaluation (Mihaleket al., 2003). Mihaleket al.
(2004) have recently developed the real value evolutionary trace
(RVET), which combines residue conservation (expressed in terms
of information entropy) with grouping of related proteins represen-
ted by a phylogenetic tree. They have demonstrated that RVET-based
ranking of residues increases the sensitivity and the specificity in the
prediction of important protein sites.

While the RVET is a method of choice in this work, other methods
aim to identify functional sites (Casariet al., 1995; Landgrafet al.,
2001; Armonet al., 2001; Aloyet al., 2001; del Sol Messaet al.,
2003), as reviewed recently by Wodak and Méndez (2004). Here,
we present an SVM-based prediction of interface residues which,
in contrast to prior studies, incorporates evolutionary information
as one of the attributes. [The possibility that the use of evolution
might improve prediction of interfaces has occurred to Ofran and
Rost (2003b) and Yanet al. (2004b) but they did not pursue the
idea further.] Since we classify all protein residues and require no
structure, this work compares best with the study of Ofran and Rost
(2003b). Thus, as a reference, we also built a classifier based only
on residue composition. We consider this classifier (referred to as
composition) to represent the method used in the Ofran and Rost
(2003b) work (the main difference is that they used a neural network,
while we use an SVM).

To assess performance we adopted the dataset of Yanet al. (2004b),
and reduced it to 50 protein chains, as explained below. This set was
chosen because it has low sequence identity (<30%), which makes
it more challenging than the sets used by other groups mentioned
above.

2 METHODS

2.1 Real value evolutionary trace
RVET is a method to rank the evolutionary importance of residues in a pro-
tein family. It is based on column variation in multiple sequence alignments
(MSAs) and evolutionary information extracted from underlying phylogen-
etic trees. The first step in rank calculation is to form subalignments that
correspond to nodes in the tree. Information entropy is calculated for the
initial MSA and then corrected with the contributions from subalignment
entropies. This subdivision of an MSA into smaller alignments reflects the
tree topology, and therefore the evolutionary variation information within it.
The rank of a residue belonging to columni in an MSA is given by

ri = 1 +
N−1∑
n=1

1

n

n∑
g=1

{
−

20∑
a=1

f
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ia ln f
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ia is the frequency of amino acid of typea within a subalignment
corresponding to groupg, and indexn refers to the number of groups. In case
n = 1 (no evolutionary information included in the form of subalignments)
this expression reduces to the information entropy of columni in the MSA
(up to an additive factor of 1). Further details can be found in Mihaleket al.
(2004), but it is important to note that besides evolutionary trees, any other
tree that reflects a reasonable functional classification of a protein family may
be used as well.

The range of ranks will, in general, vary from protein to protein, depending
on the corresponding phylogenetic trees. In order to obtain a uniform range,
all ranks for a protein were converted to a scale ranging from 0 to 1, 1
corresponding to evolutionarily most important residues and 0 representing
the least important residues.

Sometimes using 20 amino acid types to rank residues may be too restrict-
ive: a hypothetical mutation that swaps two negatively charged residues might

not be as drastic as a change, for example, from proline to alanine. We con-
sider this possibility by grouping residues according to their physical and
chemical properties into 14 groups: (Ile, Leu, Val), (Ser, Thr), (Arg, Lys),
(Asp, Glu), (Asn, Gln), with the remaining 9 residues considered individu-
ally. We incorporate this reduced 14 ‘amino acid’ alphabet into the RVET by
simply reducing the sum over 20 amino acids in the above expression to a
sum over 14 ‘amino acids’. The resulting RVET is termed ‘Similarity’ RVET
to distinguish it from the RVET, which distinguishes equally all 20 amino
acids, called ‘Rank’ RVET thereafter.

