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Abstract

We explore two different methods to predict the binding ability of nonapeptides at the class I
major histocompatibility complex using a general linear scoring function that defines a separating
hyperplane in the feature space of sequences. In absence of suitable data on non-binding nonapep-
tides we generated sequences randomly from a selected set of proteins from the protein data bank.
The parameters of the scoring function were determined by a generalized least square optimization
(LSM) and alternatively by the support vector machine (SVM). With the generalized LSM impaired
data for learning with a small set of binding peptides and a large set of non-binding peptides can
be treated in a balanced way rendering LSM more successful than SVM, while for symmetric data
sets SVM has a slight advantage compared to LSM.

Keywords: major histocompatibility complex, peptide binding, separating hyperplane, support vec-
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1 Introduction

Every adaptive immune reaction is based on the specific detection of foreign substances by lympho-
cytes. These lymphocytes than destroy infected cells and/or stimulate an antibody response, which
generally leads to the complete removal of an invading microorganism from the body. Absolutely
essential for such a successful immune response is the presentation of the foreign substances, which
are in most cases peptides derived for instance from a replicating virus. These peptides are generated
from the proteasome and transported to the endoplasmatic reticulum, where they are loaded in the
major histocompatibility complex (MHC) [11, 13, 19]. This complex together with the peptide is
transferred to the cell surface and can be recognized by T-cells via the T-cell-receptor (TCR) [12, 28].
Without presentation of peptides, no immune response against viruses can be initiated which leads to
death of the organism and is the strategy of many pathogens [29]. Not all peptides can be presented in
the MHC. The binding depends on so-called anchor-amino-acids, which bind often with low specificity
to the MHC, leaving the residual peptide exposed to the TCR [2, 10].

The development of vaccines, immunotherapies and the understanding of a pathogen crucially de-
pend on the know-ledge of the immuno-dominat peptides from a target organism. Identification of
these peptides can be done by binding assays in vitro after all possible peptides have been synthe-
sized [16, 25]. This is an extremely expensive approach, because even a very small virus encodes a
considerable number of medium size proteins. For each of these proteins hundreds of peptides have
to be synthesized and their ability to bind at the MHC must be probed in experiment. This often
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shows that only very few peptides can indeed bind to the MHC and that from thousands of screened
peptides only one or two bind with high affinity, which is required for a functional immune response.

To simplify the search for immuno-dominant peptides, several groups collected data of peptides
that bind at MHC to generate a database, which can serve as starting point of computer-based methods
to predict the ability of peptides to bind at MHC in silico. These approaches can help to reduce the
number of peptides, which have to be tested in vitro. The most often used database of MHC binding
peptides is the SYFPEITHI-database (SYF) [24]. Another database for MHC binding peptides that
offers however no prediction scheme is MHCPEP (PEP) [6]. The SYF database refers to published
data only. It contains about 3,500 MHC binding peptides, which are natural ligands to T-cell epitopes.
The MHCPEP database is with about 13,000 MHC binding peptides considerably larger than SYF
but may be less reliable, since it allows also for direct submission of data.

Generally, there are sequence based and structure based approaches to predict the ability of pep-
tides to bind at the MHC. The latter uses X-ray structures of MHC or even better of the MHC-peptide
complex as a starting point to model the binding geometry of different peptides [26]. The structure
based approach has the advantage to require only knowledge of one or at most a few crystal structures
to study the peptide binding and provides a deeper understanding of the importance of specific inter-
actions between peptides and the MHC. For peptides that bind to the MHC HLA-A*0201 it is evident
from crystal structures that the binding peptides are often nonamers, which possess typically two hy-
drophobic anchor residues Lys at position 2 and Val at position 9 [27]. This knowledge was a starting
point to design empirical scoring functions that use also informations from sequence databases [16].
However, a disadvantage of the structure based approach is the difficulty to estimate an error margin.

More recently, a number of theoretical groups have employed bioinformatic methodology to predict
the ability of peptides to bind at MHC based on sequence information. Among these methods are
neural networks [7, 14], hidden Markov models [5, 20, 30] and methods based on scoring functions
that are optimized by least square fitting [23] or by using the support vector machine [9, 15]. A recent
extensive comparison of different methods can be found in Ref. [31]. In this study, we tried to explore
a method to predict immuno-dominant epitopes by using a most simple approach employing a linear
scoring function in sequence space. The novel aspect of the present approach is that we provide a
rigorous scheme in terms of a linear equation system to determine the optimal values of the parameters
of the scoring function.

2 Method

Peptide Data Bases. For the set of polypeptide sequences that bind at the MHC, we considered
the SYF [24] and PEP [6] data bases in September 2003. There are 268 peptides in SYF that bind
to the MHC HLA-A*0201. From these sequences 204 possess the canonical length of 9 residues. The
remaining 64 peptides possess sequences longer than 9 residues. The peptides in SYF are sequence
aligned i.e. equivalent sequence positions of different peptides were identified such that the corre-
sponding peptide residues are supposed to interact with same residues of the MHC binding groove.
We used this information to cut the length of the peptides longer than 9 residues to obtain nonapep-
tides, which are suitable for our approach. In the PEP database there are 506 peptides that bind to
the MHC HLA-A*0201. These peptides were not aligned. Therefore, we considered from this data
base nonapeptides only. We merged these two sets of nonapeptides, which after removing the identical
peptides yielded a database S

+ of 538 nonapeptides binding at the MHC HLA-A*0201. The sequences
of these nonapeptides are listed in Table 6 of the appendix.

