ORIGINAL PAPER

Vol. 21 no. 10 2005, pages 2496-2501
doi:10.1093/bioinformatics/bti340

Systems biology

An evolution based classifier for prediction of protein interfaces

without using protein structures
l. ReS, I. Mihalek* and O. Lichtarge*

Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston,

TX 77030, USA

Received on December 31, 2004; accepted on February 17, 2005
Advance Access publication February 22, 2005

ABSTRACT

Motivation: The number of available protein structures still lags
far behind the number of known protein sequences. This makes it
important to predict which residues participate in protein—protein inter-
actions using only sequence information. Few studies have tackled this
problem until now.

Results: We applied support vector machines to sequences in order
to generate a classification of all protein residues into those that are
part of a protein interface and those that are not. For the first time
evolutionary information was used as one of the attributes and this
inclusion of evolutionary importance rankings improves the classifica-
tion. Leave-one-out cross-validation experiments show that prediction
accuracy reaches 64%.

Contact: ires@bcm.tmc.edu; lichtarge@bcm.tmc.edu

1 INTRODUCTION

patches. None of these parameters was better than the others as a dis-
criminator. In a follow up work, Jones and Thornton (1997b) have
successfully predicted protein—protein interaction sites for 66% of
the structures in their dataset.

Given that machine learning algorithms are designed to learn by
example in a multiparameter space, several studies have recently
begun to use them to predict interacting surface residues, using
neural networks and support vector machines (SVMs). Zhou and
Shan (2001) and Farise#t al. (2002) analyzed the composition of
residues and their structural neighbors and used neural networks to
classify surface residues into interacting and non-interacting ones.
This showed the importance of considering structural neighbors
while building the classifier. Yaet al. (2004a) have trained an SVM
to predict whether or not a surface residue is an interface residue, and
they have achieved high sensitivity (82.3 and 78.5%) and specificity
(81.0 and 77.6%) on two different datasets.

Can similar methods be applied to the proteins of unknown struc-

Protein—protein interactions play a central role in biology since tt1e>fures’.> In that case the information on residue composition is still

mediate the agsembly ,Of macromplecqlar complexes, or the SequeQ\‘/ailable, but the information on neighboring residues and on surface
tial transfer of information along signaling pathways. To tease apa_réccessibility is not. Ofran and Rost (2003b) and éaal. (2004b)

the molecular basis of these functions and of protein networks, |'h
is important to identify individual protein—protein interactions and

selectively disrupt them through targeted mutagenesis (Oetralst

1997; Sowaet al., 2001; Madabushét al., 2004). Ideally, a pre-

ave independently shown that the interface residues tend to form
clusters in sequence. Based on this observation,e¥ah (2004b)

have developed a two-stage classifier. It combines both SVM and
Bayesian classifiers to predict which surface residues form inter-

diction of protein inter_faces sho_uld start with an availab_le prOteinface, and it achieves accuracy of 72% and a correlation coefficient
structure; many techniques, reviewed below, address this problemy 3 However, they did not try to classify all residues in a protein

Yet, in most cases, the protein structure is unknown. This makes th

fut only those on its surface (which were determined by using the

prediction of protein—protein interface residues, based on a prOteiQtructure)

sequence alone, an important problem.

In contrast, Ofran and Rost (2003b) attempted to classify residues

) To aeress th_'s prob_lem, It s instructive to con§|der tha_t predicyom protein sequences into interacting and non-interacting ones.
tions Of_ Interacting resm_iues, bqsed on s_tructure |nformat|on, pooi’heir method uses neural networks based on the sequence cluster-
many different types of information (Chotia and Janin, 1975; Jones, o of interface residues and interface composition. They report an

and Thornton, 1996; Lo Cong& al., 1999; Chakrabarti and Janin,
2002; Bahaduet al., 2003; Nooren and Thornton, 2003; Ofran and

accuracy of 70%, with 20% sensitivity. The only other work we are
aware of that attempts to identify interacting residues from sequence

Rost, 2003a; Bahaduwet al., 2004). These studies consider many is a study by Gallett al. (2000), where the authors have sugges-

potential markers of protein interfaces, including amino acid fre-
quencies, hydrophobicity, interface size, shape and planarity. Fo

ted that the identification of interacting residues is possible based
dn their hydrophobic moments. However, Yetral. (2004b) tested

example, Jones and Thornton (1997a) have studied protein intefpis mathod on their dataset and obtained a negative correlation
faces by examining the properties of surface residue patches. Basggeﬂicient

on six parameters (solvation potential, residue interface propensit- One type of information that has not been used in these stud-
ies, hydrophobicity, planarity, protrusion and accessible surface areq)g s residue conservation and evolutionary information based on
they were able to differentiate the interface patch from other Surfacﬁhylogenetic trees. The evolutionary trace (ET) method of Lichtarge