Of course, alternative reduced alphabets are possible. Recently, Elcock and
McCammon (2001) have used a reduced alphabet of six amino acid groups,
previously employed by Mirny and Shakhnovich (1999), in an information
entropy-based work on identification of protein oligomerization states. Here,
we did not want to be strict in grouping amino acids, because the reduction
of amino acid types inevitably leads to some information loss. However, we
did not systematically investigate which alphabet is most optimal to be used
by RVET.

In this work, sequences were collected using BLAST search (Altschul
et al., 1997) on the NCBI Entrez non-redundant protein sequence database,
with theE-score of 0.05. MSAs were built using Clustal W v.1.7 (Thompson
et al., 1994) in the quicktree mode. We used the UPGMA method (Waterman,
2000) to construct the trees.

2.2 Support vector machines
We use SVM algorithms (Cristianini and Shawe-Taylor, 2000) to address
a binary classification problem: residues have to be classified as interact-
ing (‘positive’ examples) or non-interacting (‘negative’ examples). Each
instance (residue) is described by an input vector of attributes. The SVMs
separate two classes by mapping the input vectors (using a kernel function)
into a high dimensional feature space, where a linear separation between
the classes with a hyperplane is possible. The implementation of the SVM
algorithm used here is the WEKA package (Witten and Frank, 1999),
which uses a polynomial kernel. The software can be downloaded freely
(http://www.cs.waikato.ac.nz/ ml/weka/).

2.3 Dataset
Our dataset was built from the set of 77 interacting protein chains with
sequence identity<30% used by Yanet al. (2004b), which itself was extrac-
ted from a set of heterocomplexes used in the work of Chakrabarti and Janin
(2002). We removed the antibody–antigen complexes (13 chains) because
these interfaces are special from the evolutionary standpoint; they are less
conserved than the rest of the protein. Furthermore, in two cases one of the
partners contained a pair of chains. These were also removed because this
would lead to artificial false positives. For example, consider a hypothetical
complex of chains AB interacting with chain C. The method would predict
not only the interface of AB with C but also the interface between A and B.

Since our method is based on MSAs, our dataset was further limited to
chains that could be aligned reasonably well. We eliminated short alignments
(≤11 sequences) and those that had sequence identity of≥80% (this point is
elaborated later in the text). Based on these criteria, our final dataset consisted
of 50 interacting protein chains, containing a total of 9673 residues.

Interface residues were defined as surface residues that lost relative sur-
face accessible areas (RSAs) upon complex formation. Surface residues were
defined as those for which RSA≥5% (Valdar and Thornton, 2001). The
solvent accessibility was calculated using the program NACCESS (Hubbard
and Thornton, 1993), which implements the Lee and Richards algorithm,
with a probe sphere of radius 1.4 Å (Lee and Richards, 1971). Using these
criteria, we obtained 1532 (16%) interface residues (positive examples) and
8141 non-interface residues (negative examples).

2.4 Attributes
We constructed SVMs using either residue composition or evolutionary
information, or both. The attributes assigned to residues were calculated
from MSAs of homologous protein sequences. For the composition-based
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classification, each residue is represented by a 20-component vector, which
contains the frequencies of 20 amino acid types appearing in the corres-
ponding column in an MSA. For the classifiers which use RVET ranking
(or information entropy, as a special case), each residue is described by one
number: the rank of the position in an MSA where the residue belongs. Fol-
lowing the literature (Ofran and Rost, 2003b; Yanet al., 2004b), the sequence
neighbors of the target residue were also included in the attributes, using a 9-
residue sequence window. This leads to a 180-component vector of attributes
for each instance in the case of a composition based classifier (20 compon-
ents for the target residue and for each of its 8 neighbors), and a 9-component
input vector used by the RVET ranking-based classifier (1 component for
each of 9 residues in the window). A classifier which combines composition
with evolutionary information requires 189-component vectors. None of the
above described attributes require the knowledge of protein structure.