There are no explicit non-binding peptides available. We assumed that randomly chosen nonapep-
tides are unlikely to bind at the MHC. Hence, we generated up to 10,000 different nonapeptides S

−

that were randomly taken from the concatenated sequences of 202 proteins selected from the protein
database [1] (Table 1). Care was taken that the selected proteins do not contain nonapeptides that
bind at MHC, although this can not be excluded with absolute certainty. The probability of occur-
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rence of the 20 amino acid types in the data base of 10,000 non-binding nonapeptides given in Table 2
is similar to the distribution in other sequence databases as for instance modern vertebrates [4], but,
differs in some amino acid types (Ala, Arg, Asp, Glu, Leu, Lys, Val) from the set of binding nonapep-
tides. It is noticeable that using randomly generated non-binding nonapeptides with the probability
of the non-binding peptides provided the same results in recognition and prediction (data not shown).

Data Representation. We assume that two sets of polypeptide sequences are available: one set of
binding peptides S+ = {−→x +

n , n = 1, . . . , N+} and one set of non-binding peptides S− = {−→x −

n , n =
1, . . . , N−}, which are obtained as explained above. For the present application all sequences con-
sidered are aligned and of equal length say M = 9. The polypeptide sequences −→x n are represented by
M subvectors

−→x t
n = (−→x t

1,n, −→x t
2,n, . . . , −→x t

M,n), (1)

where each subvector in eq. (1) possesses 20 components

−→x t
m,n = (x

(m,n)
1 , x

(m,n)
2 , . . . , x

(m,n)
20 ), (2)

which refer to the 20 different native amino acid types. Note that the superscript t in eq. (1) and (2)
refers to a row vector representation. An individual component of a sequence vector −→x n denoting the
occurrence of amino acid type j at sequence position m will be addressed as (−→x n)jm. The amino acid
type at a particular sequence position is coded by setting the corresponding component of the subvector
to unity, while all other 19 components of this subvector contain zero. Thus, from a more general view
point the components of each subvector can also be interpreted as a probability distribution to find
specific amino acid types at the corresponding sequence position. This interpretation becomes more
meaningful, when averages 〈−→x 〉 of those sequence vectors are considered as is done below.

Table 1:

PDB a codes of proteins whose concatenated sequences were used to generate the non-binding nonapeptides
1 7ZNF 1AGQ 1BRX 1C51 1BCC 1EPW 1A75 1E4T 1AQU 1O23 1ISN 2IAD
2 6RLX 1AIR 8TIM 1BQP 1P3H 1E1H 1LF4 1E3E 1ALB 1NMM 1IQ1 2DLF
3 6Q21 1AFO 1A0R 1EIS 1UJL 1DXR 1E0C 1DX1 1AI1 1NCI 1IKN 1SUH
4 1HNE 3MRA 1A12 1C01 1GWY 1GWC 1HRK 1DSV 1AFV 1NAS 1IG3 1HA7
5 1EAD 1AUN 3ZNC 1C4R 1RK4 1G6R 1RIE 1DJ2 1A2Y 1N9P 1IFQ 1GK8
6 1VMO 1AUV 1A38 1GGX 1QKK 1FYT 1UOY 1DF3 1A1H 1MNU 1IFA 1BX7
7 821P 1A04 2SQC 1FHF 1B9C 1L0X 1H1V 1DD7 1914 1MBY 1IAL 1BWK
8 1BOM 1AF6 1BUG 1H4Y 1BFA 1ITZ 1GL5 1CQZ 1R2A 1MBE 1I7W 1BK6
9 1AHL 1A06 1BYO 1BPO 1BD2 1IR1 1GL2 1CL7 1QLX 1M4M 1I7E 1BJT
10 1SRA 1AXM 7PCK 1AB1 1AO7 1LFJ 1G74 1CE6 1PA2 1M3V 1I6Z 1ASZ
11 1DOX 1AZD 1BYY 1H8P 1A2X 1OM0 1FWU 1CDK 1P8J 1LB1 1I07 1AI9
12 1MSP 1AIW 2VSG 1GRW 1A2C 1OED 1FRB 1C2B 1ORS 1KCM 1HQV 1A6R
13 1FAT 1A0D 1B10 1JV1 1D9K 1TCR 1FKW 1BLN 1OMX 1KBQ 1HQ8 1A4H
14 1BGK 1BB9 1C3A 1O7N 1CNE 1QF3 1F93 1BKX 1OKQ 1K2F 1HN3 1A48
15 7UPJ 1A05 1EG5 1H0H 1CJK 1PJU 1F81 1BGX 1OGP 1JJO 1H96 1A2V
16 6UPJ 1BA1 1EHD 1B8M 1FV3 1WGT 1EDH 1BBS 1OCP 1JI9 2ZNC
17 5UPJ 1BKD 1BQF 1GDJ 1EZF 1BR1 1E4W 1AX8 1OAA 1IWE 2MSS
a Ref. [1]

Scoring Function. The decision that a sequence −→x is capable to bind or not, is performed with a
scoring function, f(−→x ), which is linear in sequences space S(feature space) and in parameter space.
The most general expression of the linear scoring function f(−→x ) is the linear form

f(−→x ) = −→w t · −→x + b , (3)
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Table 2: Probability of occurrence of amino acid types.

amino acid in modern non-binding binding
type vertebratesa peptidesb peptidesc

Ala 0.078 0.074 0.110

Arg 0.063 0.047 0.027

Asn 0.034 0.048 0.027

Asp 0.054 0.056 0.027

Cys 0.008 0.018 0.013

Gln 0.032 0.039 0.027

Glu 0.086 0.064 0.039

Gly 0.073 0.076 0.063

His 0.019 0.024 0.019

Ile 0.067 0.055 0.067

amino acid in modern non-binding binding
type vertebratesa peptidesb peptidesc

Leu 0.089 0.086 0.180

Lys 0.078 0.060 0.038

Met 0.024 0.020 0.024

Phe 0.036 0.042 0.046

Pro 0.044 0.048 0.046

Ser 0.047 0.066 0.054

Thr 0.049 0.058 0.048

Trp 0.010 0.017 0.013

Tyr 0.030 0.037 0.025

Val 0.082 0.066 0.110

aProbability of occurrence of amino acid types in modern vertebrates according to Ref. [4].
bProbability of occurrence of amino acid types in the 10,000 non-binding nonapeptides as explained in text.
cProbability of occurrence of amino acid types in the 538 binding nonapeptides as explained in text.