*To whom correspondence should be addressed.

et al. (1996a) ranks residues based on invariance within functional
branches of a phylogenetic tree. ET has been successful in finding
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Sequence based interface prediction

novel functional sites (Lichtarget al., 1996b; Onrusét al., 1997; not be as drastic as a change, for example, from proline to alanine. We con-
Sowaet al., 2001; Yaoet al., 2003; Madabustgt al., 2004) and in sider this possibility by grouping residues according to their physical and
protein structure evaluation (Mihalek al., 2003). Mihaleket al. chemical properties into 14 groups: (lle, Leu, Val), (Ser, Thr), (Arg, Lys),
(2004) have recently developed the real value evolutionary tracéASP. GlU), (Asn, GIn), with the remaining 9 residues considered individu-
(RVET), which combines residue conservation (expressed in termg,“y' We |nc0r'p0rate this reduced 14 ‘gmmo f';\md_’ alphabet into the RV_ET by
of information entropy) with grouping of related proteins represen-Slmply reduc"ng .the ng,over 20 amino acids n the ab?v_e gxpre§5|on toa
ted by a phylogenetic tree. They have demonstrated that RVET-basc?S m over 1.4 ammno acids’. The resu.ltmg RYET 'S termed Similarity RVI.ET
distinguish it from the RVET, which distinguishes equally all 20 amino

ranking of residues increases the sensitivity and the specificity in thgiys called ‘Rank’ RVET thereafter.

prediction of important protein sites. Of course, alternative reduced alphabets are possible. Recently, Elcock and
While the RVET is a method of choice in this work, other methods McCammon (2001) have used a reduced alphabet of six amino acid groups,

aim to identify functional sites (Casagt al., 1995; Landgraét al., previously employed by Mirny and Shakhnovich (1999), in an information

2001; Armonet al., 2001; Aloyet al., 2001; del Sol Messet al., entropy-based work on identification of protein oligomerization states. Here,

2003), as reviewed recently by Wodak and Méndez (2004). Herewe did not want to be strict in grouping amino acids, because the reduction
we present an SVM-based prediction of interface residues whicHef amino acid types inevitably leads to some information loss. However, we

in contrast to prior studies, incorporates evolutionary informationg;?F;‘\c/’;yStemaﬂcalIy investigate which alphabet is most optimal to be used
as one of the attributes. [The possibility that the use of evolution In this work, sequences were collected using BLAST search (Altschul

might improve prediction of interfaces has ocgurred to Ofran an al., 1997) on the NCBI Entrez non-redundant protein sequence database,

Rost (2003b) and Yaet al. (2004b) but they did not pursue the it the £-score of 0.05. MSAs were built using Clustal W v.1.7 (Thompson

idea further.] Since we classify all protein residues and require N@tal., 1994) in the quicktree mode. We used the UPGMA method (Waterman,

structure, this work compares best with the study of Ofran and Ros£000) to construct the trees.

(2003b). Thus, as a reference, we also built a classifier based onl )

on residue composition. We consider this classifier (referred to ag-z Support vector machines

composition) to represent the method used in the Ofran and Roste use SVM algorithms (Cristianini and Shawe-Taylor, 2000) to address

(2003b) work (the main difference is that they used a neural networka binary classification problem: residues have to be classified as interact-

while we use an SVM). ing (‘positive’ examples) or non-interacting (‘negative’ examples). Each
To assess performance we adopted the dataset & #aif2004b), ~ instance (residue) is describeq by an 'input vector of a_ttributes. The SVMs

and reduced it to 50 protein chains, as explained below. This set Was§parate two classes by mapping the input vectors (using a kernel function)

chosen because it has low sequence identi§06), which makes into a high dimensional feature space, where a linear separation between
it more challenaing than the sets used b other’ rOUDS mentionet e classes with a hyperplane is possible. The implementation of the SVM

b ging y group algorithm used here is the WEKA package (Witten and Frank, 1999),
above. which uses a polynomial kernel. The software can be downloaded freely

(http://www.cs.waikato.ac.nz/ ml/weka/).

