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ABSTRACT

Motivation: A number of available program packages determine

the significant enrichments and/or depletions of GO categories

among a class of genes of interest. Whereas a correct formulation of

the problem leads to a single exact null distribution, these GO tools

use a large variety of statistical tests whose denominations often do

not clarify the underlying P-value computations.

Summary: We review the different formulations of the problem and

the tests they lead to: the binomial, x2, equality of two probabilities,

Fisher’s exact and hypergeometric tests. We clarify the relationships

existing between these tests, in particular the equivalence between

the hypergeometric test and Fisher’s exact test. We recall that the

other tests are valid only for large samples, the test of equality of

two probabilities and the x2-test being equivalent. We discuss the

appropriateness of one- and two-sided P-values, as well as some

discreteness and conservatism issues.

Contact: isabelle.rivals@espci.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A common problem in functional genomic studies is to detect
significant enrichments and/or depletions of Gene Ontology (GO)
categories within a class of genes of interest, typically the class of
significantly differentially expressed (DE) genes.ManyGO process-
ing tools perform this task using various statistical tests refered to as:
the binomial test, the x2-test, the equality of two probabilities test,
Fisher’s exact test and the hypergeometric test (see Table 1). The
authors of some packages claim the advantages of the test(s) they
propose, often seemingly contradicting each other. For example,
Zeeberg et al. (2003) favor Fisher’s exact test: ‘Unlike theZ-statistics
with the hypergeometric distribution, and tests based on it, Fisher’s
exact test is appropriate even for categories containing a small num-
ber of genes’, whereas for Martin et al. (2004) the hypergeometric
test is most appropriate: ‘On the average, the hypergeometric dis-
tribution seems to be both the most adapted model and the most
powerful test’.Moreover, even though themost recent review papers
use a number of criteria to exhaustively compare the different exist-
ing tools (Khatri and Draghici, 2005), they do not discuss in detail

the identity and approximation relationships existing between the
different tests. This is precisely the aim of the present paper.

2 PROBLEM STATEMENT

We consider a total population of genes, e.g. the genes expressed in
a microarray experiment, and we are interested in the property of a
gene to belong to a specific GO category. The aim is to establish
whether the class of the DE genes presents an enrichment and/or a
depletion of the GO category of interest with respect to the total
gene population.

3 CANDIDATE FORMULATIONS

Let H0 denote the null hypothesis that the property for a gene to
belong to the GO category of interest and that to be DE are inde-
pendent, or equivalently that the DE genes are picked at ran-
dom from the total gene population. We consider successively
the hypergeometric, the comparison of two probabilities, and the
2 · 2 contingency table formulations of the above problem, and
introduce the exact or approximate null distributions they lead to.
Notations (see Table 2): the total number of genes is denoted by n,

the total number of genes belonging to the GO category of interest
by n+1, the number of DE genes by n1+: n, n+1 and n1+ are hence
fixed by the experiment. The number of DE genes belonging to the
GO category is denoted by n11.

3.1 Hypergeometric formulation

The hypergeometric formulation is directly derived from the
problem statement.

3.1.1 Exact null distribution If H0 is true, the random variable
N11 whose realization1 is the observed value n11, has a hypergeo-
metric distribution with parameters n, n1+, and n+1, which we denote
by N11 ! Hyper(n, n1+, n+1), with:

PðN11 ¼ xÞ ¼

!
nþ1

x

"!
n & nþ1

n1þ & x

"

!
n
n1þ

" ¼

!
nþ1

x

"!
nþ2

n12

"

!
n
n1þ

" : ð1Þ

Note that Hyper(n, n1+, n+1) ' Hyper(n, n+1, n1+).

!To whom correspondence should be addressed.

1Random variables and their realizations are denoted respectively by
uppercase and lowercase letters.

! 2006 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 by guest on August 6, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/


3.1.2 Approximate null distribution For a large sample, N11 has
approximately a binomial distribution with parameters n1+ and
n+1/n: N11 ! Bi(n1+, n+1/n). Note that if n1+ n+1/n is also large,
the binomial approximation can further be approximated by a
Gaussian distribution.