2.5 Cross-validation
The performance of our classifiers was evaluated through a leave-one-out
cross-validation method. In general, cross-validation consists of breaking the
data into two sets: the ‘training set’ which is used to train the classifier, and
the ‘test set’ on which the trained classifier is tested. For the leave-one-out
procedure, 1 protein chain was taken out of the dataset and later used for
testing, while the remaining 49 chains were used as the training set. This was
repeated once for each of the 50 chains.

Only 16% of the data are interacting residues, which leads to highly unbal-
anced training sets. Using these training sets as such would result in an SVM
classifier which classifies all residues as non-interacting. To obtain a balanced
training set from each chain that is to be used for training we extracted inter-
acting residues and an equal number of randomly sampled non-interacting
residues.

3 RESULTS
The results reported in this work concern the evaluation of residue
classification based on the following quantities: the number of
true positives (TP) (residues correctly classified as interacting),
the number of true negatives (TN) (residues correctly classified as
non-interacting), the number of false positives (FP) (non-interacting
residues incorrectly classified as interacting), and the number
of false negatives (FN) (interacting residues incorrectly classified
as non-interacting). We use the following standard measures of
performance:

Sensitivity= TP

TP+ FN
,

Specificity= TN

TN + FP
,

Accuracy= TP+ TN

TP+ FN + TN + FP
,

Positive predictive value= TP

TP+ FP
,

Correlation coefficient=
TP× TN − FP× FN√

(TP+ FN)(TP+ FP)(TN + FP)(TN + FN)
.

In brief, sensitivity is equal to the fraction of interface residues
found, specificity equals the fraction of determined non-interface
residues, positive predictive value (PPV) measures the probability
that a positive prediction is correct and accuracy gives the percent-
age of correct predictions. Correlation between the predictions and
actual data is measured by the correlation coefficient (CC), which

Table 1. Prediction results for evolution and composition based classifiers

Sensitivity Specificity PPV Accuracy CC
(%) (%) (%) (%)

Rank 58.1 54.9 24.0 54.0 0.100
Similarity 59.0 53.9 24.3 53.7 0.100
Entropy 54.7 54.9 22.9 53.7 0.074
Composition 56.9 56.0 23.9 56.7 0.097

‘Rank’ and ‘Similarity’ refer to classifiers which use evolutionary ranking of residues
calculated by RVET.

Table 2. Prediction results for classifiers with combined attributes

Sensitivity Specificity PPV Accuracy CC
(%) (%) (%) (%)

CRank 58.8 58.9 26.0 58.7 0.135
CSimilarity 59.3 58.0 25.5 58.2 0.132
CEntropy 55.1 59.2 24.6 57.9 0.109

CRank (CSimilarity) labels a classifier which combines composition with RVET rank
(similarity rank). CEntropy refers to a classifier which combines composition with
information entropy.

ranges from−1 (perfect anticorrelation) to 1 (perfect correlation).
A random classification of a large set of residues as interacting or
non-interacting would, for a dataset in which 16% of residues are
interacting, result in sensitivity, specificity and accuracy equal to
50%; PPV would be 16%, with the CC equal to 0.

3.1 Performance of evolution versus composition
based SVMs

The results for evolution-only-based classifiers are given in Table 1.
We notice that the differences in performance among classifiers
are small. Overall, classifier based on composition alone seems
to slightly out-perform the others (3% better accuracy). On the
other hand, the best sensitivity (59%) is achieved by the Similar-
ity RVET-based SVM, and evidently all classifiers have a low PPV.
It is interesting to note that while composition-based classifier uses
180-component vectors as input, the other three classifiers use only
9-component vectors and results are nearly the same.

3.2 Performance of SVMs with combined attributes
In order to test whether the compositional and evolutionary inform-
ation were complementary, and in an effort to increase performance,
we constructed SVMs that combine both types of attributes, using
189-component input vectors. The performance is given in Table 2.
Combining the composition with either of the evolution based meas-
ures (Rank RVET or Similarity RVET) led to a slight improvement in
performance as compared with the composition based SVM (labeled
‘Composition’ in Table 1): 3% increase in specificity, 2% increase
in sensitivity, PPV and accuracy. Although these changes are small,
they are consistent across all measures of performance used.