2 METHODS
2.3 Dataset

2.1 Real value evolutionary trace
) ) ) ) ) Our dataset was built from the set of 77 interacting protein chains with
R\_/ET |s_a mgthod to rank the evolutl_on_ary_lmport_ance of reS|due§ ina pro—Sequence identity:30% used by Yaet al. (2004b), which itself was extrac-
tein family. It is baged on golumn variation in multiple sequence alignments, from a set of heterocomplexes used in the work of Chakrabarti and Janin
(MSAs) and evolutionary information extracted from underlying phylogen- 502 \we removed the antibody—antigen complexes (13 chains) because
etic trees. The first step in rank calculation is to form subalignments thay,ese interfaces are special from the evolutionary standpoint; they are less
correspond to nodes in the tree. Information entropy is calculated for thegnserved than the rest of the protein. Furthermore, in two cases one of the
initial MSA and then corrected with the contributions from subalignment 5 1ners contained a pair of chains. These were also removed because this
entropies. This subdivision of an MSA into smaller alignments reflects the 4 jead to artificial false positives. For example, consider a hypothetical
tree topology, and therefore the evolutionary variation information within it. complex of chains AB interacting with chain C. The method would predict
The rank of a residue belonging to colurhim an MSA is given by not only the interface of AB with C but also the interface between A and B.
N-1q 20 Since our method is based on MSAs, our dataset was further limited to
ri=1+ Z n {— Z f,f, In f,fl } ) chains that could be aligned reasonably well. We eliminated short alignments
n=1" g=1 =1 (<11 sequences) and those that had sequence identi§@%o (this point is
where f£ is the frequency of amino acid of typewithin a subalignment elabo!'ated IaFerintheFext). Based ont_hgse criteria, our final dz?ltasetconsisted
corresponding to groug, and index: refers to the number of groups. In case of 50 interacting protein chains, containing a total of 9673 residues.
n = 1 (no evolutionary information included in the form of subalignments) Interface residues were defined as surface residues that lost relative sur-
this expression reduces to the information entropy of colarimthe MSA face accessible areas (RSAs) upon complex formation. Surface residues were
(up to an additive factor of 1). Further details can be found in Mihatesk. defined as those for which RSA5% (Valdar and Thomnton, 2001). The
(2004), but it is important to note that besides evolutionary trees, any othepolvent accessibility was calculated using the program NACCESS (Hubbard
tree that reflects a reasonable functional classification of a protein family magnd Thornton, 1993), which implements the Lee and Richards algorithm,
be used as well. with a probe sphere of radius 1.4 A (Lee and Richards, 1971). Using these
The range of ranks will, in general, vary from protein to protein, dependingcrite”av we obtained 1532 (16%) interface residues (positive examples) and
on the corresponding phylogenetic trees. In order to obtain a uniform rang141 non-interface residues (negative examples).
all ranks for a protein were converted to a scale ranging from 0 to 1, .
corresponding to evolutionarily most important residues and O representin 4 Attributes
the least important residues. We constructed SVMs using either residue composition or evolutionary
Sometimes using 20 amino acid types to rank residues may be too restrictaformation, or both. The attributes assigned to residues were calculated
ive: a hypothetical mutation that swaps two negatively charged residues miglitom MSAs of homologous protein sequences. For the composition-based

n
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classification, each residue is represented by a 20-component vector, whidfable 1. Prediction results for evolution and composition based classifiers
contains the frequencies of 20 amino acid types appearing in the corres-
ponding column in an MSA. For the classifiers which use RVET ranking

(or information entropy, as a special case), each residue is described by one Sensitivity  Specificity PPV Accuracy  CC
number: the rank of the position in an MSA where the residue belongs. Fol- (%) (%) (%) (%)

lowing the literature (Ofran and Rost, 2003b; Yaal., 2004b), the sequence

neighbors of the target residue were also included in the attributes, using a Rank 58.1 54.9 24.0 54.0 0.100
residue sequence window. This leads to a 180-component vector of attributesimilarity 59.0 53.9 243 537 0.100
for each instance in the case of a composition based classifier (20 compogntropy 54.7 54.9 229 537 0.074
ents for the target residue and for each of its 8 neighbors), and a 9-componegbmposition 56.9 56.0 23.9 56.7 0.097

input vector used by the RVET ranking-based classifier (1 component for
e(?lch of9 rgsidueg inthe WindOW)-_A classifier which combines compositiongank' and ‘Similarity’ refer to classifiers which use evolutionary ranking of residues
with evolutionary information requires 189-component vectors. None of thecalculated by RVET.

above described attributes require the knowledge of protein structure.