3.2 Comparison of two probabilities formulation

In a second formulation, we consider two samples, that of the DE
genes of size n1+, among which n11 genes belonging to the GO
category of interest, and that of the not DE genes of size n2+, among
which n21 genes belonging to the GO category. The proportions
of genes belonging to the GO category in the two samples are thus
f1 ¼ n11/n1+ (DE genes) and f2 ¼ n21/n2+ (not DE genes). Let p1 and
p2 denote the probabilities to belong to the GO category in the two
samples; then N11 ! Bi(n1+, p1) and N21 ! Bi(n2+, p2). In this
formulation, the null hypothesis H0 is the equality of the two pro-
babilities p1 ¼ p2 ¼ p, i.e. there is neither enrichment nor
depletion in the sample of DE genes with respect to that of the
not DE genes.

3.2.1 Approximate null distribution The case of large samples
arises frequently. Then, the binomial distributions can be approxi-
mated with Gaussian distributions. Under H0, n1+ and n2+ being
large, the probability p can be correctly estimated with f ¼ (n11 +
n21)/(n1+ + n2+) ¼ n+1/n, leading to the approximately normally
distributed variable:

Z ¼ F1 & F2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1 & FÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1þ
þ 1

n2þ

r ! Nð0‚1Þ: ð2Þ

This distribution is approximate for two reasons: (1) the replace-
ment of the binomial distributions by Gaussian distributions holds
only for large samples (both n1+ and n2+must be large), and (2) it has
not been taken into account that, according to our problem state-
ment, the sum N11 + N21, the total number of genes belonging to the
GO category, is fixed and equal to n+1.

3.2.2 Exact null distribution Without approximating the bino-
mial distribution, and taking into account that N11 + N21 ¼ n+1, we
naturally obtain N11 ! Hyper(n, n1+, n+1) (see (Fisher, 1935;
Lehman, 1986) for the complete computation with the binomial
distribution conditionally on N11 +N21¼ n+1). Hence, the exact dis-
tribution of N11 under H0 is as before the hypergeometric
distribution.

3.3 Contingency table formulation

A third formulation is based on Table 2 seen as a 2 · 2 contingency
table. Let again H0 denote the hypothesis that the property to belong
to the GO category of interest and that to be DE are independent.

Table 1. Reviewed GO processing tools

GO tool Statistical tests Reference

BINGO Hypergeometric Maere et al., 2005
CLENCH Hypergeometric, binomial, x2 Shah and Fedorov, 2004
DAVID Fisher Dennis et al., 2003
EASEonline Fisher Hosack et al., 2003
eGOn Fisher http://www.genetools.microarray.ntnu.no/help/help_egon.php?egon=1#intro

FatiGO Fisher Al-Sharour et al., 2004
FuncAssociate Fisher http://llama.med.harvard.edu/cgi/func/funcassociate

FunSpec Hypergeometric Robinson et al., 2002
GeneMerge Hypergeometric Castillo-Davis and Hartl, 2003
GFINDer Hypergeometric, binomial, Fishera Masseroli et al., 2004
GoMiner Fisher Zeeberg et al., 2003
GOstat x2, Fisher Beißbarth and Speed, 2004

GoSurfer x2 Zhong et al., 2004
GO TermFinder (CPAN) Hypergeometric Boyle et al., 2004
GO TermFinder (SGD) Binomial http://www.yeastgenome.org/help/goTermFinder.html

GOTM Hypergeometric Zhang et al., 2004
GOToolBox Hypergeometric, binomial, Fisher Martin et al., 2004
L2L Binomial Newman and Weiner, 2005

NetAffx GO Mining Tool x2 Cheng et al., 2004
Onto-Express Binomial, x2, Fisher Khatri et al. 2002; Draghici et al., 2003
Ontology Traverser Hypergeometric Young et al., 2005
STEM Hypergeometric Ernst et al., 2005
THEA Hypergeometric, binomial Pasquier et al., 2004

aThe website now proposes 3 additional tests, but they are not documented.