where −→x ∈ S is a 20*M component vector characterizing a particular sequence, −→w t is a row vector of
the same dimension as −→x and b is a scalar. The 20*M + 1 free parameters of the scoring function
−→w t and b are determined for a set of sequences, the so called learning set Slearn such that f(−→x )
adopts a value close to +1 for the binding sequences and close to -1 for the non-binding sequences.
Hence, setting f(−→x ) = 0 defines a hyperplane in the 20*M dimensional sequence space S with plane
normal vector −→w . The hyperplane f(−→x ) = 0 separates binding sequences −→x + with f(−→x +) > 0 from
non-binding sequences −→x − with f(−→x −) < 0. These criteria can be used to predict the binding ability
of peptides.

Least Square Optimization. There are different strategies in the learning phase where the 20*M
+ 1 free parameters of the scoring function f(−→x ), eq. (3), are determined. The most elementary
approach is to minimize the scoring function with respect to the sum of least square deviations [least
square method (LSM)]

L(−→w , b) =
1

2N

N
∑

n=1

(f(−→x n) − yn)2. (4)

The sum in eq. (4) runs over all sequences of the learning set Slearn = S
+ ∪ S

−, where for binding
sequences yn = +1 and for non-binding sequences yn = −1. Taking the derivatives of L(−→w , b) with
respect to −→w and b results in the following set of 20*M linear equations

〈

(−→x − 〈−→x 〉)(−→x t −
〈−→x t

〉

)
〉

· −→w = 〈(y − 〈y〉)(−→x − 〈−→x 〉)〉 (5)

and

b = 〈y〉 −
〈−→x t

〉

· −→w . (6)

The angular brackets in eq. (5) and (6) denote averages over all sequences of the learning set S learn

as for instance

〈−→x 〉 =
1

N

N
∑

n=1

−→x n . (7)

It is interesting to note that the matrix of the set linear equations (5) is formed from the covariances
of the sequence distributions

〈

(−→x − 〈−→x 〉)(−→x t −
〈−→x t

〉

)
〉

=
〈−→x −→x t

〉

− 〈−→x 〉
〈−→x t

〉

, (8)
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where −→x −→x t denotes the dyadic product of the sequence vector −→x . For instance the matrix element

N
〈−→x −→x t

〉

(jm),(j′m′)

counts how often in the learning set of sequences Slearn one meets an amino acid of type j at sequence
position m while simultaneously at position m′ there is an amino acid of type j ′. Hence, the matrix
of the set of linear equations (5) accounts for such pair correlations. We have developed our own
computer program to solve these linear equations.

Weighting and Regularization. To weight binding and non-binding peptides differently one can
generalize the averages, eq. (7), according to

〈−→x 〉 =
w+

N+

N+
∑

n=1

−→x +
n +

w−

N−

N−

∑

n=1

−→x −

n , (9)

where w+ + w− = 1 and N+ + N− = N holds. This description allows a weighting of sequences in
the learning set Slearn, which is independent from the actual number of binding S

+ and non-binding
sequences S

− considered. Good results were obtained using for instance weighting factors of w+ = 0.45
and w− = 0.55 or w+ = 0.36 and w− = 0.64.

In case the number of data is small compared with the set of parameters that are to be optimized
a regularization of the optimization procedure has turned out to be useful. This is the so-called
ridge regression procedure [17], which is widely used for sequence prediction problems [23]. It can be
considered by an additional term in the optimization function, eq. (4), yielding

L̂(−→w , b) = L(−→w , b) + λ−→w t · −→w , (10)

where λ is an empirical parameter, which needs to be chosen. Since the optimization function L(−→w , b),
eq. (4), is normalized by dividing with N , the number of sequences considered, the value of λ is inde-
pendent from the size of the learning set. The regularization term eliminates the possible occurrence
of singular behavior and contributes to a minimization of the length of the normal vector −→w of the
separating hyperplane that is defined by f(−→x ) = −→w t · −→x + b = 0. As a consequence, the sensitivity
of this separating hyperplane may increase for moderate values of λ in particular if the set of linear
equations (5) is ill-conditioned due to the smallness of the learning set Slearn. Interestingly, a sup-
port vector machine uses also a strategy to minimize the hyperplane normal vector −→w to increase
the sensitivity [15]. In the present applications of LSM we used λ = 10−7, which is large enough to
prevent singularities in the linear equations (5) but simultaneously small enough to have no influence
on results in the absence of singular behavior.

In the set of linear equations the regularization term in the optimization function gives rise to an
extra term in the diagonal of the matrix yielding instead of eq. (5)

〈

(−→x − 〈−→x 〉)(−→x t −
〈−→x t

〉

)
〉

· −→w + λ−→w = 〈(y − 〈y〉)(−→x − 〈−→x 〉)〉 . (11)

In the present applications we have a sufficient number of data, such that an application of the ridge
regression method did not offer significant advantages.

