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Integrative analysis of the cancer transcriptome
Daniel R Rhodes & Arul M Chinnaiyan

DNA microarrays have been widely applied to the study of 
human cancer, delineating myriad molecular subtypes of 
cancer, many of which are associated with distinct biological 
underpinnings, disease progression and treatment response. 
These primary analyses have begun to decipher the molecular 
heterogeneity of cancer, but integrative analyses that evaluate 
cancer transcriptome data in the context of other data sources 
are often capable of extracting deeper biological insight from 
the data. Here we discuss several such integrative computational 
and analytical approaches, including meta-analysis, functional 
enrichment analysis, interactome analysis, transcriptional 
network analysis and integrative model system analysis.

The widespread application of DNA microarrays to cancer research is 
nothing less than astounding. In the short ten-year history of this ver-
satile technology, hundreds of large-scale experiments have been done, 
generating global quantitative profiles of gene expression in cancer. 
Known types and subtypes of cancer have been readily distinguished by 
their gene-expression patterns, and more importantly, new molecular 
subtypes of cancer have been discovered that are associated with a host 
of tumor properties, including the propensity to metastasize and sensi-
tivity or resistance to particular therapies. The clinical utility of array-
based gene profiles is evidenced by recent studies showing that cancer 
gene-expression signatures may affect clinical decision-making in breast 
cancer and lymphoma management1,2. It may not be long before every 
human cancer sample is profiled with a gene chip to ascertain a molecu-
lar diagnosis and prognosis and to define an optimal treatment strategy. 
Before this becomes a reality, however, careful validation to identify 
optimal signatures is needed3. Apart from the impact of microarrays 
on clinical decision-making, cancer microarray profiling is also poised 
to advance our understanding of cancer biology and, ultimately, aid in 
the development of new and more effective therapies.

The biologist’s initial instinct might be to use cancer microarray 
data as a prioritized list of candidate genes for experimental work-up, 
hoping to strike gold and identify a gene important in cancer among 
a sizeable differential expression profile. Although this approach has 
identified several genes important in cancer, it is akin to asking what 
makes an airplane different from an automobile, taking both apart, 

making a list of differences in the parts and then focusing on a single 
part. Opposite to this single-part approach, a new line of attack seeks 
to examine the cancer profile as a whole, often in the context of other 
cancer signatures or other types of genomic data. Such integrative 
approaches are capable of simplifying complex cancer signatures 
into coordinately regulated modules, transforming one-dimensional 
cancer signatures into multidimensional interaction networks and 
extracting regulatory mechanisms encoded in cancer gene expres-
sion. Here, we review approaches that glean biological insight from 
cancer microarray data by applying integrative computational and 
analytical methodologies.

Before exploring the integrative analyses carried out on cancer tran-
scriptome data, it is useful to provide a brief overview of the cancer 
profiling field. In the past few years, we have witnessed an explosion 
of cancer profiling studies. Once a technology available in only a few
laboratories, DNA microarrays now seem as pervasive as PCR. 
Querying the Affymetrix database of publications for all reports relat-
ing to human cancer returned 646 primary research articles, 453 of 
which were published in the last two years. GEO (Gene Expression 
Omnibus), which has emerged as one of the principal repositories 
for microarray data4,5, returned 84 data sets when queried for ‘Homo 
sapiens’ and ‘cancer.’ The Oncomine database (http://www.oncomine.
org/)6, which includes data sets that have profiled ten or more human 
tumor samples (excluding cell line studies), has catalogued 300 primary 
research articles and amassed 114 data sets, totaling > 8,000 microarray 
experiments, each profiling a distinct human tissue sample. From this 
large body of cancer gene-expression research, several themes have 
emerged. First, cancer types can be reliably distinguished from nor-
mal tissue of the same type based on global gene-expression patterns. 
Second, predominant clinical and pathological subtypes of cancer 
often have distinct gene-expression profiles. Third, gene-expression 
signatures of primary tumors can often predict disease recurrence, 
distant metastasis, survival and treatment response. Fourth, hetero-
geneous cancers can be subclassified into molecular subtypes on the 
basis of gene-expression signatures7. These results were generated with 
primary analytical methods such as hierachical clustering8 and statis-
tically based differential expression analysis9,10, usually with careful 
consideration for multiple-hypothesis testing11.