Table 2. Classification of the genes expressed in a microarray experiment

Category 1

(2GO category)

Category 2

(=2GO category)

Total

Class 1 (DE) n11 n12 n1+
Class 2 (not DE) n21 n22 n2+
Total n+1 n+2 n
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3.3.1 Approximate null distribution The case of a large sample
is frequently considered where, if H0 is true, the following variable
is asymptotically x2 distributed with one degree of freedom (Mood
et al., 1974):

D2 ¼
X2

i¼1

X2

j¼1

!
Nij&

NiþNþj
n

"2

NiþNþj
n

! x2ð1Þ: ð3Þ

Note that d2 is the square of the realization z of the normal variable
Z given by Equation (2):

d2 ¼ nðn11n22&n12n21Þ2

n1þn2þnþ1nþ2
¼ z2: ð4Þ

3.3.2 Exact null distribution Whatever the sample size, Fisher’s
formula gives the probability of the observed configuration of the
contingency table under H0 (Fisher, 1935; Mood et al., 1974;
Agresti, 2002):

PðfNij ¼ nijgÞ ¼
n1þ!n2þ!nþ1!nþ2!

n!n11!n12!n21!n22!
: ð5Þ

It is easy to show that N11 ! Hyper(n, n1+, n+1):

PðN11 ¼ x jN1þ ¼ n1þ‚Nþ1 ¼ nþ1Þ ¼

nþ1!

x!n21!

nþ2!

n12!n22!
n!
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¼
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"
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n

n1þ

" :

ð6Þ

As expected, the exact distribution of N11 under H0 is again the
hypergeometric distribution, see Equation (1).

3.4 Summary

Under H0, i.e. assuming the independence of the property to belong
to the GO category of interest and of the property to be DE, or
equivalently assuming p1 ¼ p2 where p1 is the probability of the DE
genes to belong to the GO category, and p2 the probability of the not
DE genes to belong to the GO category, the exact distribution of N11

is the hypergeometric distribution N11 ! Hyper(n, n1+, n+1) which,
if n is large, can be approximated with the binomial distribution
Bi(n1+, n+1/n). If the two samples are large, it is also possible to
exhibit an approximately normal variable Z or its square D2 ¼ Z2,
the latter being hence approximately x2 distributed with one degree
of freedom.

4 TESTS AND P-VALUES

Generally, when performing the test of a null hypothesis H0 against
some alternative hypothesis Ha, one disposes of a realization x of
a random variable X with known distribution under H0, the null
distribution. One chooses a priori a probability a of type I error (the
error to reject H0 whereas it is true) that must not be exceeded,
also called significance level, the decision to reject H0 being taken
when x falls in the critical region. In this context, the P-value is
the minimum significance level for which H0 would be rejected, or

equivalently, it is the probability, under H0, of the minimal critical
region containing x.
The choice of a critical region in order to maximize the power

of the test, and hence the choice of the corresponding P-value,
depends on the alternative hypothesis Ha, which may be ‘enrich-
ment’ (p1 > p2, one-sided test, critical region right), ‘depletion’
(p1 < p2 ‘one-sided’ test, critical region left), or ‘enrichment or
depletion’ (p1 6¼ p2, two-sided test, critical region left and right).
Enrichment, depletion and enrichment or depletion are later denoted
by E, D, and E/D, respectively.

4.1 One-sided tests

The one-sided P-value is defined as:

if Ha ¼ E‚poneðn11Þ ¼ PðN11 ( n11Þ
if Ha ¼ D‚poneðn11Þ ¼ PðN11 ) n11Þ

:

$
ð7Þ

If the case of a discrete distribution, like the exact hypergeometric
distribution or the approximate binomial distribution, it is not pos-
sible to guaranty any value of the significance level with the rule
‘reject H0 if pone(n11) ) a’. Due to the discreteness, the actual
significance level (or size of the test) is generally smaller than
the nominal (desired) significance level a, which results in a loss
of power.
To minimize this loss, a good remedy is the use of mid-P-values

(Agresti andMin, 2001; Agresti, 2002). The one-sided mid-P-value,
which we denote by pone, is defined as:

if Ha ¼ E‚poneðn11Þ ¼ PðN11 > n11Þ þ 1
2 PðN11 ¼ n11Þ

if Ha ¼ D‚poneðn11Þ ¼ PðN11 < n11Þ þ 1
2 PðN11 ¼ n11Þ

:

$
ð8Þ

It must be noted that the actual significance level, i.e. the actual
probability of type I error, is no longer guaranteed to be smaller than
the nominal significance level. However, it is rarely much greater
(Agresti, 2002).
Another remedy is randomization, with which any desired signi-

ficance level can be achieved. However in practice, randomization
having nothing to do with the data does not make much sense
(Lehmann, 1986; Agresti, 2002).
If the approximately normal variable Z is considered, we have:

if Ha ¼ E‚poneðzÞ ¼ PðZ > zÞ
if Ha ¼ D‚poneðzÞ ¼ PðZ < zÞ :

$
ð9Þ

If the approximately x2 distributed variable D2 is used, a one-sided
test cannot be performed, since both enrichment (large observed
n11) and depletion (small observed n11) lead to a large value of D2,
i.e. there is a single critical region.

4.2 Two-sided tests

In the case of a two-sided test i.e. Ha ¼ E/D, and of a discrete null
distribution, there are several popular definitions of the P-value, see
(Agresti, 1992, 2002). A first approach defines the two-sided
P-value as twice the one-sided P-value:

pdoublingtwo ðn11Þ ¼ 2 · min½PðN11 ( n11Þ‚PðN11 ) n11Þ+: ð10Þ

Yates and Fisher himself were in favor of this ‘doubling’ approach
(Yates, 1984). A second approach, which after Gibbons and Pratt
(1975) we name the ‘minimum-likelihood’ approach, defines the
P-value as the sum of the probabilities of the values of N11 that are
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smaller or equal to that of the observed value n11, as recommended
for example in (Mehta and Patel, 1998):

pmin lik
two ðn11Þ ¼

X

PðN11¼mÞ)Pðn11Þ
PðN11 ¼ mÞ: ð11Þ

The minimum-likelihood approach is the only one we have
encountered in the GO tools of Table 1. A third approach
defines the P-value as the sum of the probabilities of the values
of N11 that are at least as or more extreme (with respect to the
mathematical expectation of N11) than the observed one (Gibbons
and Pratt, 1975; Yates, 1984; Agresti, 2002). A fourth approach
defines the two-sided P-value as min[P(N11 ( n11), P(N11 ) n11)]
plus an attainable probability in the other tail that is as close
as possible to, but not greater than, that one-tailed probability
(Agresti, 2002).
These definitions lead to equal P-values in the case of symmetric

distributions, i.e. when n1+ ¼ n2+; else, they possibly lead to dif-
ferent P-values and corresponding test results, each of them having
advantages and disadvantages, due to the discreteness and skewness
of the hypergeometric distribution. The problem is also that these
P-values do not correspond to any well-defined two-sided test. This
issue is discussed for example in (Dunne et al., 1996), where a
two-sided P-value based on an uniformly most powerful unbiased
test is proposed. However, this P-value is obtained with an iterative
procedure, which makes this approach inadequate for the screening
of hundreds of different GO categories.
Thus, if a single simple and computationally light (see subsection

6.3) procedure were to be recommended, we would advice the
doubling approach, against which there is no strong argument,
and using the mid-P-value, in order to reduce the discreteness
and conservatism effects:

pdoubling
two ðn11Þ ¼ 2 · minðPðN11 > n11Þ þ 1

2 PðN11 ¼ n11Þ‚
PðN11 < n11Þ þ 1

2 PðN11 ¼ n11ÞÞ:
ð12Þ

A mid-P-value can also be defined for the minimum-likelihood
approach, as the sum of the probabilities that are smaller than
the probability of the observed value n11, plus half the sum of
the probabilities equal to it:

pmin lik
two ðn11Þ ¼

X

PðN11¼mÞ<Pðn11Þ
PðN11 ¼ mÞ

þ 1

2

X

PðN11¼mÞ¼Pðn11Þ
PðN11 ¼ mÞ:

ð13Þ

However, we must again emphasize that the actual probability of
type I error may exceed the nominal significance level.
If the approximately normal variable Z is considered (a continu-

ous and symmetrically distributed variable), we have:

ptwoðzÞ ¼ 2 · min½PðZ > zÞ‚PðZ < zÞ+: ð14Þ

If the approximately x2 distributed variable D2 is considered, the
P-value is computed as:

ptwoðd2Þ ¼ PðD2 > d2Þ ¼ ptwoðzÞ: ð15Þ

4.3 One versus two-sided tests?

Consider a dataset consisting of tissues in a pathological condition
and of normal tissues, and a GO category whose genes are directly

affected by the condition, i.e. the genes belonging to this GO cate-
gory are DE (either over- or under-expressed). Such a GO category
is likely to be over-represented among the DE genes, i.e. an enrich-
ment is expected. Thus, detecting an enrichment is desirable. On the
other hand, consider a GO category such that the normal expression
of the corresponding genes is necessary for the condition to develop,
i.e. the genes belonging to this GO category are not DE. Such a GO
category is likely to be under-represented among the DE genes, i.e. a
depletion is expected. Thus, detecting a depletion is also desirable,
even if there is a risk to detect the depletion of a GO category
corresponding to genes whose normal expression is necessary to
the mere survival of the specie.
Thus, both enrichments and depletions of GO categories

are potentially of interest. Hence, unless there is a specific
reason not to consider enrichment or depletion, the adequate
alternative hypothesis is Ha ¼ E/D, i.e. two-sided tests are
appropriate.

5 SUMMARY AND DISCUSSION

To summarize, there is a single exact null distribution of N11, the
hypergeometric distribution, but different exact tests (exact in the
sense that they are based on the exact null distribution), one or
two-sided, and with several definitions of the P-value in the latter
case. These tests can equally be called hypergeometric or Fisher’s
exact tests2. Thus, it is not justified to claim, as Masseroli et al.
(2004) do, that ‘the x2 and Fisher’s exact tests have less power
than the hypergeometric and binomial distribution tests’. GFIN-
DER and GOToolBox propose the hypergeometric test and
Fisher’s exact test as two alternative options: GFINDER indeed
provides the same results for the two options (one-sided tests),
but strangely enough, GOToolBox gives different results, whereas
they should be identical for the same choice of a P-value
(incorrect results given by some GO tools are detailed in the
Appendix, which is available as supplementary data).
The available GO tools often do not explicitly state which

P-value is computed. For example, BINGO calls the test it performs
‘hypergeometric test’ (Maere et al. 2005), without saying that it
is two-sided with the minimum-likelihood approach. According to
both references and websites, we could establish that Func-
Associate, GFINDER and THEA provide only one-sided tests in
both directions, while FuncSpec, EASEonline, GO Term Finder
(CPAN), Term Finder (SGD), GOTM, L2L, Ontology Traverser
and STEM only one-sided enrichment tests and that BINGO,
DAVID, eGOn, 2004 FatiGo, GeneMerge, GoMiner, GOstat,
GoSurfer, NetAffx and Onto-Express provide two-sided tests, the
P-values being computed according to the minimum-likelihood
approach when a discrete distribution is used.
As discussed in section 4.3, two-sided tests are usually most

appropriate. Be it with the doubling or the minimum-likelihood
approach to the P-value, the discreteness and conservatism effects
can be efficiently dealt with using mid-P-values, a possibility that is
not offered by any of the GO tools of Table 1.

2As a matter of fact, (Fisher, 1935) describes a one-sided test in the direction

of the observed departure of the null hypothesis.
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6 NUMERICAL ILLUSTRATIONS

6.1 Small sample

We consider a small sample with n ¼ 20, n1+ ¼ 7, n+1 ¼ 6 and
n11 ¼ 4, i.e. f1 ¼ 0.57 and f2 ¼ 0.15. The null distribution of N11 !
Hyper(n, n1+, n+1) is shown in Figure 1. The sample being
very small, we consider only the tests based on this exact
distribution.