Support Vector Machine. An alternative approach to optimize the parameters of the linear scor-
ing function, eq. (3), is to use a support vector machine (SVM). A detailed description of SVM can be
found in Refs. [8, 15]. With this method one determines the parameters of the scoring function f(−→x )
such that for binding peptides the inequality f(−→x +) ≥ +1 and for non-binding peptides the inequality
f(−→x −) ≤ −1 is approximated, while simultaneously the length of the hyperplane normal vector −→w
is minimized. The latter increases the sensitivity to discriminate between binding and non-binding
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peptides. A crucial point of this method is to consider only a subset of the total learning set S learn

by sorting out data for which the corresponding inequality rigorously holds, i.e. f(−→x +) > +1 and
f(−→x −) < −1 for binding and non-binding peptides, respectively. Also this selection increases the
sensitivity of the method.

A further increase in sensitivity may be achieved by applying a non-linear transformation to the
sequence (feature) space of the learning data set and optimizing the discrimination problem in this
new feature space. In several test computations a non-linear representation in the feature space did
not show any improvement. Thus, we refrain from giving more details. We used the public domain
program SVMlight [18] to optimize the parameters of the support vector machine.

Quality Control. The performance of learning (predicting) can be characterized by providing sim-
ply the fraction of binding and non-binding nonapeptides, which were recognized (predicted) properly
or alternatively by the Matthew correlation coefficient (MCC) [21], which is defined as

MCC =
cor+cor− − incor+incor−

[N+N−(cor+ + incor−)(cor− + incor+)]
1

2

, (12)

with cor+ and cor− as the number of correctly classified binding and non-binding peptides and incor+

and incor− as the number of incorrectly classified binding and non-binding peptides, respectively.
Note that N+ = cor+ + incor+ and N− = cor− + incor−. The advantage of the MCC measure is
to ignore spurious contributions, which are obtained also in the absence of a learning or prediction
strategy. In case of a symmetric situation with cor+ = cor− = cor, incor+ = incor− = incor and
N+ = N− = N/2 and a low error margin cor � incor the expression(12) simplifies approximately to

MCC ' 1 − 2
incor

cor + incor

valid for binding and non-binding nonapeptides, such that a prediction probability of 0.9 corresponds
to an MCC value of 0.8. A prediction probability of 0.5 that can be obtained also in the absence of a
learning or prediction strategy yields MCC = 0.

Another widely used method to characterize the quality of learning and predicting are plots of
sensitivity (sens) versus specificity (spec) [3]. The functional dependence sens(spec) can be obtained
by varying the threshold t used to classify a peptide of sequence −→x as binding for f(−→x ) > t and as
non-binding for f(−→x ) < t and monitoring sens(t) and spec(t), which are defined as

sens(t) =
cor+(t)

N+
and spec(t) =

cor−(t)

N−
. (13)

The area under the function sens(spec) can be understood as an overall quality measure of recognition/
prediction. However, it is preferable to consider the sens and spec values for a symmetric situation
i.e. sens ∼= spec, which can be achieved by variation of the threshold t value.

3 Results and Discussion

Parameters of the Scoring Function. We have determined the parameters of the scoring function
by solving the set of linear equations (5) and by applying the support vector machine for different
sets of binding and non-binding nonapeptides. To provide results of a typical application, which
can be reproduced, we calculated optimal parameters of the scoring function, eq. (3), for the 269
even numbered binding nonapeptides S

+ listed in Table 6 of the appendix supplemented by the same
number of non-binding peptides taken from the set S

− of 10.000 nonapeptides as described above.
The parameters of −→w and b obtained using the method of minimizing the least square optimization
method (LSM) and the support vector machine (SVM) are given in Table 3. Surprisingly, the support
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vector machine did not provide improved results by using a non-linear transformation from which we
can conclude that the problem of peptide binding is likely to be not separable the non-linear feature
space of sequences. Consequently, the SVM parameters displayed in Table 3 refer to the linear version.

Table 3: Optimized parameters −→w of the scoring function f(−→x ) = −→w t · −→x + b.