Considering the three classifiers compared in Table 2, it seems
that combining the information entropy-based SVM with the Com-
position SVM has the least improvement when compared with the
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Table 3. Performance on randomized datasets

Sensitivity Specificity PPV Accuracy CC
(%) (%) (%) (%)

Rank 50.5 50.2 20.3 50.2 0.004
Similarity 45.9 52.9 19.6 52.0 −0.010
Entropy 46.3 53.5 19.9 52.8 −0.004
Composition 51.5 49.7 20.5 50.2 0.012
CRank 51.6 47.0 19.2 48.2 −0.014
CSimilarity 51.3 49.1 20.0 49.3 0.001
CEntropy 52.5 47.3 20.1 48.4 0.001

Notation is the same as in Tables 1 and 2.

composition-based SVM. Perhaps this is not surprising, considering
the fact that the information provided by the information entropy
is already at least partially present in the composition-based attrib-
utes. For example, a column in an MSA that consists mostly of
one amino acid type will contribute a vector of 20 components
to the composition-based classifier, most of which are 0, and one
component close to 1. Using this knowledge we can anticipate that
the corresponding input to the entropy-based classifier would be a
number close to 0 (small entropy), so combining the two does not
yield new information. On the other hand, the RVET-based ranks
provide information from phylogenetic trees that is not present in
the composition-based classifier.

3.3 Inferring significance using randomized datasets
In this work we used a relatively small dataset, hence it is important
to infer the significance of our results. This was done by comparing
the performance of each classifier with a corresponding classifier
trained on a training set in which the labels ‘interacting’ and ‘non-
interacting’ were randomly reshuffled. The results are given in
Table 3. Comparing Tables 1 and 2 with Table 3 shows that every
SVM used in this study performs better in all measures than the
randomized classifiers.

3.4 Reducing false positives
Important residues in a protein tend to form spatial clusters
(Madabushiet al., 2002). Likewise, sequence-based clustering of
interacting residues was also observed by Ofran and Rost (2003b)
and was used to reduce FP by eliminating positive predictions of
fewer than four interacting residues in a window of six residues.
Here we follow this lead by implementing a variable filter. After the
SVM predictions are obtained, a 9-residue window is moved along
the sequence. Predictions of less thanN interacting residues in the
sliding window, withN ranging from 1 to 6, are considered to be
negative predictions.

This method to reduce false positives will, in general, increase
specificity at the cost of decreasing sensitivity, because inevitably
we will encounter correct positive predictions that will be converted
to negative predictions using the above criteria. This can be seen in
Figure 1, where we plot sensitivities and specificities for different
filtering values ofN . We again notice that combining composition
with information entropy does not significantly change the results
as compared with just using attributes based on the composition.
Furthermore, Figure 1 shows that classifiers can be adjusted, through
the choice of parameterN , to maximize sensitivity or specificity.

Fig. 1. Specificity versus sensitivity plot obtained by using different values
for filtering parameterN . The dashed lines which connect the measured points
serve to lead the eye. AsN increases from 1 (lower right-hand side of the
plot) to 6 (upper left-hand side of the plot), the specificity increases at the
cost of lower sensitivity.

Table 4. Reducing false positives using filtering

Sensitivity Specificity PPV Accuracy CC
(%) (%) (%) (%)

CRank 57.5 62.0 27.4 60.9 0.151
CSimilarity 55.5 65.8 28.3 63.6 0.168
Composition 55.2 58.2 24.4 58.2 0.101
CEntropy 53.2 62.4 25.8 60.0 0.122

Notation is the same as in Table 2.