Although these primary analyses have made great strides in deci-
phering the complex molecular heterogeneity of cancer, integrative 
bioinformatics approaches that leverage multiple types of informa-
tion have begun to show promise in uncovering important biology 
not apparent from standard analysis methods (i.e., differential expres-
sion analysis, hierarchical clustering, etc.). We highlight several such 
approaches, including meta-analysis for extracting robust profiles from 
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independent data sets, enrichment analysis for identifying coordinately 
regulated functional gene modules, protein interaction networks for 
detecting interaction complexes deregulated in cancer, transcriptional 
networks for inferring regulatory mechanisms in cancer and analyses of 
model system profiles with human tumor profiles for inferring activity 
of oncogenic pathways. In a related Perspective, Koller and colleagues 
discuss computational approaches for defining higher-level functional 
modules and regulatory models from transcriptome data12. They detail 
model-building methods that have been successful in lower organisms 
and discuss the potential for their application to humans. As diverse 
fronts of genomic data continue to grow and mature, the need for bio-
informatics integration will be imperative to understanding cellular 
networks and how they are deregulated in human cancer.

Meta-analysis of cancer signatures
With hundreds of cancer signatures published 
in the literature, several types of integrative 
analysis can be done. We call analysis of mul-
tiple data sets ‘meta-analyses,’ similar to meta-
analyses done in clinical research, in which 
multiple studies interrogating a common 
hypothesis are analyzed together. In the realm 
of microarray data, meta-analysis is compli-
cated by distinct experimental platforms and 
designs, and so gene-expression measurements 
are not always directly comparable. Several 
studies have applied meta-analysis methods 
to cancer microarray data, both to identify 
robust gene-expression signatures in a single 
cancer type and to look for common expres-
sion patterns across different types of cancer. 
We applied a summary statistic-based method 
coupled with false discovery rate analysis to 
compare four gene-expression studies that 
analyzed clinically localized prostate cancer 
relative to benign prostate tissue and identi-
fied a signature of genes commonly activated 
in prostate cancer across all data sets, irrespec-
tive of technological platform13. After defin-
ing a robust signature for prostate cancer, we 
carried out pathway analysis with the KEGG 
database14 and found that the polyamine bio-
synthesis pathway was hyperactivated, consis-
tent with the known elevation of polyamines 
in prostate cancer. Another report identified 
gene expression–based classes of breast cancer 
in one data set and then searched for the exis-
tence of the classes in two independent data 
sets15. Three main biological subtypes held 
up in the two independent datasets: basal-
like, ERBB2-overexpressing and luminal-
like, reflecting diversity in cell of origin and 
transforming mechanisms in breast cancer. 
Other studies have identified prognostic sig-
natures capable of predicting disease outcome 
across distinct data sets16,17. As the applica-
tion of genomic technologies becomes more 
commonplace, it will be important to define 
robust signatures that hold up across multiple
independent data sets.

Perhaps more interesting from a biological
standpoint are meta-analyses that look for 