2.5 Crossvalidation Table 2. Prediction results for classifiers with combined attributes

The performance of our classifiers was evaluated through a leave-one-out
cross-validation method. In general, cross-validation consists of breaking the

Sensitivity Specificity PPV Accuracy CcC

data into two sets: the ‘training set’ which is used to train the classifier, and (%) (%) (%) (%)

the ‘test set’ on which the trained classifier is tested. For the leave-one-out

procedure, 1 protein chain was taken out of the dataset and later used for

testing, while the remaining 49 chains were used as the training set. This WagR_an_k ) 58.8 58.9 26.0 58.7 0.135

repeated once for each of the 50 chains. CSimilarity ~ 59.3 58.0 255 582 0.132
Only 16% of the data are interacting residues, which leads to highly unbalCENtropy 55.1 59.2 246 579 0.109

anced training sets. Using these training sets as such would result in an SVM
classifier which classifies all residues as non-interacting. To obtain a balanceéeRank (CSimilarity) labels a classifier which combines composition with RVET rank
training set from each chain that is to be used for training we extracted interpslmllarlt'y rank). CEntropy refers to a classifier which combines composition with
acting residues and an equal number of randomly sampled non-interactir{aformat'on entropy.

residues.

ranges from—1 (perfect anticorrelation) to 1 (perfect correlation).
3 RESULTS A random classification of a large set of residues as interacting or

non-interacting would, for a dataset in which 16% of residues are

The r€SU|FS reported in this work concern the. gvaluation of residuﬁ"'*nteracting, result in sensitivity, specificity and accuracy equal to
classification based on the following quantities: the number of50%. PPV would be 16%, with the CC equal to 0.

true positives (TP) (residues correctly classified as interacting),
the number of true negatives (TN) (residues correctly classified a8.1 Performance of evolution ver sus composition
non-interacting), the number of false positives (FP) (non-interacting based SVMs

residues mco_rrectly ClaS.S'f'Ed as mte_ractlng_), and the num_bqhe results for evolution-only-based classifiers are given in Table 1.
of false negatives (FN) (interacting residues incorrectly classn‘leqfv

as non-interacting). We use the following standard measures o e notice that the differences in performance among classifiers
performance: 9 g are small. Overall, classifier based on composition alone seems

to slightly out-perform the others (3% better accuracy). On the
TP other hand, the best sensitivity (59%) is achieved by the Similar-

Sensitivity= TPLEN’ ity RVET-based SVM, and evidently all classifiers have a low PPV.

It is interesting to note that while composition-based classifier uses

Specificity= L 180-component vectors as input, the other three classifiers use only
TN +FP 9-component vectors and results are nearly the same.
TP+ TN ) ) )
Accuracy= TPLEN+ TN+ FP’ 3.2 Performance of SYMswith combined attributes
In order to test whether the compositional and evolutionary inform-
Positive predictive value- TP FP’ ation were complementary, and in an effort to increase performance,

we constructed SVMs that combine both types of attributes, using
189-component input vectors. The performance is given in Table 2.
TPx TN —FPx FN Combining the composition with either of the evolution based meas-

JOP+FN)(TP+FP(IN + FP)(TN + FN) ures (Rank RVET or Similarity RVET) led to a slightimprovementin
performance as compared with the composition based SVM (labeled

In brief, sensitivity is equal to the fraction of interface residues‘Composition’ in Table 1): 3% increase in specificity, 2% increase
found, specificity equals the fraction of determined non-interfacein sensitivity, PPV and accuracy. Although these changes are small,

residues, positive predictive value (PPV) measures the probabilitthey are consistent across all measures of performance used.

that a positive prediction is correct and accuracy gives the percent- Considering the three classifiers compared in Table 2, it seems

age of correct predictions. Correlation between the predictions anthat combining the information entropy-based SVM with the Com-
actual data is measured by the correlation coefficient (CC), whiclposition SVM has the least improvement when compared with the

Correlation coefficient
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Table 3. Performance on randomized datasets CompositionsRank ©

74 X Composit?on+$imilarily A

\\ A Composition+Entropy X
7l \\ Q \\\ Composition O
Sensitivity ~ Specificity PPV~ Accuracy CC NN RN .
(%) (%) (%) (%) 70t AN AN
\\\\ N\, \\
68} ANN AN
> AN NN
Rank 50.5 50.2 20.3 50.2 0.004 £ 66l \\\ “u N
Similarity 45.9 52.9 19.6 52.0 —0.010 = \\Q\ \\2\\
Entropy 46.3 53.5 19.9 528 —0.004 é’. b4r ‘%)\:b \\\\\
Composition  51.5 49.7 205 50.2 0.012 62| \>§\ SN
CRank 51.6 47.0 19.2 48.2 —0.014 ANN AN
CSimilarity ~ 51.3 49.1 200 493 0.001 oo N K
CEntropy 52.5 47.3 20.1 484 0.001 581 LW k §
N\