A complete picture of performance is shown in Table 4, where for
each of the classifiers in Figure 1 we selected a point which in our
view represented the best performance that can be obtained by filter-
ing. The best results are achieved with the classifier that combines the
composition with the RVET similarity ranks attributes. Its sensitivity
is 56%, specificity is 66% and the overall accuracy is 64%.

4 DISCUSSION
This paper addresses the problem of predicting residues involved in
protein–protein interaction, using only sequence and MSA informa-
tion. The biological importance of this problem lies in the fact that the
number of known protein sequences is still much larger than the num-
ber of available structures. This problem is harder than predicting
a functional interface given a protein structure, and predictably,
existing methods [the best of which is probably the work of Ofran and
Rost (2003b)] perform worse than those that use knowledge of the
structure (Zhou and Shan, 2001; Fariselliet al., 2002); or which limit
classification to the known surface residues (Yanet al., 2004a,b).

Motivated by a successful use of evolutionary phylogenetic
information to predict functional sites, we have sought to combine
evolution with previous approaches (Ofran and Rost, 2003b) by using
SVMs. We found that the SVM classifier based on evolution alone
was nearly on par with an SVM based only on composition, even
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though it uses 20-fold fewer parameters. Moreover, these two types
of information are not redundant and better results were obtained by
combining composition with the RVET ranking of residues. A simple
clustering can then be used to further reduce false positives, leading to
the best classifier with an accuracy of 64%. This is a 6% increase over
the composition-based classifier, and it leads to a positive predictive
power of∼30%.

Why is the improvement in performance obtained by incorporat-
ing evolutionary importance of residues not greater? We believe one
answer lies in the nature of protein ‘hot spots’ (Wells, 1991; Bogan
and Thorn, 1998; Halperinet al., 2004), which show that only a small
subset of interface residues contributes the most to the interaction
energy. Accordingly, evolutionary trace ranks may best pick out the
hot spot residues but be less informative about the rest—the major-
ity of the interface, which is less energetically and evolutionarily
important (Halperinet al., 2004).

The second answer is technical: RVET ranking adjustments may
also have affected the performance. The scale of ranks is a function
of tree topology. A tree with many branches will lead to ranks in a
different range of values than a tree having only a few branches. This
problem was handled by rescaling all ranks to the same scale ([0–1]),
but this is an artificial solution. To reduce the effects of this problem
on classification we tried to keep only alignments with comparable
sequence identities, leading to trees that are similar, so that the rank
ranges are also expected to be similar. However, we could not adhere
too strictly to this point because the dataset would become too small.
As mentioned before, only alignments with identity of<80% were
kept, and this led to an increase in performance as compared with
keeping all alignments (data not shown).

Despite these limitations, it is important to appreciate that classific-
ation of all protein residues is a harder problem than the classification
of surface residues. Many residues might be important for reasons
that are not directly related to protein–protein interaction (e.g. protein
folding), and this would be a source of noise in this type of prediction.
Furthermore, the fraction of residues forming interface will be higher
if the classification is done on surface residues only, increasing the
probability that a positive prediction is correct. We believe these are
the reasons why all SVMs considered in this work have relatively
low PPV. For comparison, Yanet al. (2004b) report PPV of 58% in
classification of surface residues, while the best result obtained here
for classification of all residues is 28.3%. If the choice of the repres-
entative point in Figure 1 is geared toward achieving maximal PPV,
we obtain a PPV of 32%, combining Composition with Similarity or
Composition with Rank (corresponding toN = 6 in Fig. 1).

In conclusion, we have considered classification of protein
residues without using the structural information. We have shown
that SVM classifiers which combine residue composition with
RVET-based evolutionary information lead to an increase in per-
formance over exclusive use of composition. The improvement is
small but significant, and the reasons for this were discussed. Our
choice of reduced amino acid alphabet used in the Similarity RVET
was heuristic, and a possible way of improving the results might be
to optimize the alphabet.
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