common signatures across data sets and cancer types. In a demon-
stration of such an analysis, Ramaswamy and colleagues identified a 
gene-expression signature that was differentially expressed in metastatic 
tumors of diverse origins relative to primary cancers18. They found that 
the metastatic signature was also expressed in a subset of the primary 
tumors analyzed, leading to the hypothesis that the signature might 
represent a metastatic program that is encoded in primary tumors 
destined for metastasis. To test the generality of the signature, they 
attempted to predict time to metastasis in several independent solid 
tumor data sets including prostate, lung and breast adenocarcinomas, 
as well as medulloblastomas. In all of the data sets analyzed, the meta-
static signature was significantly associated with clinical outcome and 
metastatic disease, suggesting that metastatic potential is encoded in 
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Figure 1  Meta-analysis methods for the integration of cancer signatures. By collecting, standardizing 
and analyzing several independent cancer signatures simultaneously, meta-analytic approaches can 
validate and define robust gene signatures and can also define gene signatures representing shared 
biology across multiple cancer types. (a) The meta-analysis method used to identify a ‘universal’ 
cancer signature is outlined. (b) The universal cancer signature encompasses 67 genes commonly 
activated in human cancer relative to respective normal tissue types. A red square indicates significant 
overexpression; the shade of red indicates the degree of statistical significance.
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primary tumors and is at least in part encoded 
by a common signature across tumor types. 
We also carried out meta-analysis in search 
of a common signatures across distinct can-
cer types19. We collected 40 independent data 
sets (>3,700 array experiments) from which 
we generated 36 cancer signatures represent-
ing genes activated in a particular cancer type 
relative to the normal tissue type from which 
it arose. A meta-analysis of these signatures 
identified 67 genes activated in 12 or more 
signatures. This 67-gene signature could 
predict cancer versus normal status in most 
of the cancer signatures tested, as well as in 
nine independent cancer signatures, of which 
three represented cancer types not included 
in the original analysis. These results suggest 
that a common transcriptional program per-
vades most types of cancer (Fig. 1). Similarly, 
another meta-analysis uncovered a molecular 
signature that can distinguish different types 
of undifferentiated cancers from their well-
differentiated counterparts, suggesting that 
there are universal pathways to dedifferentiation. This work highlights 
the ability of meta-analysis to detect collective molecular signatures 
that may be more generally related to tumorigenesis than are individual 
cancer type signatures.

Functional enrichment analysis of cancer signatures
Gene-expression profiling with DNA microarrays often generates large 
gene-expression signatures characteristic of a particular type or subtype 
of tissue. Sifting through hundreds or even thousands of differentially 
expressed genes is a daunting task for even the most schooled molecular 
biologist. Often, a handful of genes of interest are selected for experi-
mental validation and work-up, and hundreds of others are ignored. 
In the previous section, we described meta-analysis methods for vali-
dating analogous gene-expression signatures and extracting common 
gene-expression signatures from independent cancer signatures. Here, 
we describe the use of external functional information for interpret-
ing and summarizing large cancer signatures. Early demonstrations 

of cancer molecular profiling used hierarchical clustering and manual 
annotation of gene clusters to identify subclasses of cases that expressed 
functionally related gene sets7,20. Although the results obtained from 
such studies were convincing, the functional analyses were subjective 
and relied on the experimenters’ knowledge of gene families, processes 
and pathways.

Several methods have been proposed for systematic functional analy-
sis of gene-expression signatures21–26. Most approaches use external 
annotation databases such as Gene Ontology27, which is a database of 
controlled vocabulary gene annotations describing the biological pro-
cesses, molecular functions and cellular localizations of genes. Because 
Gene Ontology encompasses thousands of functional annotations 
assigned to a large fraction of the genome (>14,000 unique genes), it 
serves as an ideal resource for enrichment analysis in cancer signatures. 
For example, a cancer signature may consist of 1,000 overexpressed 
genes out of 10,000 measured genes. A statistical test of enrichment 
might find that 100 of 150 genes annotated to function in ‘protein 

Cancer signatures Functionally related gene sets

Annotation and pathway
databases

Expected Observed

P value = iNi
N

ni

pp
iN

N −

=

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−∑ )1(

)!(
!

 

Enrichment analysis

Significant enrichmentRandom distribution

Nonmetastatic Metastatic
ACTR3
PIR
ACTR2
ARPC4
ABI2
ABI2
ARPC1A
ARPC1B
ARPC2
ACTR3

0.029
0.063
0.118
0.209
0.231
0.257
0.305
0.316
0.339
0.386

Gene Q value

BUB1
MAD2L1
CCNB2
CCNK
PTTG1
BRRN1
KNTC2
ASPM
STK6
KIF2C
ASPM
CDC2
CDC25A
RAD21
UBE2C
SMC4L1
TPX2
SMC4L1
SPAG5
CCNB1

0.041
0.042
0.06
0.061
0.062
0.064
0.076
0.078
0.086
0.099
0.103
0.122
0.122
0.13
0.138
0.143
0.149
0.153
0.171
0.173