6.1.1 One-sided test For illustration purposes, let us first con-
sider a one-sided test (suppose one is interested in enrichments
only). The corresponding one-sided P-value right equals:

poneð4Þ ¼ PðN11 ( 4Þ ¼ Pð4Þ þ Pð5Þ þ Pð6Þ
¼ 7:04 · 10&2 þ 7:04 · 10&3 þ 1:81 · 10&4 ¼ 7:77 · 10&2:

The one-sided mid-P-value is:

poneð4Þ¼ PðN11 > 4ÞþPð4Þ/2
¼ 7:04 · 10&3þ1:81· 10&4þ7:04· 10&2/2¼ 4:24 · 10&2:

There is a substantial difference between the P-value and the
mid-P-value. With a significance level a ¼ 5%, the mid-P-value
leads to reject H0, whereas the P-value does not: the use of a mid-
P-value corresponds to a less conservative test. However, the actual
significance level is no longer guaranteed to be smaller than the
nominal significance level 5%.

6.1.2 Two-sided tests The two-sided doubling P-value equals:

pdoublingtwo ð4Þ ¼ 2 · min ðPðN11 ) 4Þ‚PðN11 ( 4ÞÞ ¼ 2 · PðN11 ( 4Þ
¼ 2 · poneð4Þ ¼ 1:55 · 10&1:

The two-sided doubling mid-P-value equals:

pdoubling
two ð4Þ¼2 · minðPðN11 < 4ÞþPðN11 ¼ 4Þ/2‚

PðN11 > 4ÞþPðN11 ¼ 4Þ/2Þ
¼ 2 · ðPðN11 > 4ÞþPðN11 ¼ 4Þ/2Þ
¼ 2 ·poneð4Þ¼ 8:49 · 10&2:

As for the one-sided test, there is a substantial difference between
the two values. Also, with a significance level a ¼ 5%, a two-sided
test does not reject H0.

The two-sided minimum-likelihood P-value equals:

pmin lik
two ð4Þ¼

X

PðN11¼mÞ)Pð4Þ
PðN11 ¼mÞ¼ Pð0ÞþPð4ÞþPð5ÞþPð6Þ

¼ 4:43 · 10&2þ7:04· 10&2þ7:04· 10&3þ1:81 · 10&4

¼ 1:22 · 10&1:

The hypergeometric distribution being here asymmetric, the
doubling and minimum-likelihood P-values are quite different.
The two-sided minimum-likelihood mid-P-value equals:

pmin lik
two ð4Þ ¼

X

PðN11¼mÞ<Pð4Þ
PðN11 ¼ mÞ þ PðN11 ¼ 4Þ/2

¼ Pð0Þ þ Pð5Þ þ Pð6Þ þ Pð4Þ/2 ¼ 8:67 · 10&2:

It is always smaller than the P-value, and hence corresponds to a less
conservative test.

6.2 Large sample

We now consider a sample whose size is analogous to that of
samples encountered when testing enrichment of GO categories
among DE genes on dedicated microarrays. We have n ¼ 800,
n1+ ¼ 40, n+1 ¼ 100, and observe n11 ¼ 10, i.e. f1 ¼ 0.25
and f2 ¼ 0.12. The alternative hypothesis is Ha ¼ E/D
(two-sided test).

, The exact two-sided doubling P-value obtained with the hyper-
geometric distribution is pdoublingtwo ðn11Þ ¼ 3.95 · 10&2, and the
two-sided mid-P-value is pdoubling

two ðn11Þ ¼ 2.66 · 10&2. With the
minimum-likelihood approach, pmin lik

two ðn11Þ ¼ 2.39 · 10&2, and
the two-sided mid-P-value is pmin lik

two ðn11Þ ¼ 1.74 · 10&2. Note
that, the null distribution being asymmetric, there is a noticeable
difference between the two approaches, and, though the sample
is quite large, between the P-values and the corresponding
mid-P-values.

, The approximate binomial test leads to a doubling P-value of
4.54 · 10&2, and to a doubling mid-P-value of 3.11 · 10&2, to a
minimum-likelihoodP-value of 2.75 · 10&2, and to aminimum-
likelihood mid-P-value of 2.03 · 10&2. Note that though the
sample is not small, there is quite a difference with the exact
distribution.