amino acid position 1 position 2 position 3 position 4 position 5 position 6 position 7 position 8 position 9
type LSM SVM LSM SVM LSM SVM LSM SVM LSM SVM LSM SVM LSM SVM LSM SVM LSM SVM
ALA -0.02 0.16 -0.07 0.12 0.14 0.44 -0.21 -0.21 -0.26 -0.15 -0.19 -0.06 0.07 0.26 -0.16 -0.13 -0.10 -0.05
HIS -0.01 0.11 -0.26 -0.16 0.18 -0.02 -0.41 -0.11 -0.08 0.08 0.08 -0.06 -0.38 -0.10 -0.13 -0.11 0.10 -0.03
GLU -0.16 -0.24 -0.20 -0.08 -0.37 -0.34 0.02 0.13 -0.13 -0.10 -0.29 -0.27 -0.38 -0.30 -0.04 0.16 -0.21 -0.13
GLN -0.31 -0.17 -0.28 -0.11 0.01 0.13 -0.20 -0.14 0.25 0.25 -0.14 -0.05 -0.33 -0.14 -0.07 0.10 0.09 -0.02
ASP -0.39 -0.22 -0.39 -0.33 -0.06 0.05 0.10 0.12 -0.38 -0.36 -0.36 -0.26 -0.41 -0.39 -0.02 -0.15 -0.09 -0.19
ASN -0.32 -0.20 -0.80 -0.58 -0.04 0.10 -0.29 -0.26 -0.16 0.01 -0.18 -0.11 -0.23 -0.07 -0.51 -0.38 -0.25 -0.11
LEU -0.20 -0.15 0.78 1.50 -0.10 0.20 -0.24 -0.11 -0.22 -0.10 0.00 -0.03 0.15 0.40 -0.01 0.24 0.40 0.63
GLY -0.03 0.04 -0.22 -0.16 -0.17 -0.15 0.06 0.25 -0.03 0.32 -0.09 0.05 -0.30 -0.25 -0.01 0.08 -0.29 -0.37
LYS -0.19 0.02 -0.54 -0.36 -0.16 -0.12 0.08 0.27 -0.16 -0.10 -0.23 -0.26 -0.44 -0.28 -0.14 0.06 -0.42 -0.34
SER -0.19 -0.15 -0.39 -0.39 -0.03 0.03 -0.04 0.05 -0.24 -0.32 -0.04 0.12 -0.11 0.04 -0.20 -0.05 -0.09 0.01
VAL -0.05 0.02 0.05 0.04 -0.03 0.13 -0.09 -0.08 0.05 0.30 0.07 0.38 0.02 0.00 -0.12 -0.06 0.48 0.95
ARG 0.19 0.23 -0.56 -0.14 -0.28 -0.03 -0.09 0.07 0.00 0.13 -0.52 -0.35 -0.32 -0.20 -0.21 -0.04 -0.35 -0.27
THR -0.16 -0.18 0.08 0.23 0.27 0.19 -0.01 -0.01 -0.09 -0.02 -0.07 -0.09 -0.01 0.16 0.01 0.09 0.01 0.24
PRO -0.04 0.10 -0.28 -0.16 -0.15 -0.13 0.01 0.22 -0.05 0.18 0.05 0.23 0.13 0.17 0.16 0.28 -0.49 -0.32
ILE 0.04 0.15 0.29 0.35 -0.07 -0.14 0.31 0.29 0.08 0.07 0.14 0.53 -0.03 0.11 -0.18 -0.12 0.29 0.53
MET -0.13 0.15 0.69 0.88 -0.27 -0.01 -0.25 -0.14 -0.33 -0.18 -0.28 -0.03 -0.12 0.00 0.05 0.04 0.20 0.14
PHE -0.04 0.10 -0.26 -0.16 -0.07 0.08 -0.29 -0.20 -0.20 0.12 0.19 0.25 0.20 0.39 -0.36 -0.08 -0.28 -0.19
TYR 0.11 0.18 -0.44 -0.44 -0.28 -0.34 -0.46 -0.26 -0.24 -0.13 0.08 -0.01 0.06 -0.06 -0.18 0.03 -0.37 -0.37
CYS -0.30 -0.07 0.54 0.04 -0.58 -0.22 -0.18 0.08 0.15 0.08 -0.09 -0.02 0.17 0.12 0.14 0.02 -0.17 -0.04
TRP 0.19 0.13 0.28 -0.07 0.05 0.16 0.17 0.02 0.05 -0.07 -0.14 0.03 0.26 0.14 -0.01 0.01 -0.46 -0.07

The 180 parameters are displayed in a two-dimensional array wjm with respect to the 20 amino acid
types j and the 9 sequence positions m. The parameters obtained with the least square optimization
method (LSM) are given in the left columns the parameters obtained from the support vector machine
(SVM) are given in the right columns, respectively. The values of parameter b are bLSD = 0.22 and
bSV M = 1.09. To determine the parameters with LSM we used as learning set every even numbered
binding nonapeptide from Table 6 in the appendix, making up a total of 269 peptides. The same
number of 269 non-binding peptides was chosen at random from the prepared set of 10,000 non-
binding peptides as described in text. The weights used to compute the averages, eq. (9), needed for
LSM were w+ = 0.45 and w− = 0.55 for binding and non-binding peptides, respectively.

Learning and Recognizing. In using the scoring function, we discriminate between learning, rec-
ognizing and predicting the ability of peptides to bind or not to bind. For the first two procedures
we use a learning set Slearn and for the latter we use a predicting set Spredict of binding and non-
binding peptides that is disjoint from the learning set. To demonstrate the LSM and SVM methods
we determined in a first application the parameters of the scoring function given in Table 3 using a
learning set Slearn containing 269 peptides from the total number of 538 available binding nonapep-
tides (the even numbered in Table 6 of the appendix) and an equal number of non-binding peptides
chosen randomly from the set of 10.000 non-binding peptides. For the prediction mode, we considered
the remaining 269 non-binding peptides and another 269 peptides randomly chosen from the set of
non-binding peptides. With LSM (SVM) the peptides of the learning set Slearn of 538 peptides were
recognized to 93.3% (95.9%) and 93.3% (94.4%) for binding and non-binding peptides, respectively.
In the prediction mode the LSM (SVM) predicted binding peptides to 92.9% (92.2%) and non-binding
peptides to 86.2% (89.2%). The support vector machine was using 115 binding and 123 non-binding
nonapeptides yielding a total number of 238 support vectors taken from the 538 data sets used. The
absolute numbers of incorrectly as non-binding recognized truly binding peptides are 18 for both SVM
and LSM. From these, 14 peptides were incorrectly recognized with both methods. The absolute num-
bers of incorrectly recognized peptides from the truly non-binding peptides are 15 for SVM and 11 for
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LSM. In this case 10 peptides were recognized wrongly as binding peptides with both methods.

Table 4: Number of incorrectly recognized sequences and the corresponding range of values of the
scoring function for different weights. See also Figure 1.

weights w+ incorrectly recognized values of incorrectly recognized values of
as binding scoring function as non-binding scoring function

0.8 0 - 17 0.01 to 0.98
0.6 1 at -0.02 7 0.02 to 0.72
0.4 7 -0.36 to -0.07 2 at 0.23, at 0.45
0.2 21 -0.77 to -0.02 1 at 0.11
0.1 37 -1.02 to -0.02 0 -

Figure 1: Course of the scoring function f(−→x ), eq. (3), for different weights w+ of the binding pep-
tides. Parameters of the scoring function were determined based on 200 binding and 200 non-binding
peptides in the learning mode as explain in text. The scoring function is displayed in recognition mode
considering the peptides of the learning set Slearn. From top to bottom the scoring functions refer
to weights w+ of the binding peptides of 0.8, 0.6, 0.4, 0.2, 0.1. Crosses mark incorrectly predicted
peptides whose statistics are given in Table 4.