Nonmetastatic Metastatic Gene Q value

Mitosis module

Y branching of actin filaments module

a

b

Figure 2  Analyzing cancer signatures in the 
context of functionally related gene sets can 
identify coordinately regulated functional 
modules. Various analytical methodologies have 
been applied to define functional modules or 
enriched gene sets. (a) A method that uses the 
binomial distribution to calculate the chance 
probability that a gene set would show a given 
degree of enrichment in a cancer signature. 
Gene set enrichment scores were computed for 
several types of gene sets (Gene Ontology, KEGG, 
Biocarta) across hundreds of cancer signatures 
from the Oncomine database. (b) Two functional 
modules enriched in a metastatic breast cancer 
signature are associated with primary breast 
tumors that metastasized relative to primary 
breast tumors that did not. The mitosis module 
and the Y branching of actin filaments module 
showed significant enrichment, suggesting that 
these processes are important in metastatic 
breast cancer.
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biosynthesis’ are present in the cancer signature (Fig. 2a). By chance, 
we would expect only ~15 genes (10%) to be present in the cancer 
signature; therefore, this enrichment would be statistically significant, 
and we would conclude that the ‘protein biosynthesis’ gene-expression 
module is activated in the cancer signature. This general approach can 
be applied for all gene sets represented in Gene Ontology and other 
pathway resources such as KEGG14, Biocarta (http://www.biocarta.
com/) and GenMAPP (http://www.genmapp.org/).

The power of systematic functional analysis of disease signatures was 
demonstrated by Mootha et al. By applying a method called gene set 
enrichment analysis, which uses a Kolmogorov-Smirnov test statistic, 
they found that genes involved in oxidative phosphorylation are coordi-
nately downregulated in diabetic muscle24. This result was particularly 
notable because in the original analysis, no individual genes showed 
significant deregulation in diabetic muscle. Only when examining 
functionally related gene sets were they able to uncover a coordinately 
deregulated process. Another study used gene set enrichment analysis 
to characterize three predominant gene expression–based subclasses of 
diffuse large B-cell lymphoma28. They found enrichment of particular 
gene sets in each subset (oxidative phosphorylation, B-cell receptor/
proliferation and host response), suggesting that distinct biological 
processes differentiate subclasses of diffuse large B-cell lymphoma.

A recent study took systematic functional analysis a step further 
by analyzing hundreds of gene sets in the context of a compendium 
of diverse cancer profiles29. They defined ‘modules’ as functionally 
related sets of genes that are conditionally activated or repressed across 
a wide variety of cancer types. This analysis uncovered several modules 
deregulated in cancer. Some modules were shared across many cancer 
types, such as the cell cycle module, whereas others were specific to 
cancer types or subtypes. For example, a growth inhibitory module was 
repressed in leukemias, and a bone osteoblastic module was activated 
in breast tumors. The module map generated by this analysis suggests 
several hypotheses linking biological processes to specific cancer types 
and subtypes. Careful interpretation and validation of such modules 
will be required to fully appreciate the value of the approach.

As part of the Oncomine database, we have also begun to interro-
gate cancer gene-expression signatures for the enrichment of particu-
lar Gene Ontology annotations, KEGG metabolic pathways, Interpro 
protein families and Biocarta signaling pathways. To date, 512 cancer 

signatures computed from 112 independent data sets have been tested 
for the enrichment of these types of gene sets (D.R.R. et al., unpublished 
data). Figure 2b highlights examples of enriched functional modules 
in a metastatic breast cancer signature. In a landmark study, van’t Veer 
and colleagues identified a signature of genes capable of predicting 
distant metastasis and survival from primary tumor gene-expression 
profiles30. To identify functional modules active in the primary tumors 
destined for metastasis, we recapitulated this signature in Oncomine 
and carried out enrichment analysis. The most significantly enriched 
biological process was ‘mitosis’ (odds ratio = 7.02, Q = 2.7 × 10–6), 
whereas the most enriched Biocarta pathway was ‘Y branching of actin 
filaments’ (odds ratio = 8.14, Q = 0.037), suggesting that these modules 
are important for breast cancer metastasis. The activated ‘mitosis’ mod-
ule is not surprising (the authors noted a preponderance of cell cycle 
genes in the signature), but the ‘Y branching of actin filaments’ module 
is less obvious and may point to specific transcriptional machinery that 
promotes metastatic cell spreading.