, The approximate test of equality of two probabilities leads to
the value of an approximately normal statistic z¼ 2.45, and to a
two-sided P-value of ptwo(z) ¼ 1.42 · 10&2. This value is even
less accurate than that obtained with the binomial approxima-
tion, because the DE sample is too small (n1+ ¼ 40).

, The x2-test indeed leads to a statistic value d2¼ 6.015¼ z2, and
hence to the same two-sided P-value.

In the case of larger samples, obtained with mouse or human
pangenomic microrrays, typically with n of the order of 25 000:

, The approximate binomial test leads to (mid-) P-values
that are very close to those of the exact hypergeometric test.
However, with todays computing means, there is no
decisive advantage in performing this approximation (see
next section).

, The approximate test of equality of two probabilities becomes
closer to the exact one only if the number of DE genes is large,

Fig. 1. Hypergeometric null distribution Hyper(20, 7, 6) (crosses). The

observed value is n11 ¼ 4 (circle).
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which is not necessarily the case. There is thus no reason to use
this test.

, This is hence also true for the equivalent x2 test.

6.3 Implementation with R and computational issues

All the exact tests can be implemented ‘by hand’ with the hyper-
geometric cumulative distribution function ‘phyper’ and the distri-
bution function ‘dhyper’, and the binomial approximations with
‘pbinom’ and ‘dbinom’3.
The default implementation of the exact test with R provides the

two-sided minimum-likelihood P-value. The corresponding instruc-
tion is ‘fisher.test(c)’, where the matrix c is the 2 · 2 contingency
table [n11 n12; n21 n22]. The one-sided enrichment test is obtained
with ‘fisher.test(c, alternative ¼ ‘‘greater’’)’, the one-sided
depletion test with ‘fisher.test(c, alternative ¼ ‘‘less’’)’.
In order to evaluate the computation time of the two-sided tests,

let us consider the case of a microarray with n¼ 25 000 genes, n1+¼
1000 DE genes, and 500 different GO categories. We take n+1
uniformly distributed in [0,n], and n11 uniformly distributed in
[max(0, n+1+n1+–n), min(n1+, n+1)]. With R 2.1.0 running under
Mac OS X on a 2 GHz two processor Macintosh (PowerPC 970
2.2), we obtain the following total elapsed times (mean and standard
error on 20 runs) for the doubling approach:

, hypergeometric doublingP-values, computedwith the functions
‘dhyper’ and ‘phyper’: 0.17 ± 0.02 s, and 0.20 ± 0.02s for the
mid-P-values.

, binomial doubling P-values, computed with the functions
‘dbinom’ and ‘pbinom’: 0.16 ± 0.02s, and 0.19 ± 0.02s for
the mid-P-values.

Hence, the gain in time obtained by using the binomial approxi-
mation to the hypergeometric distribution is negligible.
For the minimum-likelihood approach, the R function ‘fisher.

test’, (which does not only compute a P-value) is much slower
than a computation ‘by hand’:

, hypergeometric minimum-likelihood P-values, computed with
the function ‘fisher.test’: 17.15 ± 0.21 s.

, hypergeometric minimum-likelihood P-values, computed with
the functions ‘dhyper’ and ‘phyper’: 1.83 ± 0.04s and 2.10 ±
0.05s for the mid-P-values.

The computation time is hence an argument in favor of the doubling
approach to the two-sided P-value.

7 CONCLUSION

The correct statement of the enrichment and/or depletion testing
problem leads to a unique exact null distribution of the number of
DE genes belonging to the GO category of interest, given the total
gene number and the total number of genes belonging to the GO
category. This distribution is the hypergeometric one, whose values
are equivalently given by Fisher’s formula for a 2 · 2 contingency
table. Since both enrichments and depletions of GO categories

are potentially of interest, two-sided tests are generally most appro-
priate. With the doubling or the popular minimum-likelihood
definitions of the P-value, a loss of power due to the discreteness
of the hypergeometric distribution is efficiently dealt with using
mid-P-values, the doubling P-value involving lighter computations
than the minimum-likelihood P-value. Finally, since many dedi-
cated microarrays involve small data sets, and given the currently
available algorithms and computing means, there is no strong
argument in favor of the approximate large sample tests.
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