Weighting Binding and Non-Binding Peptides. The least square optimization method allows
to apply different weights for the set of binding and non-binding peptides [see eq. (9)]. These weights
can play a similar role as does the threshold value t [see eq. (13)] used to discriminate between binding
and non-binding peptides. We studied the influence of different weights on recognition by monitoring
the scoring function f(−→x ), eq. (3), for renumbered sequences −→x n of the learning set Slearn, which
are ordered such that for subsequent sequences −→x n and −→x n+1 we have f(−→x n) < f(−→x n+1). Thus,
a scoring function is obtained whose value increases monotonously with sequence number n. The
scoring function shown in Figure 1 is based on 200 binding and 200 non-binding peptides in the
learning set Slearn to determine the parameters of the scoring function and its values. The crosses
mark nonapeptides whose binding ability was determined incorrectly according to the value of the
scoring function. The number of incorrect recognized binding (non-binding) sequences increases from
0 to 37 (decreases from 17 to 0) with decreasing weight w+ for the binding peptides (Table 4). The
ideal shape of the scoring function should be a step function with a function value of -1 for the first
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200 non-binding peptides and +1 for the 200 binding peptides. For large weights w+ of the binding
peptides the positive step of the scoring function is very pronounced while the negative step is less
distinct. The opposite is the case for small weights w+.

Course of the Scoring Function. To study the behavior of the scoring function in more detail
we employed a learning set of all available 538 binding peptides and added the same number of non-
binding peptides at random from the set of 10,000 non-binding peptides. As in Figure 1 we renumbered
the sequences to obtain monotonously increasing scoring functions. But, in this case we considered the
binding and non-binding peptides separately yielding two branches f +(−→x ) and f−(−→x ) of the scoring
function, respectively. The branches f−(−→x ) of the non-binding peptides are located in the lower
half, the branches f+(−→x ) describing the binding peptides are located in the upper half of Figure 2.
The fraction of non-binding peptides with f−(−→x ) < 0 and of binding peptides with f+(−→x ) > 0 are
correctly recognized. In recognition mode (solid lines for LSM and dashed-dotted lines for SVM)
the two different optimization methods (LSM and SVM) considered in this work yielded very similar
results with a minor advantage for SVM in recognizing binding peptides, while LSM is marginally
ahead in recognizing non-binding peptides. But, SVM seems to be superior in its ability to separate
binding from non-binding peptides, since its scoring function is generally larger for binding peptides
and smaller for non-binding peptides as compared to the corresponding LSM scoring function. The
results obtained with LSM in prediction mode using the jackknife procedure (dashed lines) (leaving
out one peptide in the learning mode, whose binding ability is predicted) yielded results that are very
similar to the corresponding data obtained in recognition mode. Even with a rather small number of 50
binding and 50 non-binding peptides in the learning set, prediction of all 538 binding and non-binding
peptides yields reasonable results (dotted lines).

Selecting Peptides from the Learning Set. The support vector machine has the ability to
select a subset of data in feature space to optimize the performance. The least square optimization
method does not directly offer such an option. However, after an LSM optimization is performed one
can identify incorrectly recognized peptides and the peptides that are located in the twilight zone of
vanishing values of the scoring function. The assumed binding ability of these peptides may have been
wrongly assigned. This can particularly be the case for the randomly generated sequences from which
we assumed that they are all non-binding. We had the option to eliminate these peptides in a second
run of LSM optimization. To investigate this possibility, we started an LSM optimization with 300
binding and 5,000 non-binding peptides as learning set Slearn with w+ = 0.36. In the prediction mode,
we considered the remaining 238 binding and 5,000 non-binding peptides. Thus, in recognition mode
92.0% binding and 92.8% non-binding peptides were found. In the prediction mode 90.3% binding
and 92.5% non-binding peptides were predicted correctly. In a second LSM run, we eliminated 31 non-
binding peptides with f(−→x −) > 0.7 from Slearn. With this choice, recognition was slightly reduced for
the non-binding peptides yielding 92.5%, while it remained unchanged for the binding peptides. In the
prediction mode we now observed that 91.6% of the binding and 92.2% of the non-binding peptides
were predicted correctly, which is over all an improvement compared with the first LSM run.

Interestingly, the SVM optimization yielded here only 50.6% correctly recognized and 48.7% cor-
rectly predicted binding peptides, while the non-binding peptides were found with 99.5% in recognition
and prediction mode. It is known since recently that SVM fails if an unbalanced data set is used for
learning size of the set of binding as appears in the present application with 300 binding and 5,000
non-binding nonapeptides [22, 32] and remedies are complicated. A simple procedure is to artificially
increase the minority set of binding peptides in the SVM procedure by considering 16 identical copies
of the original set of 300 binding peptides to balance the number of binding and non-binding peptides
considered. In this case, we obtained with the SVM correct recognition of 96.0% binding and 92.0%
non-binding peptides and correct prediction of 93.0% binding and 91.0% non-binding peptides. Note
that in the LSM optimization a balanced consideration of binding and non-binding peptides in the
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Figure 2: Course of the scoring function f(−→x ), eq. (3), monitored separately for binding and non-
binding peptides. A weighting of w+ = 0.36 and w− = 0.64 was used for the least square optimization
method (LSM). In contrast to Figure 1 binding and non-binding peptides were renumbered separately
and the resulting courses of the scoring functions were displayed separately. From the pair of scoring
functions displayed in the same line style the lower f−(−→x ) refers to non-binding peptides and the
upper f+(−→x ) to binding peptides. For the learning set all available 538 binding peptides and the
same number of non-binding peptides chosen from the set of 10,000 random peptides were considered.
The dashed-dotted lines display results of recognition using SVM. The pair of solid lines describe the
same as before but using LSM, which is also used for all other data displayed in this figure. The pair
of dashed lines displayed results in prediction mode obtained with the jackknife method. The dotted
lines display results in prediction mode using for learning only 50 binding and 50 non-binding peptides
that were randomly chosen.

learning mode is achieved directly using the weighting factors w+ and w− to evaluate the averages,
eq. (9). In conclusion one can say that with a well tuned least square optimization the same quality
of predicting of peptides can be achieved as with the SVM optimization.