Protein interaction networks and cancer signatures
To understand complex biological processes, such as cancer initiation 
and progression, it is important to consider differential gene expres-
sion in the context of complex molecular networks. The study of such 
networks requires detailed protein-protein interaction (‘interactome’) 
maps. Preliminary versions of such maps have been generated by high-
throughput methodologies such as global yeast two-hybrid screens, by 
computational prediction algorithms and, in the case of the Human 
Protein Reference Database (http://www.hprd.org/)31, by curating 
known interactions from the literature. A detailed human interactome 
network that captures the entire cellular network would be invaluable 
in interpreting cancer signatures, allowing one to infer activated sub-
networks and specific proteins that are most important to a subnet-
work. Although human interactome maps are still in their infancy, 
representing only a fraction of the complete interaction network, we 
and others have begun to evaluate their utility in interpreting complex 
cancer signatures. Figure 3 shows how a multiple myeloma signature 
from Oncomine can be mapped to the human interactome network, 
as defined by the Human Protein Reference Database, to define a sub-
network of coordinate activation (D.R.R. et al., unpublished data). 
Upon exploring the links in the subnetwork, we speculate that RAF1 

Multiple MyelomaNormal B cells

BAG1

RAF1

TXN

HRAS

RASA1

IRAK1

INSR

MAP3K5

PAK1

NRC31

Figure 3  The human protein-protein interaction 
network as a framework for interpreting 
cancer gene-expression signatures. On the 
left is a signature of 300 genes significantly 
overexpressed in multiple myeloma. The 
interactions between pairs of proteins 
overexpressed in multiple myeloma are 
highlighted (in red) among the known protein 
interaction network according to the Human 
Protein Reference Database. A focused 
interaction subnetwork in which all members 
are overexpressed was extracted using 
Oncomine. This subnetwork suggests that 
RAF1 overexpression coupled with multifaceted 
RAF1 activation by RAS, PAK1 and BAG1 may 
contribute to multiple myeloma tumorigenesis.
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may be the linchpin, as several members of 
the network (RAS, PAK1 and BAG1) function 
to activate RAF1. Thus, by targeting RAF1, as 
opposed to other members of the network, 
one may be able to blunt the effects of the 
entire subnetwork. Although our interpreta-
tion is speculative, it highlights the potential 
for interaction networks in the analysis of can-
cer signatures. We have developed a tool called 
HiMAP (Human Interactome Map; http://
www.himap.org/) that allows one to input a 
gene-expression signature and identify acti-
vated or repressed interactome subnetworks 
on the basis of known and predicted pro-
tein-protein interactions. Other commercial 
products have similar functions, using their 
proprietary databases of literature-defined 
protein interactions and pathways. Companies 
with such products include Ingenuity (http://
www.ingenuity.com/), GeneGo (http://www.
genego.com/) and Ariadne Genomics (http://
www.ariadnegenomics.com/). When consid-
ering the current state of human molecular 
interaction maps and databases, it is impor-
tant to note the limitations and pitfalls. First, 
because these early representations of the 
cellular network are largely incomplete and 
probably contain several errors, important 
pathways and subnetworks may be missed by 
such analysis. For example, when consider-
ing networks generated from the literature, only well-studied proteins 
and interactions will be represented, and when considering networks 
generated from high-throughput yeast two-hybrid experiments, only 
nuclear and cytoplasmic proteins will be represented. Furthermore, 
protein-protein interactions are probably often context-dependent (i.e., 
an interaction that occurs in a specific cell line or artificial system may 
not occur in vivo). Therefore, until interaction networks have matured, 
insights gained from their analysis must be treated as hypotheses requir-
ing careful experimental validation.