561 Ty
Notation is the same as in Tables 1 and 2.

54

4a 46 48 50 52 54 56 58 60
composition-based SVM. Perhaps this is not surprising, considering sensitivity
the fact that the information provided by the information entropy o . ) o
is already at least partially present in the composition-based attripfio- 1 Specificity versus sensitivity plot obtained by using different values
utes. For example, a column in an MSA that consists mostly 01forfiltering parameteN. The dashed lines which connect the measured points

one amino acid tvoe will contribute a vector of 20 com onentsserve to lead the eye. A% increases from 1 (lower right-hand side of the
ypP P plot) to 6 (upper left-hand side of the plot), the specificity increases at the

to the composition-based classifier, most of which are 0, and ongy¢; of jower sensitivity.
component close to 1. Using this knowledge we can anticipate that

the corresponding input to the entropy-based classifier would be a ) » o
number close to 0 (small entropy), so combining the two does nof 2/€ 4 Reducing false positives using filtering

yield new information. On the other hand, the RVET-based ranks

provide information from phylogenetic trees that is not present in Sensitivity ~ Specificity PPV~ Accuracy CC
the composition-based classifier. (%) (%) (%) (%)
3.3 Inferring significance using randomized datasets

] ] o CRank 57.5 62.0 27.4 609 0.151
In this work we used a relatively small dataset, hence it is importang similarity 555 65.8 283  63.6 0.168
to infer the significance of our results. This was done by comparingompositon ~ 55.2 58.2 24.4 582 0.101
the performance of each classifier with a corresponding classifieCEntropy 53.2 62.4 258 60.0 0.122

trained on a training set in which the labels ‘interacting’ and ‘non-

interacting’ were randomly reshuffled. The results are given inNotation is the same as in Table 2.

Table 3. Comparing Tables 1 and 2 with Table 3 shows that every

SVM used in this study performs better in all measures than the A complete picture of performance is shown in Table 4, where for

randomized classifiers. each of the classifiers in Figure 1 we selected a point which in our

3.4 Reducing false positives view represented the best performance that can be obtained by filter-
ing. The bestresults are achieved with the classifier that combines the

Important residues in a protein tend to form spatial CIUSterScompositionwith the RVET similarity ranks attributes. Its sensitivity

(Madabushiet al., 2002). Likewise, sequence-based clustering of. e .
interacting residues was also observed by Ofran and Rost (2003&')3 56%, specificity is 66% and the overall accuracy is 64%.
and was used to reduce FP by eliminating positive predictions of
fewer than four interacting residues in a window of six residues# DISCUSSION
Here we follow this lead by implementing a variable filter. After the This paper addresses the problem of predicting residues involved in
SVM predictions are obtained, a 9-residue window is moved alongrotein—protein interaction, using only sequence and MSA informa-
the sequence. Predictions of less tiMiinteracting residues in the tion. The biological importance of this problem lies in the fact that the
sliding window, with N ranging from 1 to 6, are considered to be number of known protein sequences is still much larger than the num-
negative predictions. ber of available structures. This problem is harder than predicting
This method to reduce false positives will, in general, increasea functional interface given a protein structure, and predictably,
specificity at the cost of decreasing sensitivity, because inevitablgxisting methods [the best of which is probably the work of Ofran and
we will encounter correct positive predictions that will be convertedRost (2003b)] perform worse than those that use knowledge of the
to negative predictions using the above criteria. This can be seen istructure (Zhou and Shan, 2001, Fariselil., 2002); or which limit
Figure 1, where we plot sensitivities and specificities for differentclassification to the known surface residues (¥aal., 2004a,b).
filtering values ofN. We again notice that combining composition  Motivated by a successful use of evolutionary phylogenetic
with information entropy does not significantly change the resultsinformation to predict functional sites, we have sought to combine
as compared with just using attributes based on the compositiorevolution with previous approaches (Ofran and Rost, 2003b) by using
Furthermore, Figure 1 shows that classifiers can be adjusted, throu@VMs. We found that the SVM classifier based on evolution alone
the choice of paramete¥, to maximize sensitivity or specificity. was nearly on par with an SVM based only on composition, even
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