Quality Control. A sensitivity selectivity plot as described in the method section can be used as
quality control for recognition and prediction (see Figure 3). The area under the function sensitiv-
ity(specificity), eq. (13), provides an overall measure of quality. The area is 0.9926 for recognition
(dashed line) and 0.9559 for prediction (solid line) using the LSM optimization and 0.9613 for pre-
diction (dotted line) using SVM optimization. Here, SVM shows again its superiority being slightly
stronger in its ability to discriminate between binding and non-binding peptides.

A more reliable measure of prediction quality is obtained by performing a statistical survey of
learning and predicting. For this purpose, we considered randomly chosen sets of peptides for learning
and predicting considering the LSM optimization, where we generated at random 400 different learning
sets Slearn and disjoint predicting sets Spredict from the total number of 538 binding peptides and 10,000
non-binding peptides to determine the parameters of the scoring function. Table 5 shows the results
for small learning sets of 50 binding and 50 non-binding peptides, which yield perfect results for
recognition, since the learning sets are so small, but exhibit rather modest results in the prediction
mode with an average success below 80% and a large variance of about 20%. With a much larger
learning set of 300 binding and 5,000 non-binding peptides the average fraction of correctly recognized
peptides diminishes being now at 95% and 91% for binding and non-binding nonapeptides, respectively.
At the same time, the average prediction quality improves considerably being now close to 90% for
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Figure 3: Sensitivity specificity plot for two different, disjoint sets Slearn and Spredict of 269 binding
and 269 non-binding peptides for the learning and predicting mode, respectively, using the same data
as for Table 3. Dashed line: learning mode, solid line: predicting mode with LSM optimisation.
Dotted line: SVM in predicting mode. The area under the curves are a measure for the prediction and
recognition quality. They adopt the values of 0.9926 for recognition and 0.9559 for prediction using
LSM and 0.9613 for prediction using SVM.

binding and non-binding peptides. The variance of these averages is now much smaller due to the
larger data base of binding and non-binding peptides used for the determination of the parameters of
the scoring function (Table 5).

It is astonishing that the present method based on a simple linear scoring function can yield a
prediction accuracy that is surpassing results of equivalent approaches [9, 14, 23, 31] and coming close
to results of more powerful procedures like hidden Markov models [5, 20, 30]. However, there is one
important difference between the present approach and neural network and hidden Markov model
in that the latter can cope with binding peptides of variable length while the former can deal with
aligned peptides of a fixed length only.

Table 5: Recognition and prediction statistics of binding for different learning sets of peptidesa.

size of learning sets 50/50b size of learning sets 300/5,000b

binding/non-binding binding/non-binding
binding peptides non-binding peptides binding peptides non-binding peptides

recognitionc 100% ±0.0% 100% ±0.0% 94.8% ±0.8% 91.3% ±0.1%
predictiond 78.8% ±21.3% 73.0% ±19.5% 90.0% ±2.9% 90.8% ±0.2%

a The learning sets are generated at random 400 times using least square optimization (LSM) with
weighting factors of w+ = 0.45 and w− = 0.55.
b Number of binding and non-binding peptides.
c Recognition mode: probing recognition probability of the different learning sets of peptides.
d Prediction mode: probing prediction probability of randomly chosen 238 binding and 5,000 non-
binding peptides that are disjoint from the learning set.
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4 Conclusions

We have generalized a least square optimization method to predict peptide binding at the class I major
histocompatibility complex using a general linear scoring function. A new weighting procedure allows
to treat asymmetric data sets with a small number of binding and a large number of non-binding
peptides in a balanced way maintaining the prediction quality, which is in the case far better than
the results from the support vector machine (SVM). However, the apparent deficiency of SVM can
probably be repaired by generalizing existing programs solving the SVM problem. But, even for a
symmetric data set the prediction quality of LSM comes very close to the SVM results. Further
generalizations of the LSM may possess the potential to reach or surpass the prediction quality of
other prediction schemes.
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Appendix

Table 6: List of considered binding nonapeptides as described in text.
Ta b l e 6 : L i s t  o f  c o n s i d e r e d  b i n d i n g  n o n a p e p t i d e s  a s  d e s c r i b e d  i n  t e x t .  
0 A A A K A A A A V A A G I G I I Q I A A G I G I L T V A A P T P A A P A A C D P H S G H F A C R T V A L T A A F H H V A R E L A I A K A A A A V A I M D K N I I L A I V D K V P S V

1 0 A L A A V V T E V A L A C A A A A V A L A D A A A A V A L A D G V Q K V A L A K A A A A A A L A K A A A A I A L A K A A A A L A L A K A A A A M A L A K A A A A N A L A K A A A A R

2 0 A L A K A A A A T A L A K A A A A V A L A K A A A E V A L A K A A A F V A L A K A A A G V A L A K A A A L V A L A K A A A P V A L A K A A E A V A L A K A A L A V A L A K A A N A V

3 0 A L A K A A P A V A L A K A A Y A V A L A K A G A A V A L A K A I A A V A L A K A P A A V A L A K A R A A V A L A K A Y A A V A L A K E A A A V A L A K G A A A V A L A K L A A A V