Transcriptional targets and cancer signatures
The previous sections dealt with integrative bioinformatics approaches 
for characterizing and interpreting cancer gene-expression signatures. 
Because most cancer signatures are obtained at a specific time, provid-
ing only a snapshot of gene expression, it is difficult to understand 
and differentiate cause and effect from a gene-expression signature 

(i.e., does gene A activate gene B? Does gene B activate gene A? Or 
are both genes A and B activated by gene C?). Integrative approaches 
have been developed to begin to infer causality and define directional 
pathways activated in cancer signatures. In the next two sections, we 
examine approaches that leverage transcription factor–binding site 
data and approaches that combine model system oncogene signatures 
with in vivo human cancer signatures to infer oncogene activation 
and downstream targets. Similar to protein interactome networks, 
global transcriptional networks have the potential to improve the 
interpretation of cancer signatures. For example, if the targets of all 
transcription factors (and multicomponent transcription factor mod-
ules) were known, then one could easily infer which transcription 
factors must be activated in a tumor to yield the observed cancer 
signature. Reducing a complex cancer signature to a small number 
of activated transcriptional programs might shed light on neoplastic 
mechanisms and suggest points of therapeutic intervention. Several 
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Figure 4  Regulatory programs encoded in cancer 
gene-expression signatures. (a) An enrichment 
analysis analogous to the functional gene 
set enrichment analysis aimed at identifying 
specific transcription factor–binding sites 
that are common in cancer gene-expression 
signatures. (b) An example cancer regulatory 
program that was defined by CREB-ATF binding 
sites enriched among a salivary carcinoma 
gene-expression signature. CREB1 and ATF5 
were specifically overexpressed, suggesting that 
their overexpression may activate a program of 
genes with CREB-ATF binding sites in salivary 
carcinoma.
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approaches have been devised to identify consensus binding sites in 
the promoters of coexpressed genes, but this approach is difficult in 
higher eukaryotes, which often have complex regulatory structures. 
Here, we instead discuss approaches that use known binding sites for 
characterized transcription factors.

New technologies such as chromatin immunoprecipitation coupled 
with promoter microarrays (ChIP-chip) allow for genome-wide iden-
tification of transcription factor–binding sites32–34, but only a few 
human transcription factors have been profiled to date. Sequence-based 
methods for defining putative transcription factor–binding sites are 
probably less accurate than experimentally defined binding sites, but 
hundreds of consensus binding sequences have been defined35, making 
it feasible to carry out large-scale integrative analysis of binding-site 
profiles and cancer signatures. Elkon et al. demonstrated this approach 
first in humans, identifying known transcription factor–binding sites 
enriched among promoters of genes expressed in various phases of the 
cell cycle36. We applied a similar approach to the Oncomine compen-
dium of cancer signatures to identify regulatory programs activated in 
cancer (Fig. 4). In this example, 265 gene-expression signatures were 
compared with 361 sequenced-derived transcription factor–binding 
site profiles. We identified more than 300 cases in which a specific tran-
scription factor profile was enriched in a cancer signature, suggesting 
that the transcription factor may be responsible for the observed gene 
expression37. As a validation exercise, we tested several normal tissue 
signatures and identified enriched transcription-factor profiles that 
corresponded to transcription factors with known tissue specificity. 
Several proposed cancer regulatory programs suggest the importance 
of E2F, Myc, Ets-1, Rel and ATF in regulating cancer gene expression. 
Figure 4b details a candidate regulatory program that links the CREB-
ATF binding sites to salivary carcinoma. We anticipate that as experi-
mental transcriptional network data grow, this type of analysis will 
become more powerful, facilitating comprehensive deconvolution of 
the cancer transcriptome.

Model systems and cancer signatures
Several oncogenes are known to have causative roles in tumorigen-
esis38. To begin to understand the mechanisms by which oncogenes 
cause cancer, studies have used gene-expression profiling to identify 
downstream targets of oncogenic pathways in cell-culture systems. 
Integrating results from such experiments with in vivo cancer signatures 
holds the potential both to infer activity of specific oncogenic pathways 
in vivo and to identify relevant effectors of oncogenic pathways. In a 
demonstration of the former application, Huang et al. developed dis-
tinct in vitro oncogenic signatures for Myc, Ras and E2F1-3 (ref. 39). 
These signatures were able to predict Myc and Ras state in mammary 
tumors that developed in transgenic mice expressing either Myc or Ras, 
suggesting that specific oncogenic events are encoded in global gene-
expression profiles. In an effort to elucidate the direct transcriptional 
effects of oncogene Cyclin D1, Lamb et al. carried out an integrative 
analysis of an in vitro–defined Cyclin D1 gene-expression signature 
with a panel of human tumor expression profiles with variable expres-
sion of Cyclin D1 (ref. 40). They found that the in vitro–defined targets 
of Cyclin D1 were correlated with Cyclin D1 levels in vivo, suggesting 
that direct transcriptional regulation by Cyclin D1 may be important 
in tumorigenesis. They also went on to search for other genes associ-
ated with the Cyclin D1 signature in vivo and found that CEBP/B had 
a strong association with the signature; in fact, Cyclin D1 regulates 
transcription through CEBP/B.

In another report, Sweet-Cordero et al. defined a KRAS signature by 
comparing lung tumors generated from a spontaneous KRAS muta-
tion mouse model to normal mouse lung41. After mapping the mouse 

data to human lung tumor data, they found that the mouse signature 
shared significant similarity with human lung adenocarcinoma but 
not with other lung cancer types. Next, they looked for evidence of the 
KRAS signature in human tumors carrying activating KRAS muta-
tions relative to wild-type tumors. Although no individual genes were 
significantly associated with KRAS mutation status in human tumors, 
the mouse KRAS signature was significantly enriched among genes 
rank-ordered by differential expression in human tumors with a KRAS 
mutation. The authors concluded that a KRAS mutation signature does 
exist in human tumors, but that the genetically driven mouse model 
signature was needed to act as a filter to extract it. In summary, integrat-
ing model system gene-expression profiling, in which a cancer gene can 
be overtly activated or repressed, with in vivo human cancer signatures 
holds great promise both for identifying cancers in which particular 
oncogenic pathways are active and for delineating important oncogenic 
effectors.

The future of integrative molecular analysis of cancer
Though far from comprehensive, this report attempts to focus on 
conceptual highlights in integrative cancer biology. The pace at 
which the cancer profiling field is growing, coupled with advance-
ments in other high-throughput molecular approaches such as SNP 
arrays, array comparative genome hybridization, promoter arrays, 
proteomics and ‘metabolomics,’ ensures that integrative approaches 
will be crucial for extracting maximum biological insight from the 
collective cancer genomics data set. In order for such integration to 
occur, it will be important to define standards for communicating 
genomic profiles across diverse experimental systems. We propose 
that although the types of genomic data that are analyzed vary widely, 
a common language, quantitative gene lists, might unify disparate 
genomic data. When we consider the integrative analyses highlighted 
here, we find lists of genes activated in cancer; lists of genes that 
function in particular processes, pathways and interaction networks; 
lists of genes targeted by transcription factors; and lists of genes 
activated by oncogenes in model systems. Other types of gene lists 
not discussed include genes expressed in normal human cell types, 
genes expressed at various stages of development, genes located on 
specific chromosome arms or in specific bands, genes deregulated 
by drug treatment and genes conferring sensitivity or resistance 
to drug treatment. Analogous to how a new DNA sequence can be 
effortlessly compared to all DNA sequences in GenBank, we propose 
that the same such resource should exist for gene lists or ‘molecular 
concepts.’ A ‘molecular concepts map’ would compute the degree of 
overlap among all concepts and allow experimenters to import new 
concepts and study their relationships with the global concept map. 
Beginning with a concept of interest (e.g., a new cancer signature), 
one might find that the signature shares similarity with an in vitro 
oncogene signature, a transcription factor–binding site profile and a 
drug-treatment profile, suggesting that the oncogene and transcrip-
tion factor are active in the new cancer signature and that a specific 
drug treatment might reverse the signature. Such an effort would 
require reporting standards similar to those required for microar-
ray data42, able repositories and journal requirements for deposition 
before publication. An initiative to collect and standardize all quan-
titative gene lists already published would be of great use and might 
serve as the backbone to a larger community-wide contributory effort. 
As evidenced by the Affymetrix publication list, the growing GEO and 
ArrayExpress microarray repositories and the Oncomine database of 
cancer signatures, the limitation is not in the quantity or quality of 
genomic profiles, but rather in the lack of integrative bioinformatics 
solutions for sharing and analyzing such profiles.
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