4 0 A L A K N A A A V A L A K Y A A A V A L A N G I E E V A L A P A A A A V A L A S H L I E A A L A T A A A A V A L A V A A A A V A L C R W G L L L A L E K A A A A V A L F D G D P H L

5 0 A L F G A L F L A A L F K A A A A V A L F P Q L V I L A L G L G L L P V A L G R N S F E V A L I H H N T H L A L K K A A A A V A L L N I K V K L A L L P P I N I L A L M D K S L H V

6 0 A L M K A A A A V A L M P L Y A C I A L N E L L Q H V A L N K M F C Q L A L N K M F Y K L A L N K M L C Q L A L Q D S G L E V A L Q P G T A L L A L S D H H I Y L A L S D L E I T L

7 0 A L S K A A A A V A L S N L E V K L A L S R K V A E L A L S T G L I H L A L W D I E T G Q ALW GFFP V L A L W N L H G Q A A L Y V D S L F F A M A I H K Q S Q A M A K A A A A V

8 0 A M F Q D P Q E R A T A K A A A A V A V A K A A A A V A V F D R K S D A A V G I G I A V V A V V P F I V S V A V V P F L V S V C I N G V C W T V C L G G L I T M V C L G G L L T M V

9 0 C L T K W M I L A C L T S T V Q L V D L E R K V E S L D L F G I W S K V D L M G Y I P L V D L M L S P D D I D L V H F A S P L D P K V K Q W P L D V A S V I V T K E A A G I G I L T

1 00 E L I R V E G N L E L T L G E F L K E L V S E F S R M E L V S E V S K V E M F R E L N E A E V A P P L L F V F A F R D L C I V F I A G N S A Y E F I A S N G V K L F I D S Y I C Q V

1 1 0 F I Y A G S L S A F K N I V T P R T F L A K A A A A V F L C K Q Y L N L F L D E F M E G V F L D G N E L T L F L D G N E M T L F L D Q V P F S V F L E P G P V T A F L F D G S P T Y

1 2 0 F L G A A G S T M F L G E N I S N F F L G G T P V C L F L G G T T V C L F L K E P V H G V F L L D K K I G V F L L L A D A R V F L L P S F A P D F L L S L G I H L F L L T R I L T I

1 3 0 F L L W A T A E A F L P S D F F P S F L Q S R P E P T F L T P K K L Q C F L W A I M H T E F L W E F P H D L F L W G P R A L V F L W G P R A Y A F L W T L E G D V F L Y C Y F A L V

1 4 0 F L Y E A V P Q L F L Y E R V P Q L F L Y G A L L L A F M F D L A A E L F M F E S P W N V F M L D W F P T I F T D Q V P F S V G A G I G V A V L G A G I G V L T A G E L G F V F T L

1 5 0 G I A G G L A L L G I G I G V L A A G I G I L T V I L G I L G F V F T L G I L G F V F T M G I L G F V F T V G I L T V I L G V G I V P F I V S V G I V P F L V S V G L A P P Q H E I

1 6 0 G L A P P Q H L I G L C T L V A M L G L D V L T A K V G L H C Y E Q L V G L I E K N I E L G L I M V L S F L G L L G F V F T L G L L G N V S T V G L L G T L V Q L G L L G W S P Q A

1 7 0 G L P V E Y L Q V G L Q D C T M L V G L R D L A V A V G L S E F T E Y L G L S P T V W L S G L S R Y V A R L G L V P F I V S V G L V P F L V S V G L Y D G M E H L G L Y P G L I W L

1 8 0 G L Y S S T V P V G M L G F V F T L G M N C R P I L T G M N E R P I L T G M N K R P I L T G M N R H P I L T G M N R R P I L T G Q L G F V F T L G T L G F V F T L G T L G I V C P I

1 9 0 G T L S K I F K L G V A L Q T M K Q G V L G F V F T L G V L V G V A L I H E I R V E G N L H L E G K V I L V H L E S L F T A V H L G N V K Y L V H L I D Y L V T S H L I K V E G N L

2 00 H L I R V E G N L H L L V G S S G L H L S L R G L P V H L S T A F A R V H L Y Q G C Q V V H L Y S H P I I L H M T E V V R H C H M T E V V R R C I A G I G I L A I I I D Q V P F S V

2 1 0 I I S A V V G I L I I S C T C P T V I I S L W D Q S L I L A G Y G A G V I L A K F L H W L I L A P P V V K L I L A Q V P F S V I L D Q K I N E V I L D Q V P F S V I L D T G T I Q L

2 2 0 I L F E P V H G V I L F G H E N R V I L G F V F T L T I L H N G A Y S L I L K E P V H G V I L K E Y V H G V I L K S P V H G V I L L L C L I F L I L M E H I H K L I L M Q V P F S V

2 3 0 I L S P F M P L L I L S P L T K G I I L S Q V P F S V I L T V I L G V L I L W E P V H G V I L Y E P V H G V I M D K N I I L K I M D Q V P F S V I M I G V L V G V I T A Q V P F S V

2 4 0 I T D Q V P F S V I T F Q V P F S V I T M Q V P F S V I T S Q V P F S V I T W Q V P F S V I T Y Q V P F S V I V G A E T F Y V K A C D P H S G H K A R D P H S G H K A S E K I F Y V

2 5 0 K I F G S L A F L K I L S V F F L A K I N E P V I I I K I N E P V I I L K I N E P V I L I K I N E P V I L L K I N E P V L I I K I N E P V L I L K I N E P V L L I K I N E P V L L L

2 6 0 K K R E E A P S L K L A E Y V A K V K L A K A A A A V K L F C Q L A K T K L G E F Y N Q M K L H L Y S H P I K L I A N N T R V K L L E P V L L L K L L P E N N V L K L N E I L W S I
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